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S O M M A R I O

Nell’ambito dell’esperimento MEG per la ricerca del decadimento µ+ → e+γ,
vietato nel Modello Standard, è stata sviluppata una simulazione dello
spettrometro per positroni. Una delle caratteristiche fondamentali di questo
rivelatore è che esso utilizza un campo magnetico non omogeneo, a gradiente.
La simulazione consiste nella realizzazione di due programmi: il Monte Carlo
e il programma di Ricostruzione. Il primo simula il passaggio del positrone
attraverso tutto l’apparato tenendo conto di tutti gli effetti fisici. Il secondo
cerca di ricostruire le principali grandezze fisiche del positrone e le coordinate
del vertice di decadimento del muone. In base ai risultati che abbiamo
conseguito, il progetto dell’esperimento ha sostituito la configurazione piatta
del sistema dei contatori a scintillazione, adottata inizialmente, con quella
ruotata, in quanto si ottiene un miglioramento delle prestazioni del rivelatore.

A B S T R A C T

In the framework of MEG experiment for the search of the µ+ → e+γ decay,
prohibited in the Standard Model, we have done a simulation of positron
spectrometer. One of the main property of this detector is that it uses a graded,
inhomogeneous, magnetic field. The simulation is based on the development
of two programs: the Montecarlo and the Reconstruction program. The first
simulates the passage of positron through the full detector, taking care of
all physical effects. The second tries to reconstruct the main kinematics
of positron and muon decay vertex. On the grounds of our results, the
experimental design of scintillator counters system has been changed passing
from a flat configuration to the one which adopts rotated scintillator bars.
Indeed the performances of the detector increase.
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I N T R O D U Z I O N E

Fin dai primi anni della sua scoperta, il muone ha destato sempre grande
interesse nella comunità dei fisici, soprattutto in relazione al decadimento
µ+ → e+γ che, nell’ambito del Modello Standard, è proibito poiché viola
la conservazione del numero leptonico. Tuttavia il Modello Standard, no-
nostante le molteplici conferme sperimentali, è soggetto ad un insieme di
critiche che, nel corso degli anni, hanno portato alla formulazione di teorie
più generali, nelle quali l’entità del processo µ+ → e+γ è valutata essere
alla portata delle presenti possibilità sperimentali. Inoltre, i risultati ottenuti
negli ultimi anni con gli esperimenti sulle oscillazioni dei neutrini, hanno
determinato un grande interesse per la ricerca di processi nei quali il numero
leptonico non è conservato.

Lo sviluppo della tecnologia nella produzione di fasci muonici di elevata
intensità ha permesso di condurre esperimenti sempre più precisi che hanno
abbassato il branching ratio per il processo µ+ → e+γ, fino al limite attuale
di 10−11. L’esperimento denominato Mu-E-Gamma experiment (MEG) si
prefigge di abbassare tale limite di almeno altri due ordini di grandezza
e, rispetto agli esperimenti precedenti, introduce il concetto innovativo di
utilizzare un campo magnetico a gradiente. Un campo magnetico con tali
caratteristiche dovrebbe migliorare le prestazioni dell’apparato, riducendo
alcune fonti di rumore che hanno costituito la principale limitazione degli
esperimenti fin qui condotti. Comunque, la riuscita dell’esperimento non
può basarsi esclusivamente sulle prestazioni tecnologiche del rivelatore, ma
necessita lo sviluppo di algoritmi che permettano un’efficace ricostruzione
degli eventi registrati.

Le pagine che seguono sono dedicate alla descrizione dello studio che
abbiamo condotto su una delle componenti principali dell’apparato di misura
dell’esperimento MEG, cioè il rivelatore per i positroni. L’altra è costituita
dal calorimetro a xenon liquido, ossia il rivelatore dei fotoni. Lo studio è
stato svolto sviluppando una simulazione dello spettrometro magnetico dei
positroni. Essa consiste principalmente nella realizzazione di due programmi:
il Monte Carlo e il programma di Ricostruzione. Il primo simula il passaggio
del positrone attraverso tutto l’apparato tenendo conto di tutti gli effetti
fisici dovuti, soprattutto, ai diversi materiali attraversati. Il secondo cerca di
ricostruire le principali grandezze fisiche del positrone, quali l’impulso, e le
coordinate del vertice di decadimento del muone.

Nel capitolo 1, dopo un richiamo al Modello Standard, descriviamo bre-
vemente alcune sue estensioni, con particolare riguardo alle previsioni sul
decadimento µ+ → e+γ. Nel capitolo 2, invece, affrontiamo le più importanti
problematiche che si manifestano nella ricerca su tale processo e quelli ana-
loghi che violano la conservazione del numero leptonico. Con il capitolo 3

passiamo alla descrizione generale dell’esperimento MEG e dei suoi rivelatori
principali. Nel capitolo 4 esponiamo la simulazione che abbiamo realizzato
dello spettrometro per i positroni. I suoi principali risultati, invece, sono
illustrati nel capitolo 5, dove riportiamo anche qualche conclusione.
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1I L M U O N E E L A F I S I C A O LT R E I L M O D E L L O S TA N D A R D

. . . e le cose che stavano per capitare sono
troppo fantastiche per non raccontarle.

Jack Kerouac, Sulla Strada

1.1 un po’ di storia

La storia del muone inizia nel 1937 quando Neddermeyer ed Anderson
scoprirono nello studio dei raggi cosmici una particella con massa circa 200
volte quella dell’elettrone [Neddermeyer e Anderson, 1937]. Inizialmente si
credette che questa nuova particella fosse quella postulata da Yukawa per
spiegare la trasmissione delle interazioni forti [Yukawa, 1935]. Senonché, nel
1947, Conversi, Pancini e Piccioni dimostrarono che la particella scoperta da
Neddermeyer ed Anderson non poteva essere quella immaginata da Yukawa
poiché non interagisce forte [Conversi et al., 1947].

Gli studi successivi misero in evidenza che il muone aveva proprietà simili,
a parte la massa, a quelle dell’elettrone, tanto che viene indicato spesso come
il fratello pesante dell’elettrone. A causa di queste caratteristiche, pare che I.
Rabi fosse solito dire “Ma chi l’ha voluto?”, per sottolineare il fatto che,
apparentemente, la sua scoperta non spiegava alcun fenomeno particolare.

Fu subito chiaro che la nuova particella avrebbe dato inizio a qualche rom-
picapo. Infatti se il muone era semplicemente il fratello pesante dell’elettrone,
aveva, cioè, proprietà analoghe, allora sarebbe dovuto decadere in elettrone
più un raggio γ.

I primi risultati sul decadimento µ+ → e+γ dovuti ad Hincks e Ponte-
corvo nel 1947, usando i muoni dei raggi cosmici, indicavano un branching
ratio B(µ+ → e+γ) < 10% [Hincks e Pontecorvo, 1948]. Successivamen-
te, nel 1948, si stabilì che l’elettrone finale che si osserva nel decadimento
del muone aveva uno spettro continuo, e ciò significava che il muone do-
veva avere un decadimento per lo meno a tre corpi: un elettrone e due
particelle neutre [Steinberger, 1948]. Anche le ricerche sulla µ− e conver-
sion, iniziate nel 1952 da Lagarrigue e Peyrou, diedero esito negativo [La-
garrigue e Peyrou, 1952]. L’avvento dei primi acceleratori e la possibili-
tà di avere muoni prodotti artificialmente migliorarono notevolmente le
ricerche e già nel 1955, Lokonathan e Steinberger avevano stabilito che
B(µ+ → e+γ) < 2× 10−5 [Lokanathan e Steinberger, 1955], mentre Steinber-
ger e Wolfe trovarono B(µ−Cu → e−Cu) < 5× 10−4 [Steinberger e Wolfe,
1955].

A seguito della scoperta della violazione della parità, Feynman e Gell-
Mann suggerirono, nel 1958, che le interazioni deboli si manifestano attraver-
so lo scambio di un bosone vettore intermedio carico [Feynman e Gell-Mann,
1958]. Nello stesso anno Feinberg dimostrò che se questo era il caso per
µ+ → e+γ allora B(µ+ → e+γ) ≈ 10−4 [Feinberg, 1958]. Ma la mancata
osservazione del processo con B > 2× 10−5, portò Nishijima e Schwinger
a formulare l’ipotesi che esistessero due tipi di neutrino: il neutrino accop-
piato con il muone ha proprietà differenti da quello che si accoppia con
l’elettrone [Nishijima, 1957; Schwinger, 1957]. Tale ipotesi fu verificata speri-
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Figura 1.1: Progressi nella ricerca della Lepton Flavor Violation

mentalmente allo Brookhaven National Laboratory (BNL) nel 1962 da Danby
e collaboratori, i quali osservarono che le interazioni dei neutrini prodotti
dal decadimento del pione producevano muoni e non elettroni [Danby et al.,
1962]. Conseguenza naturale di questa scoperta fu l’introduzione dell’ipo-
tesi che ci doveva essere una conservazione separata dei numeri quantici
leptonici: il numero leptonico dell’elettrone, Le, e quello del muone, Lµ. Da
ciò deriva pure che il processo µ+ → e+γ è proibito. Successivamente, con
la scoperta del leptone τ, si completò l’ipotesi aggiungendo accanto alla
conservazione di Lµ e Le quella di Lτ.

Il problema con la conservazione di questi numeri quantici consiste nel
fatto che, in Teoria dei Campi, la conservazione può essere garantita dall’esi-
stenza di una simmetria di gauge locale, cioè di campi di gauge privi di massa.
Questi campi sarebbero l’equivalente del fotone per l’invarianza di gauge
locale U(1) che, come noto, garantisce la conservazione della carica elettrica.
Il fatto che non c’è nessuna evidenza sperimentale di questi campi induce
a ritenere che il numero leptonico non sia una grandezza conservata e che
debba esistere qualche meccanismo in base al quale risulti evidente la sua non
conservazione.

Negli anni seguenti, le ricerche sperimentali condotte su µ+ → e+γ e
altri processi correlati che violano la conservazione del numero leptonico,
Lepton Flavor Violation (LFV), hanno determinato un abbassamento dei limiti
superiori al branching ratio di circa due ordini di grandezza per decade, fino
ad arrivare al limite attuale di 10−11 [Brooks et al., 1999]. Questa evoluzione
è mostrata nella figura 1.1, nella quale si riporta anche il parallelo progresso
delle ricerche sulla µ− e conversion (§ 2.6.2, pag. 39).

Attualmente la teoria che meglio rappresenta i dati sperimentali è il Mo-
dello Standard. Esso, pur non proibendo la LFV, fornisce dei limiti che sono
al di là di una osservazione sperimentale allo stadio odierno (§ 1.5, pag. 21).
Tuttavia il Modello Standard si presta ad un certo numero di critiche, che
verranno esposte al § 1.4 di pagina 16, e che hanno portato alla formulazione
di teorie allargate, come le teorie di Super Simmetria, Supersymmetry (SUSY).
In molte di queste teorie l’entità dei processi di tipo LFV, in particolare
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Tabella 1.1: Campi di materia

1a Famiglia 2a Famiglia 3a Famiglia Q/e

u c t +2/3

d s b −1/3

νe νµ ντ 0

e µ τ −1

del processo µ → eγ, è stimata essere molto più alta che non nel Modello
Standard, fino ad essere entro i limiti delle presenti possibilità sperimentali.

Nei paragrafi successivi verranno presentati i principi del Modello Stan-
dard e quelli delle teorie alternative più in voga, ed alla fine verranno indicati,
per alcune di queste teorie, le predizioni teoriche per il branching ratio del
processo µ→ eγ.

1.2 il modello standard

La complessità dei fenomeni che coinvolgono le particelle elementari è
spiegata, attualmente, dall’interazione di un numero limitato di particelle: i
quark e i leptoni. Queste particelle, che sono considerate veramente elementari
(cioè prive di struttura interna), sono classificate in tre famiglie fondamentali,
ciascuna delle quali contiene una coppia di particelle.

La prima famiglia di quark contiene i quark up (u) e down (d), che sono
i mattoni con cui sono costituiti i nuclei atomici (cioè, prevalentemente, la
materia ordinaria). L’analoga famiglia per i leptoni è costituita dall’elettrone
(e) e dal corrispondente neutrino (νe). La seconda e terza famiglia includono,
rispettivamente, i quark charm (c) e strange (s), top (t) e bottom (b); per i leptoni
si ha, similmente, il muone (µ) e il neutrino muonico (νµ), la particella tau (τ) e
il neutrino tau (ντ). Naturalmente a queste particelle è necessario aggiungere
le rispettive antiparticelle. Tutte hanno spin s = 1/2 e sono, perciò, fermioni:
esse, nel loro insieme, costituiscono i campi di materia (matter field, tab. 1.1).

Oltre alle matter particles, ci sono le particelle che mediano le loro interazioni.
Esse sono bosoni a spin s = 1. Il fotone (γ), come noto, è scambiato nelle
interazioni elettromagnetiche; quelle forti sono mediate da otto gluoni, mentre
le interazioni deboli sono causate dallo scambio dei bosoniW± e Z0 (tab. 1.2).
Le interazioni forti agiscono solo tra i quark, le elettromagnetiche coinvolgono
sia i quark che i leptoni carichi, quelle deboli agiscono sia tra i leptoni che
i quark. I neutrini hanno solo interazione debole. Tra le interazioni non è
citata la gravità che, data la sua debole intensità, per ora, è sperimentalmente
irrilevante. Il suo mediatore sarebbe il gravitone il quale, a differenza degli
altri bosoni, ha spin s = 2 (conseguenza, questa, del fatto che la gravità è
solo attrattiva).

Il modello logico da cui deriva lo schema sopra delineato è noto come
Modello Standard. Esso è la sintesi di due teorie fondamentali: la Teoria Elettro-
debole (il modello di Glashow-Weinberg-Salam) e la Cromodinamica quantistica,
Quantistic Cromo-Dynamics (QCD). I principi cardini su cui si fonda sono
l’invarianza di gauge locale e la rottura spontanea di simmetria.

Di seguito ne illustreremo le caratteristiche principali senza entrare nei
dettagli per i quali si possono consultare appositi testi [Mandl e Shaw, 1984;
Halzen e Martin, 1984; Lee, 1981].
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Tabella 1.2: Bosoni di Gauge

Interazione Mediatore Q/e

Elettromagnetica γ 0

W+ +1

Debole W− −1

Z0 0

Forte gi (i = 1, . . . , 8) 0

1.2.1 L’invarianza di gauge

Il modello assume inizialmente tutte le particelle non interagenti e a massa
nulla. Questo ne fa una teoria di gauge invariante per trasformazioni globali
(tipo eiq), ma ovviamente non una teoria fisica, essenzialmente descritta da
lagrangiane del tipo

L f = iψ/∂ψ , L b = ∂µϕ
†∂µϕ

per i fermioni (f) e i bosoni (b), rispettivamente.1 Imponendo che essa risulti
invariante per trasformazioni di gauge locali (come eiqf(x)), ne risulta che le
derivate ordinarie, ∂µ, vanno sostituite da quelle covarianti, ad esempio

∂µ → Dµ = ∂µ + iqAµ,

in cui i campi di gauge Aµ sono i mediatori dell’interazione.2 In altri termini,
l’aver richiesto che la teoria risulti invariante per trasformazioni di gauge
locali introduce l’interazione tra le particelle.3 Ma non le masse. Se si aggiun-
gessero ad hoc dei termini di massa (mψψ, m2ϕ†ϕ) la teoria perderebbe una
delle caratteristiche fondamentali: la rinormalizzabilità e quindi la possibilità
di eseguire calcoli perturbativi agli ordini più elevati. In aggiunta, la teoria
non sarebbe più gauge invariante.

Fortunatamente l’introduzione della rottura spontanea di simmetria attra-
verso il meccanismo di Higgs comporta non solo che le particelle acquistino
massa ma anche che la teoria rimanga gauge invariante (per trasformazioni
locali) e rinormalizzabile.

1.2.2 La rottura spontanea di simmetria

La rottura spontanea di simmetria si manifesta nei sistemi che, pur presen-
tando delle simmetrie rispetto ad un gruppo di trasformazioni, hanno uno
stato fondamentale che non mostra la stessa simmetria. Ciò succede quando
questo è degenere, ossia ne esiste più di uno atto ad assumere tale ruolo. Un
tipico esempio di sistema con rottura spontanea di simmetria è quello dei
materiali ferromagnetici. In questi le forze che accoppiano gli spin elettronici
sono invarianti per rotazioni. Nello stato fondamentale, però, gli spin sono

1 Di seguito utilizzeremo, ove necessario, le notazioni /A = Aµγ
µ e ψ = ψ†γ0, con γµ, µ =

0, . . . ,3, le matrici di Dirac [Mandl e Shaw, 1984]
2 L’esempio è quello dell’elettrodinamica quantistica, Quantistic Electro-Dynamics (QED).
3 La tecnica di rendere una teoria di gauge, invariante per trasformazioni locali, è stata applicata

per la prima volta da Yang e Mills [Yang e Mills, 1954] e le teorie basate su di essa sono chiamate
teorie di Yang-Mills.
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ϕ1

V (ϕ)

ϕ2

(a) µ2 > 0
n

ϕ2

V (ϕ)

ϕ1

(b) µ2 < 0

Figura 1.2: Forma del potenziale V (ϕ)

allineati lungo una certa direzione e il risultato è che il materiale acquista
una magnetizzazione M lungo quella direzione la quale, essendo arbitraria,
comporta uno stato fondamentale degenere, non unico. Il fatto che M punti
in una direzione piuttosto che in un’altra costituisce la rottura spontanea di
simmetria.

In Teoria dei Campi lo stato fondamentale è quello di vuoto e si può avere
una rottura spontanea di simmetria solo se questo stato è degenere, cioè non
unico – idea questa, suggerita per la prima volta, nell’ambito della teoria
della superconduttività, da Nambu e Jona-lasino [Nambu e Jona-Lasinio,
1961a,b]. Questo significa che esiste, nello stato di vuoto, qualche quantità
non nulla, non invariante sotto le trasformazioni di simmetria del sistema.
Tale quantità può essere, allora, utilizzata per identificare un particolare stato
di vuoto come stato fondamentale.

L’esempio più semplice di sistema che presenta la rottura spontanea di
simmetria è quello descritto dalla seguente lagrangiana

L = ∂µϕ
†∂µϕ− V (ϕ)

in cui il potenziale V (ϕ) è

V (ϕ) = µ2
(
ϕ†ϕ

)
+ λ

(
ϕ†ϕ

)2
e ϕ è il campo scalare complesso

ϕ =
ϕ1 + iϕ2√

2

con µ2 e λ parametri reali. Affinché l’energia del sistema sia limitata inferior-
mente deve essere λ > 0.

Se µ2 > 0 allora V (ϕ) ha la forma di un paraboloide (fig. 1.2a), è definito
positivo e presenta un unico minimo per ϕ = 0, cioè un unico stato fonda-
mentale non degenere: in questo caso non ci può essere rottura spontanea di
simmetria.

Se, al contrario, µ2 < 0, la forma del potenziale è quella di un cappello
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messicano (fig. 1.2b), con un massimo per ϕ = 0 e un’intera circonferenza di
minimi assoluti per

ϕ = ϕ0 =

(
−µ2

2λ

)1/2
eiθ,

essendo θ una direzione nel piano complesso ϕ.
In questo caso lo stato di vuoto, cioè il minimo di V (ϕ), non è unico:

l’arbitrarietà di θ è simile a quella delle direzioni della magnetizzazione M

in un ferromagnete. Scegliere un particolare valore di θ per rappresentare lo
stato fondamentale determina la rottura spontanea di simmetria.

Scegliendo θ = 0, lo stato fondamentale è determinato da un valore
puramente reale

ϕ0 =

(
−µ2

2λ

)1/2
=

v√
2

.

Introducendo le deviazioni del campo dallo stato fondamentale,

ϕ =
1√
2
(v+ σ+ iη)

la lagrangiana può riscriversi in termini di σ e η

L =
1

2
(∂µσ) (∂

µσ) −
1

2

(
2λv2

)
σ2

+
1

2
(∂µη) (∂

µη)

+O
(
σ3,η3

)
.

Come si vede in questo semplice modello, con la rottura spontanea di
simmetria siamo passati da una lagrangiana che descrive fondamentalmente
particelle con massa immaginaria (µ2 < 0) ad una che, nel caso del campo σ,
descrive particelle scalari con massa

√
2λv2 mentre nell’altro, η, le particelle

rimangono a massa nulla. L’ultimo termine in L , invece, è l’interazione tra i
campi σ e η.

1.2.3 La lagrangiana del Modello Standard

Il Modello Standard è una teoria di gauge invariante per trasformazioni
appartenenti al gruppo di simmetria SU(3)C ⊗ SU(2)L ⊗U(1)Y . Il gruppo
SU(3)C ne descrive la parte forte (QCD) [Gell-Mann, 1964; Zweig, 1964],
mentre la simmetria SU(2)L ⊗U(1)Y governa il settore elettrodebole, Electro-
Weak (EW), del modello [Glashow, 1961].

La Cromodinamica quantistica è la teoria delle interazioni forti ed è sintetiz-
zata dalla lagrangiana

L =
∑
q

iq /Dq−
1

4
FaµνF

µν
a

in cui q = (q1,q2,q3) è il tripletto di colore dei quark e la somma è estesa ai
loro sapori.
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Il primo termine attraverso la derivata covariante

Dµ = ∂µ + igs
λi
2
Giµ

rappresenta l’interazione tra i quark. I mediatori dell’interazione sono i gluoni
descritti dai campi di gauge Giµ (i = 1, . . . , 8) ed accoppiano quark di diverso
colore ma dello stesso sapore; gs è la costante di accoppiamento forte e λi sono le
matrici di Gell-Mann, generatrici del gruppo SU(3).

Il secondo termine costituisce l’interazione tra i gluoni stessi ed è determi-
nato dal tensore di campo gluonico

Fiµν = ∂νG
i
µ − ∂µG

i
ν + gsfijkG

j
µG

k
ν

dove fijk sono le costanti di struttura di SU(3), definite attraverso le regole di
commutazione delle matrici di Gell-Mann[

λi
2

,
λj

2

]
= i fijk

λk
2

.

Il fatto che nella QCD ci sia interazione tra i campi di gauge, la rende una
teoria non abeliana.

La parte elettrodebole del modello può essere riassunta dalla seguente
lagrangiana

L = L F +L B +L H +L FH.

Il settore fermionico è dato da

L F =
∑
f=q,l

(
fL /DfL + fR /DfR

)
in cui la derivata covariante per i doppietti di SU(2) è definita come

DµfL =
(
∂µ + ig

τi
2
Wiµ + ig ′YBµ

)
fL

mentre per i singoletti

DµfR =
(
∂µ + ig ′YBµ

)
fR.

τi sono le matrici di Pauli, i generatori del gruppo SU(2),[τi
2

,
τj

2

]
= i ϵijk

τk
2

.

Y è l’ipercarica debole legata alla carica elettrica Q e alla terza componente
dell’isospin debole, IW3 , dalla relazione

Q = IW3 + Y.

I campi fermionici sono definiti da

fL =

(
νL

eL

)
,

(
uL

dL

)
, . . .
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ed hanno isospin debole IW = 1/2; l’ipercarica debole vale Y = −1/2, per i
leptoni, e Y = 1/6 per i quark. Per i singoletti la definizione è

fR = eR,uR,dR, . . .

con IW = 0 e Y = Q. L e R indicano le proiezioni sugli stati di elicità, left e
right, dei corrispondenti campi

fL =
1− γ5
2

f, fR =
1+ γ5
2

f, γ5 = γ0γ1γ2γ3.

Il settore di gauge ha come lagrangiana

L B = −
1

4
BµνB

µν −
1

4
FiµνF

µν
i

dove

Bµν = ∂νBµ − ∂µBν

Fiµν = ∂νW
i
µ − ∂µW

i
ν + gϵijkW

j
µW

k
ν

sono i tensori associati ai campi di gauge Bµ e Wiµ (i = 1, 2, 3). Bµ è associato
all’invarianza U(1)Y , mentre i campi reali Wiµ sono quelli che scaturiscono
dall’invarianza SU(2)L; g e g ′ sono le rispettive costanti di accoppiamento
debole: esse non sono indipendenti ma in relazione con la carica elementare
elettronica e > 0,

g sin θW = g ′ cos θW = e

con θW , l’angolo di miscelamento debole o angolo di Weinberg. ϵijk è il tensore di
Levi-Civita, completamente antisimmetrico, di ordine 3.

Come si vede, nelle lagrangiane descritte finora non compaiono i termini
di massa. Questi vengono generati dal meccanismo di Higgs [Higgs, 1964] con
il quale è possibile introdurre la rottura spontanea di simmetria attraverso la
lagrangiana

L H = DµΦ†DµΦ− V (Φ)

V (Φ) = µ2
(
Φ†Φ

)
+ λ

(
Φ†Φ

)2
in cui Φ = (ϕa,ϕb) è un campo scalare complesso, doppietto di SU(2),
con IW = 1/2 e Y = 1/2. Anche in questo caso, per i doppietti, la derivata
covariante è definita come in precedenza

DµΦ =
(
∂µ + ig

τi
2
Wiµ + ig ′YBµ

)
Φ.

Naturalmente la rottura spontanea di simmetria si manifesta per λ > 0 e µ2 <
0: il potenziale V ammette un insieme di minimi per Φ = Φ0 = (ϕ0a,ϕ0b)
tale che

Φ
†
0Φ0 = |ϕ0a|

2 + |ϕ0b|
2 =

−µ2

2λ
.
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Utilizzando il valore reale

Φ0 =

(
0

v/
√
2

)
, v =

(
−µ2/λ

)1/2
> 0

si ha la rottura spontanea di simmetria. Parametrizzando il campo di Higgs,
Φ, con le deviazioni dal vuoto, Φ0,

Φ =
1√
2

(
η1 + iη2
v+ σ+ iη3

)

si può dimostrare [Mandl e Shaw, 1984] che i campi di gauge associati alle
particelle W± e Z0

W±
µ =

1√
2

(
W1µ ∓ iW2µ

)
Zµ = − sin θWBµ + cos θWW3µ

acquistano la massa

mW =
1

2
vg, mZ =

mW
cos θW

mentre il campo del fotone

Aµ = cos θWBµ + sin θWW3µ

rimane a massa nulla.
Tutto ciò, però, non determina le masse dei fermioni. Queste sono generate

dall’ultimo termine, L FH, della lagrangiana elettrodebole, il cosiddetto termi-
ne di Yukawa che accoppia i fermioni con il campo di Higgs. La sua struttura
è

L FH =
∑
l

−gνl

(
lLνlRΦ̃+ Φ̃†νlRlL

)
+

∑
f=q,l

−gf ′f

(
f
′
LfRΦ+Φ†fRf

′
L

)
con Φ̃ = − i[Φ†τ2]

T. Anche in questo caso, lo sviluppo del campo Φ attorno
al vuoto Φ0 genera le masse dei fermioni. Ad esempio per i leptoni

ml =
glv√
2

, mνl =
gνlv√
2

.

Così come è scritto, il termine in gνl non solo introduce la massa per i
leptoni carichi, ma anche per quelli neutri, cioè i neutrini! In effetti, nella
loro formulazione originaria, Weinberg e Salam [Weinberg, 1967; Salam,
1968] ponevano gνl = 0, e i neutrini rimanevano con massa nulla: a quel
tempo gli esperimenti sulla massa dei neutrini ponevano solo un limite
superiore di qualche decina di eV ed era naturale assumere quell’ipotesi;
solo successivamente, alla fine degli anni settanta, si sono ottenute delle
indicazioni su un limite inferiore di circa 20 eV [Shaevitz, 1983; Lyubimov,
1980].

Effettivamente, questa parte di lagrangiana in gνl può essere sostituita da
un’espressione più generale∑

l ′l

−
(
Gl ′ll

′
LνlRΦ̃+G∗

l ′lΦ̃
†νlRl

′
L

)
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dove G è una matrice hermitiana di costanti d’accoppiamento. Con questa
generalizzazione, non solo i neutrini acquistano massa ma possono dare ori-
gine alla LFV. Infatti, diagonalizzando la precedente espressione, si ottengono
gli autostati di neutrino νi (i = 1, 2, . . . ) con masse mi e i neutrini leptonici
ordinari νl (l = e,µ . . . ) risultano delle combinazioni lineari degli autostati
νi. Come conseguenza si verifica un miscelamento dei neutrini,4 il quale da
luogo al fenomeno delle oscillazioni di neutrini [Bilenky e Pontecorvo, 1978;
Maki et al., 1962].

1.3 oscillazioni di neutrini

Per semplicità, consideriamo il miscelamento di due soli sapori (νµ e νe).
Allora possiamo scrivere(

νµ

νe

)
=

(
cosα sinα

− sinα cosα

)(
ν1

ν2

)

in cui α è l’angolo di miscelamento e ν1, ν2 sono gli autostati di massa. Quanto
scritto ci dice che se un acceleratore produce un fascio puro di νµ, la composi-
zione di questo cambia lungo il percorso, divenendo sempre più contaminato
da νe, fino a diventare un fascio puro di νe. Si può dimostrare [Perkins,
1982] che la probabilità della transizione νµ → νe, dopo che il fascio di
energia E ha percorso la distanza L, è data da

P(νµ → νe) = sin2 2α sin2
[
(m22 −m

2
1)L

4E

]
,

avendo fatto l’ipotesi che E ≫ mi. Quindi per α ̸= 0, si può osservare
l’oscillazione νµ → νe, cioè la violazione della conservazione del numero
leptonico, ad una distanza L ∼ E/(m21 −m

2
2) dalla sorgente.

Come si vede, nel Modello Standard non è preclusa la possibilità della
LFV, solo che la difficoltà di mettere in evidenza sperimentale l’oscillazione
dei neutrini, e quindi la loro massa, ha portato a sviluppare il modello
preferenzialmente con gνl = 0, cioè mν = 0 e, conseguentemente, vietando
la LFV.

I risultati degli esperimenti sull’oscillazione dei neutrini, condotti negli
ultimi anni [Cleveland et al., 1998; Fukuda et al., 1998, 1999; Kielczewska et al.,
2000; Fukuda et al., 2001], hanno cambiato la situazione, aprendo la via a
nuovi scenari.

1.3.1 Alcuni risultati sulle oscillazioni di neutrini

La sensibilità degli esperimenti sulle oscillazioni di neutrini è caratterizzata
dalla grandezza ∆m2 = m22 −m

2
1, differenza tra i quadrati delle masse di

due specie di neutrini.
I principali parametri che determinano ∆m2 sono la distanza L, tra il punto

di produzione dei neutrini e il rivelatore, e l’energia E del fascio di neutrini.
La tabella 1.3 riassume gli ordini di grandezza tipici di questi parametri per
varie classi di esperimenti, mentre quanto segue riepiloga, brevemente, i
principali risultati.

4 Il miscelamento altri non è che il principio di sovrapposizione della Meccanica Quantistica.
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Tabella 1.3: Sensibilità ∆m2 per gli esperimenti sulle oscillazioni di neutrini

Sorgente di neutrini L (m) E (MeV) ∆m2 (eV2)

Sole 1011 1 10−11

Atmosfera 107 104 10−3

Reattore 102 1 10−2

Acceleratore 10−3 103 1

esperimenti con neutrini solari All’interno del Sole i neutrini elet-
tronici sono prodotti dalle reazioni nucleari. La distanza è circa 1.5× 108 km.
Le energie, invece, vanno da circa 100 keV a circa 15MeV (a seconda del tipo
di reazione che ha prodotto i neutrini). Questo significa che tali esperimenti
sono sensibili ad un ∆m2 < 10−11 eV2. I metodi di rivelazione consistono
nel misurare il numero di radioisotopi prodotti nelle reazioni indotte dai
neutrini. I risultati indicano un sostanziale deficit rispetto al flusso previsto
dalle conoscenze attuali del Sole (Modello Standard Solare). Il più importante
risultato in quest’ambito è stato ottenuto con l’esperimento denominato
Sudbury Neutrino Observatory (SNO), di cui parleremo più approfonditamente
al § 1.3.2 a pagina 14.

esperimenti con neutrini atmosferici I neutrini atmosferici sono
prodotti dal decadimento di pioni e mesoni K, generati dai raggi cosmici
che impattano sugli strati più elevati dell’atmosfera terrestre. La distanza
percorsa dai neutrini va da circa 15 km, per quelli prodotti allo Zenit rispetto
al rivelatore, fino a 13 000 km, per quelli provenienti dal lato opposto della
Terra. Lo spettro energetico ha un massimo a circa 1GeV e si estende per
diverse centinaia di GeV . Ciò rende questi esperimenti sensibili ad un valore
10−4 eV2 per ∆m2. Il flusso di νµ e νe viene misurato con un rivelatore che
offre un grande volume sensibile e si confrontano le osservazioni con quanto
ci si aspetta sulla base di simulazioni di Monte Carlo (MC) molto dettagliate.
In sostanza si misura il rapporto doppio (double ratio)

R =
(Nµ/Ne)dati
(Nµ/Ne)MC

in cui Nµ ed Ne sono il numero di neutrini νµ e νe misurati (dati) ed
aspettati (MC). I risultati danno per R un valore sensibilmente inferiore ad 1.
Il che equivale ad un deficit di νµ.

esperimenti con reattori nucleari Nei reattori nucleari i neutrini
sono prodotti dalla fissione di elementi pesanti quali 235U, 238U, 239Pu e
241Pu ed hanno un’energia media di circa 3MeV . I rivelatori sono posti
ad una distanza che varia da 10m a circa 1 km ed utilizzano la reazione
νe+p→ e++n per identificare i neutrini. Finora, l’esperimento denominato
CHOOZ è stato quello con una sensibilità maggiore.5 I suoi risultati indicano
un’assenza di oscillazioni per ∆m2 < 0.7× 10−3 eV2 a sin2 2α = 1 e per
sin2 2α > 0.10 a valori maggiori di ∆m2 [Apollonio et al., 1999, 2003].

5 Il nome di questo esperimento deriva da quello del villaggio francese Chooz, nelle Ardenne,
presso cui è stato installato il reattore nucleare impiegato per la produzione dei neutrini.
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esperimenti con neutrini prodotti da acceleratore Negli
acceleratori i neutrini sono prodotti dal decadimento dei pioni, i quali sono
generati da un fascio di protoni collidenti su un bersaglio. Con l’energia dei
protoni che va da 1 a 10GeV , i neutrini prodotti hanno energie tipiche di
100MeV . Poiché la distanza tra sorgente e rivelatore è dell’ordine di qualche
km, questa classe di esperimenti mostra una sensibilità, ∆m2, di circa 0.1 eV2.
L’esperimento condotto presso il Los Alamos Meson Physics Facility (LAMPF)
con il rivelatore Liquid Scintillator Neutrino Detector (LSND) ha mostrato
la comparsa di νe e νe da un fascio puro di νµ e νµ, con un ∆m2 ∼ 1 eV2

a sin2 2α ∼ 10−2 [Athanassopoulos et al., 1998]. Ma questi risultati non
sembrano confermati da un altro esperimento simile, KArlsruhe Rutherford
Medium Energy Neutrino experiment (KARMEN). Anche in questo si usa
la tecnica dello scintillatore liquido per rivelare i neutrini e la distanza tra
rivelatore e sorgente è 17m, però non c’è evidenza di νe al di sopra del
fondo aspettato [Eitel et al., 1999].

Un altro esperimento, che può essere annoverato sia nella classe di quelli
atmosferici che in quella degli esperimenti condotti con acceleratori, è quello
denominato KEK to Kamioa (K2K). In esso si produce un fascio puro di νµ
con l’acceleratore KEK. L’esperimento confronta i flussi di νµ misurati con
un rivelatore posto nelle vicinanze della sorgente con i risultati ottenuti da
un rivelatore posto lontano, ad una distanza di circa 250 km.6 La sensibilità
raggiunta è quella tipica degli esperimenti con neutrini atmosferici e ciò in
virtù dell’energia dei neutrini prodotti. Le misure indicano una diminuzione
di νµ [Ahn et al., 2006].

Nell’ambito di questa breve sintesi non si può fare a meno di citare
l’esperimento in corso di svolgimento denominato Oscillation Project with
Emulsion-tRacking Apparatus (OPERA). Esso si propone di fornire la prova
diretta dell’apparizione di ντ da un fascio puro di νµ. I neutrini utilizzati
sono quelli prodotti dall’esperimento Cern Neutrino to Gran Sasso (CNGS)
del CERN e viaggiano per circa 730 km (ad 11 km di profondità sottoterra)
fino a raggiungere i Laboratori Nazionali del Gran Sasso (LNGS), dove è
localizzato il rivelatore [Guler, 2000]. La grande distanza tra sorgente del
fascio e rivelatore (long base-line) permette di esplorare la regione di sensibilità
∆m2 ∼ 10−3 eV2 e sin2 2α ∼ 1.

1.3.2 L’esperimento SNO

L’esperimento SNO ha osservato i neutrini solari attraverso l’interazione di
questi con acqua pesante (D2O). L’esperimento era collocato circa 2 km sotto
la superficie terrestre in una miniera vicino alla città di Sudbury in Ontario,
nel Canada. Il rivelatore era un rivelatore Cerenkov in tempo reale e funzionò
dal maggio 1999, fino al 28 novembre 2006. Tutti i rivelatori di neutrini solari
prima di SNO erano sensibili principalmente o esclusivamente ai neutrini
elettronici e non ai neutrini νµ o ντ. L’esperimento SNO fu progettato per veri-
ficare l’ipotesi delle oscillazioni di neutrino, misurando contemporaneamente
il flusso di neutrini elettronici, ma anche il flusso totale dei neutrini, compresi
i neutrini muonici e tauonici. A differenza dei rivelatori precedenti, l’uso
dell’acqua pesante consentiva di rivelare due tipi di reazioni, una delle quali
sensibile a tutti i sapori di neutrino. Il rivelatore di SNO si trova sotto 2092m
di roccia, equivalenti a 6010m di acqua. Il bersaglio di SNO era composto da
1000 t di acqua pesante ultrapura contenuta in un contenitore sferico di 6m
di raggio, spesso 5 cm. La sfera contenente l’acqua pesante era circondata da

6 Il rivelatore è Super-Kamiokande.
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9456 fotomoltiplicatori. L’esperimento non rivelava direttamente i neutrini,
ma osservava la luce prodotta da elettroni ultrarelativistici (generati in vari
processi) nell’acqua pesante per effetto Cerenkov, tramite i fotomoltiplicatori.
L’esperimento SNO era sensibile a tre diverse reazioni con i neutrini, e fu
studiando i rapporti tra i flussi dei neutrini rivelati con ognuna di queste
reazioni che l’esperimento fu in grado di verificare l’ipotesi dell’oscillazione
dei neutrini. Passiamo a descrivere brevemente le reazioni su cui si basa SNO.

La prima è un’interazione di corrente carica in cui un neutrino elettronico
converte un neutrone dell’acqua pesante in protone,

νe + d→ p+ p+ e−.

Poiché i neutrini solari hanno energia inferiore alla massa del muone e a
quella della particella τ, alla reazione possono partecipare solo i neutrini elet-
tronici con soglia cinematica 2mp +me −md ≈ 1.4MeV . L’elettrone finale
(con energia intorno a 5–15MeV) veniva rivelato tramite la luce Cerenkov
emessa, mentre il protone prodotto non aveva sufficiente energia per essere
osservato. Dato che l’esperimento, al fine di discriminare vari fondi, era
sensibile ad un energia di 5.5MeV (cioè i neutrini incidenti dovevano avere
un energia di almeno 6.9MeV per produrre una reazione osservabile), esso
risultava sensibile solo ai neutrini solari del 8B.

La seconda reazione è un’interazione di corrente neutra, dove il neutrino
rompe il deutone in un protone e un neutrone,

νl + d→ p+n+ νl, l = e,µ . . .

Questo è il processo più importante perché vi partecipano tutti i tipi di neutri-
no. Quello che viene rivelato è il neutrone attraverso una cattura neutronica.
L’acqua pesante ha una grande sezione d’urto per la cattura di neutroni, e
quando un neutrone è catturato da un nucleo di deuterio viene prodotto
un fotone di 6.25MeV . La direzione del fotone è completamente scorrelata
con la direzione del Sole. Questo fatto può essere usato per discriminare
questi fotoni da quelli prodotti per effetto Cerenkov in altri processi. I fotoni
prodotti daranno origine ad elettroni per effetto Compton i quali verranno
rivelati per effetto Cerenkov. La soglia dell’energia dei neutrini per questa
reazione è di mp +mn −md ≈ 2.224MeV , quindi anche questa interazione
è sensibile solo ai neutrini solari del 8B. Questa reazione è la più importante
in quanto misura il flusso totale di neutrini del 8B. La capacità di misurare
le reazioni in corrente neutra e in corrente carica separatamente è unica di
SNO e rende possibile l’interpretazione dei risultati sperimentali indipenden-
temente dai calcoli teorici di astrofisica, in particolare dal Modello Solare
Standard [Helmer, 2000a]. Dal flusso di neutrini misurato attraverso questa
reazione si può scoprire se il deficit di neutrini rivelato dagli altri esperimenti
è dovuto al fatto che questi erano sensibili solo ai neutrini di tipo elettronico
o se invece è dovuto al modello teorico [Helmer, 2000b].

L’ultima reazione utilizzata da SNO è la seguente

νl + e→ νl + e, l = e,µ . . .

Si tratta di un processo elastico che coinvolge tutti i tipi di neutrino e gli
elettroni atomici. La reazione è dominata dai neutrini elettronici che possono
scambiare, oltre al bosone Z anche il bosone W.7 Il fatto che il processo

7 La sezione d’urto dello scattering con νe è circa 6 volte maggiore di quella della diffusione con
νµ o ντ
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coinvolge elettroni atomici significa che esso avviene con la stessa probabilità
in acqua pesante e in quella leggera. Trattandosi di una reazione elastica,
non c’è soglia, l’unica soglia è quella dell’esperimento, che come accennato,
è sensibile ad energie > 5.5MeV . Anche in questo caso, dunque, si rivelano
solo neutrini solari del 8B.

i risultati Il 18 giugno 2001 fu pubblicato il primo risultato di SNO [Ah-
mad et al., 2001], primo di una serie [Ahmad et al., 2002a,b], confermando il
deficit di neutrini solari osservata già precedentemente. Le misura in corrente
neutra del flusso totale di neutrini attivi dimostrò che circa due neutrini
elettronici solari su tre cambiavano il loro sapore in muonico o tauonico
durante il tragitto dal Sole fino al rivelatore. Infatti il flusso totale misurato
dei neutrini di qualsiasi sapore concorda con quello calcolato teoricamente,
mentre il flusso dei neutrini elettronici è circa un terzo, rispetto a quello,
di tutti i neutrini. Poiché il Sole produce solo neutrini elettronici significa
che i 2/3 dei neutrini elettronici hanno cambiato sapore dal momento della
loro creazione all’interno del Sole sino alla rivelazione [Ahmad et al., 2001].
Questa transizione di sapore è spiegabile attraverso le oscillazioni di neutrino
e implica che il neutrino abbia una massa non nulla. Questi importati risultati
sono stati confermati in modo più preciso successivamente [Ahmed et al.,
2004; Aharmim et al., 2005]. In definitiva l’esperimento SNO ha dimostrato
che il problema dei neutrini solari è dovuto alle oscillazioni di neutrino.

I risultati dell’esperimento hanno avuto un grande impatto, come eviden-
ziato dal fatto che le sue pubblicazioni sono tra le più citate.

1.4 oltre il modello standard

Il Modello Standard ha avuto grande successo nel descrivere la fenome-
nologia delle particelle elementari osservata finora. Ha dato una corretta
descrizione delle masse dei bosoni vettoriali, di tutte le simmetrie osservate,
incluso la violazione di CP, che è spiegata dall’introduzione di fasi comples-
se nella matrice di Cabibbo-Kobayashi-Maskawa (CKM). Il fenomeno delle
oscillazioni dei neutrini dimostra pure che il Modello Standard può essere
esteso facilmente ad includere la LFV, ma come vedremo (§ 1.5, pag. 21) tale
violazione è estremamente piccola, praticamente non osservabile.

Nonostante i molteplici successi, Il Modello Standard presenta aspet-
ti insoddisfacenti, principalmente di carattere teorico. Qui di seguito ne
elencheremo alcuni.

• Il modello non fornisce una spiegazione dell’esistenza di diverse fa-
miglie di particelle, né tanto meno del loro numero. La misura del-
l’ampiezza Γ nel decadimento della Z0 impone che il numero massimo
delle generazioni sia 3, ma non ne dà una giustificazione teorica.

• L’introduzione del meccanismo di Higgs permette di introdurre la
generazione delle masse, ma non ne predice il valore che, in ultima
analisi, rimane un fatto sperimentale. Non si capisce neppure perché
le masse dei fermioni, ad esempio, variano in un intervallo di quasi
cinque ordini di grandezza.

• Matematicamente, il modello si presenta come il prodotto diretto di tre
sottogruppi indipendenti, ognuno con la propria costante di accoppia-
mento. Ma solo nel settore elettrodebole la parità non è conservata.
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Quelli citati sono solo alcuni dei motivi che hanno spinto a ricercare modelli
più generali che includessero il Modello Standard come caso limite a bassa
energia. Tra questi hanno un ruolo preminente i Modelli di Supersimmetria,
SUSY, e le Teorie di Grande Unificazione, Grand Unified Theories (GUT).

1.4.1 I Modelli di Supersimmetria

La supersimmetria [Coleman e Mandula, 1967; Haag et al., 1975; Weinberg,
2000] consiste in una generalizzazione delle simmetrie spazio-temporali della
Teoria Quantistica dei Campi in modo che sia possibile trasformare fermioni
in bosoni e viceversa. Essa rappresenta anche un quadro teorico in cui è
possibile unificare la fisica delle particelle con la gravità. La scala energetica
dell’unificazione è determinata dalla massa di Planck, MP ≈ 1019GeV .8 A
questo riguardo, se il Modello Standard rappresenta il limite di bassa energia
di una teoria più completa, valida alla scala di Planck, allora, per poter
cancellare i contributi divergenti delle correzioni radiative alla massa del
bosone di Higgs, è necessario un aggiustamento accurato (fine tuning) della
massa nuda di Higgs, in modo da mantenere la scala elettrodebole, 246GeV ,9

ben al di sotto dell’energia di unificazione. Con la supersimmetria si ha una
soluzione naturale di questo problema: i loop fermionici divergenti sono
cancellati esattamente da quelli bosonici e viceversa!

Nell’estensione minimale, supersimmetrica, del Modello Standard, Minimal
Super-Symmetric Standard Model (MSSM), ad ogni particella ordinaria viene
associato un partner supersimmetrico, differente in spin di  h/2. Così, accanto
ai quark ed ai leptoni ordinari, nella SUSY abbiamo gli squark (q̃) e gli slep-
toni (l̃), che sono particelle descritte da campi scalari complessi, sono cioè
bosoni. I gaugini (λ̃), invece, sono il complesso di fermioni supersimmetrici
corrispondenti a bosoni di gauge: i gluini (G̃) sono associati ai gluoni, mentre
le particelle wino (W̃) e bino (B̃) sono i partner dei campi di gauge di SU(2).
Il superpartner del campo di Higgs è una particella chiamata higgsino (H̃):
con la rottura spontanea di simmetria, si mescola con i wino e i bino per dare
origine a due fermioni di Dirac, i chargini, e quattro fermioni di Majorana,10

i neutralini (tab. 1.4). La rottura spontanea di simmetria si verifica perché
SUSY non può essere una simmetria esatta: se così fosse, le particelle ordinare
e i loro partner supersimetrici sarebbero degeneri in massa e quindi si do-
vrebbero osservare, ad esempio, particelle con la stessa massa dell’elettrone
ma di natura bosonica! Nella SUSY non è più sufficiente l’introduzione di un
singolo doppietto di Higgs ma ne occorrono almeno due: ciò è necessario
per poter generare, separatamente, le masse nel settore dei quark u ed in
quello che comprende sia i quark d che i leptoni carichi.

In questi brevi cenni, non è nostra intenzione sviluppare tutte le problema-
tiche a cui i modelli supersimmetrici danno origine,11 ciò che qui ci interessa
mettere in evidenza è come, in essi, emerga la LFV.

8 La massa di Planck caratterizza la scala di energia a cui gli effetti gravitazionali quantistici
diventano significativi. Essa è definita come la massa (MP) di una particella la cui energia
gravitazionale (GNM

2
P/λC), su una distanza pari alla propria lunghezza d’onda Compton

(λC =  h/MPc), è uguale alla sua energia totale a riposo (MPc
2). A quest’energia le interazioni

gravitazionali tra particelle elementari sono confrontabili, in intensità, con le interazioni di
gauge.

9 Questo numero altri non è che il valore aspettato nel vuoto dello scalare di Higgs, v =

(G
√
2)−1/2, dove G = 1.166× 10−5GeV−2 è la costante di Fermi.

10 I fermioni di Majorana sono particelle neutre (le particelle realmente neutre, secondo
Landau [Landau e Lifshitz, 1978b]) per le quali la particella coincide con la propria antiparticella.

11 Per una rassegna dei modelli supersimmetrici si può consultare [Nilles, 1984; Haber e Kane,
1985].
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Tabella 1.4: Le particelle nel MSSM

Particelle Ordinarie Particelle in SUSY
Particella Spin Particella Spin

quark (q) 1/2 squark (q̃) 0

leptone (l) 1/2 sleptone (l̃) 0

gluone (G) 1 gluino (G̃) 1/2

W±,Z0,γ 1 chargino (χ̃±i , i = 1, 2) 1/2

bosone di Higgs (H) 0 neutralino (χ̃0i , i = 1, . . . , 4) 1/2

Se si scrive la lagrangiana del MSSM, questa può essere così riassunta

L = L inv +L W +L break.

Il termine L inv è quello che descrive il fatto che le interazioni bosoniche e
fermioniche sono legate le une alle altre dall’invarianza per supersimmetria.
Ciò si manifesta con la presenza delle costanti di accoppiamento, non solo
nella derivata covariante (che, come si è visto, determina l’interazione tra
bosoni e fermioni nel Modello Standard), ma anche nelle interazioni di tipo
gaugino-scalare-fermione (∼ λ̃ϕf) e in quelle di autoaccoppiamento scalare
(∼ ϕϕ).

L W, invece, introduce le interazioni di tipo Yukawa. Tale termine della la-
grangiana è determinato da una funzione scalare, W(ϕ), detta superpotenziale
e descrive un insieme di interazioni tra fermioni e scalari. Il superpotenziale
W(ϕ) è una funzione dei supermultipletti; un supermultipletto (ψ,ϕ) è un
operatore di campo costituito dai campi di una particella ordinaria (ψ) e da
quello del corrispondente partner supersimmetrico (ϕ). Nel caso del MSSM,
la funzione W è data da

W = (ye)ijH1EiLj + (yd)ijH1DiQj + (yu)ijH2UiQj − µH1H2

in cui E e Li sono supermultipletti di SU(2)L corrispondenti ai singoletti
e doppietti leptonici. In modo analogo, Q, U e D sono, rispettivamente, i
supermultipletti per i doppietti dei quark e per i singoletti dei quark di tipo
up e down. H1 e H2 sono i campi relativi ai due doppietti distinti di Higgs.
Le matrici (yk)ij, k = e,d,u sono le matrici di accoppiamento di Yukawa; µ è
spesso chiamato parametro di massa del bosone di Higgs poiché da origine ad
un termine di massa per questa particella.

Sviluppando il superpotenziale si possono dedurre diversi tipi di inte-
razioni di Yukawa, la generazione del termine di massa dell’higgsino e le
autointerazioni scalari quadratiche (ϕ2), cubiche (ϕ3) e quartiche (ϕ4).

In questo schema, le masse delle superparticelle (squark, sleptoni e gaugi-
ni) sono generate dall’ultima parte della lagrangiana, L break, che rompe la
supersimmetria e causa il miscelamento (mixing) del sapore delle particelle.
Per esempio, nel settore sleptonico, si ottengono i seguenti termini di massa

L slept = −(m2E)ijẽ
∗
iRẽjR − (m2L)ijl̃

∗
iLl̃jL

dove m2E e m2L, sono le matrici di massa degli sleptoni, right-handed (ẽR)
e left-handed (l̃L). Ebbene, esprimendo tutto nella base in cui le matrici di
massa dei leptoni sono diagonali, può succedere che le matrici di massa degli
sleptoni presentino degli elementi non diagonali differenti da zero. Se, ad
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Figura 1.3: Grafico di Feynman per il decadimento µ+ → e+γ nel MSSM

esempio, l’elemento µ̃− ẽ, ∆mµ̃ẽ, è non nullo, il decadimento µ+ → e+γ

può avvenire secondo il processo descritto dal grafico di Feynman riportato
nella figura 1.3.

In generale, i modelli supersimmetrici hanno la conseguenza di introdurre
diverse nuove particelle i cui parametri (solo nel MSSM, tra masse, fasi ed
angoli di miscelamento, se ne contano 105 [Dimopoulos e Sutter, 1995]) non
possono essere eliminati con opportuni cambiamenti di base. Questo per-
mette di individuare nuovi canali attraverso i quali le nuove superparticelle
possono essere scambiate come stati virtuali e dare così origine alla LFV.

1.4.2 Le Teorie di Grande Unificazione

Come abbiamo visto (§ 1.2, pag. 5), nel Modello Standard i quark ed i leptoni
giocano un ruolo fondamentale, sullo stesso piano: entrambi i gruppi di
particelle sono fermioni privi di struttura interna.

Partendo da questa osservazione, è possibile, per così dire, estendere la
QCD in modo da includere i leptoni come quarto colore. Seguendo questa
via, si possono costruire modelli delle interazioni fondamentali basati su un
gruppo più generale di quello che governa il Modello Standard:12 si dice che
le interazioni forti ed elettrodeboli sono unificate da un’unica costante di
accoppiamento, αG, definita ad un’energia di unificazioneMG. Il gruppo più
semplice che permette di realizzare questa sintesi è il gruppo di gauge SU(5),
e il modello che ne deriva si chiama modello di Georgi-Glashow, formulato
nella prima metà degli anni ’70 [Georgi e Glashow, 1974].

Come sempre ci limiteremo ad un breve cenno, con particolare riguardo
agli sviluppi collegati alla LFV.13

La prima cosa da dire è che se questi modelli si riducessero al solo Modello
Standard nel limite di bassa energia, i processi LFV avrebbero dei rate così
bassi da non essere osservabili. Quindi è inevitabile ammettere che ci siano
dei contributi anche da parte di particelle SUSY (modelli SUSY GUT [Sakai,
1981; Dimopoulos e Georgi, 1981]).

Negli ultimi anni, hanno avuto molta attenzione i modelli SUSY GUT basati
sui gruppi SU(5) e SO(10). Infatti le loro previsioni sulle tre costanti di
accoppiamento (α, g, e gs) sono consistenti con le misure effettuate presso il
Large Electron-Positron Collider (LEP) e lo Stanford Linear Collider (SLC): le
costanti risultano unificate ad un’energia MG ≈ 2× 1016GeV [Amaldi et al.,
1991; Ellis et al., 1991; Langacker e Luo, 1991].

Abbiamo già accennato al fatto che nelle GUT i leptoni non sono considerati
come una famiglia di particelle distinta da quella dei quark. Ciò si traduce,
matematicamente, definendo degli operatori di campo spinoriali, T e F,

12 Il gruppo non è più il prodotto diretto di altri sottogruppi come avviene nel Modello Standard
(§ 1.2.3, pag. 8).

13 Per un ulteriore approfondimento si può consultare [Amsler et al., 2008, p. 180] e la bibliografia
ivi citata.
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Figura 1.4: Il decadimento µ+ → e+γ in SU(5) SUSY GUT
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ẽR

µ χ̃0 e

γ

µ̃R

τ̃R
(m2τ̃)LR

τ̃L

ẽR

Figura 1.5: Il decadimento µ+ → e+γ in SO(10) SUSY GUT

costituiti sia dai campi dei quark, q, sia da quelli dei leptoni, l. In SUSY GUT
si completano questi operatori aggiungendovi i campi delle superparticelle
corrispondenti.

Ad esempio, in SU(5) si può scrivere il superpotenziale come

W =
1

8
(yu)ijTiTjH(5) + (yd)ijFiTjH(5),

dove T e F sono i campi fermionici corrispondenti, rispettivamente, alle
rappresentazioni 10 e 5 del gruppo, mentre H(5) e H(5) sono i due campi
di Higgs delle rappresentazioni 5 e 5; yu è la matrice di accoppiamento di
Yukawa per i quark di tipo u, yd quella per i quark d e i leptoni. Esplicitando
i vari campi T , F e H,14 si ottengono le diverse interazioni di Yukawa che
generano le masse dei quark e dei leptoni. Anche in questo caso, come visto
in precedenza (§ 1.4.1 a pag. 17), si può dimostrare che, nella base in cui le
costanti di Yukawa dei leptoni sono diagonali, le matrici di massa degli slep-
toni presentano dei termini non diagonali. Questo permette il decadimento
µ+ → e+γ con dei diagrammi come quelli indicati dalla figura 1.4.

In SO(10) invece, il superpotenziale diventa

W =
1

2
(yu)ijΨi ·Φu ·Ψj +

1

2
(yd)ijΨi ·Φd ·Ψj,

dove Ψi indica il multipletto della rappresentazione 16 del gruppo, mentre
Φu e Φd sono i due campi di Higgs di dimensione 10. In questo caso il
decadimento del muone è descritto dai grafici della figura 1.5.

1.4.3 Modelli supersimmetrici con neutrini di Majorana

Al § 1.2.3 a pag. 8 abbiamo visto come, nel Modello Standard, la possibilità
che i neutrini abbiano una piccola massa genera il fenomeno delle oscillazioni
e quindi la LFV.

In realtà, esiste anche un altro modo attraverso il quale i neutrini acquistano
massa: il meccanismo see-saw [Gell-Mann et al., 1979; Yanagida, 1979]. Esso

14 Per i campi H ciò significa tener conto della rottura di simmetria.
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consiste nell’aggiungere alla teoria un termine di massa di Majorana, MR,
per il neutrino destrorso (R, right-handed).15 Così, la lagrangiana si scrive

Lν = (νcL νR)

(
0 mD

mD MR

)(
νL

νcR

)
,

in cui mD è il termine di massa di Dirac e νc è il coniugato di carica del
neutrino.16 Assumendo la massa di Majorana molto più grande di quella di
Dirac, le masse fisiche del neutrino diventano

m1 ≈MR, m2 ≈
m2D
MR

,

da cui si deduce che un neutrino rimane pesante mentre l’altro assume una
piccola massa. Se, ad esempio, MR è 1015GeV e la massa di Dirac è 100GeV ,
la massa del neutrino diventa dell’ordine di 10−2 eV .

Volendo includere questo meccanismo nei modelli supersimmetrici [Bor-
zumati e Masiero, 1986], il superpotenziale nel settore leptonico è dato
da

WN = (ye)ijH1E
c
iLj + (yν)ijH2NiLj +

1

2
(MR)ijNiNj,

con Ni supermultipletti del neutrino destrorso e MR la matrice di massa
di Majorana. yν è una nuova matrice di costanti di accoppiamento. Ancora
una volta, poiché ci sono due matrici, ye e yν, in generale non sarà possibile
diagonalizzarle simultaneamente e ciò rende possibile il miscelamento dei
sapore leptonici, cioè la LFV.

1.5 le previsioni sul decadimento µ → eγ

Risulta evidente che la scoperta di processi LFV darebbe delle importanti
indicazioni su una nuova Fisica oltre il Modello Standard.

Tra i processi più interessanti che potrebbero rivelare la LFV, ci sono quelli
che coinvolgono i muoni, e ciò per la relativa facilità con cui è possibile
produrre fasci di muoni di elevata intensità.17 In particolare, il decadimento
µ→ eγ è quello che per chiarezza ed eleganza ha attratto maggior attenzione.

Qui vogliamo accennare brevemente alle previsioni che i modelli teorici
visti nelle pagine precedenti fanno su tale decadimento, non prima, però, di
aver accennato alla possibilità che esso si manifesti nel Modello Standard
stesso, se si assume una massa non nulla per i neutrini [Bilenky et al., 1977;
Petcov, 1977]. In fatti, in questo caso, in virtù delle correzioni radiative, ci
possono essere deboli effetti di LFV e il muone potrebbe decadere come
descritto dai diagrammi della figura 1.6.

Una stima della larghezza di decadimento Γ(µ → eγ) può essere fatta
sfruttando i risultati sperimentali sulle oscillazioni dei neutrini (§ 1.3.1,
pag. 12). Infatti, constatando che la transizione νµ → νe si manifesta su una
distanza L ∼ 1/mW , che l’energia fluente nei loop è dell’ordine di mW e che,

15 Per le particelle di Majorana si ricordi la nota 10 a pag. 17.
16 Il campo coniugato di carica è definito come ψc = −ψTC−1, in cui la matrice di coniugazione

di carica, C, soddisfa la relazione C−1γµC = −γµT, essendo γµ, le matrici di Dirac (nota 1,
pag. 6).

17 Tanto che alcuni laboratori vengono chiamati muon-factories, cioè fabbriche di muoni.
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Figura 1.6: Il decadimento µ→ eγ nel Modello Standard

per il resto, i diagrammi sono simili a quelli del decadimento normale del
muone, µ→ eνν, il cosiddetto decadimento di Michel, possiamo scrivere

Γ(µ→ eγ) ≈ Γ(µ→ eνν)ΓγΓosc

dove

Γ(µ→ eνν) =
G2m5µ

192π3

è il contributo dovuto dal decadimento di Michel; G è la costante di Fermi e
mµ la massa del muone.

Il secondo fattore,

Γγ ≈ α

2π
,

rappresenta il contributo del vertice γ, essendo α la costante di struttura fine.
Invece

Γosc ≈ sin2 2α sin2
(
∆m2

4m2W

)

è il contributo dell’oscillazione dei neutrini; qui α è il relativo angolo di
miscelamento, mentre ∆m2 ne è la differenza tra i quadrati delle masse.

Un rapido conto, assumendo sin2 2α ∼ 1, ∆m2 ∼ 10−5 eV2 emW ∼ 80GeV ,
porta al risultato per il branching ratio

B(µ→ eγ) ≡ Γ(µ→ eγ)

Γ(µ→ eνν)
≈ α

2π

(
∆m2

4m2W

)2
∼ 10−58.

Questo valore differisce di un fattore 3/4 da quello che si sarebbe ottenuto
con un calcolo esatto dei grafici della figura 1.6.

1.5.1 Le previsioni di SU(5) SUSY GUT

Nei modelli teorici discussi precedentemente è possibile eseguire calco-
li dettagliati sul branching ratio del decadimento µ+ → e+γ. I risultati,
naturalmente, dipendono dai molteplici parametri della teoria.
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Figura 1.7: B(µ→ eγ) in SU(5) SUSY GUT

Per esempio, nel caso dei diagrammi della figura 1.4 e nel limite di massa
del gaugino nulla, il risultato può essere sintetizzato come segue

B(µ→ eγ) = 2.4× 10−12
(
|Vts|

0.04
|Vtd|

0.01

)2(
100GeV

mµ̃

)4
dove Vts, Vtd sono alcuni elementi della matrice di CKM, mµ̃ = mẽ è la
massa dell’sleptone right-handed [Barbieri e Hall, 1994].

Un compendio delle previsioni sul branching ratio del decadimento µ→
eγ, nell’ambito del modello SU(5) SUSY GUT, è mostrato nella figura 1.7.18

Come si vede, per valori della massa dell’sleptone di alcune centinaia
di GeV , il branching ratio è dell’ordine di 10−14, che è prossimo ai valori
sperimentali attuali [Brooks et al., 1999] ed è quanto si prefigge di raggiungere
l’esperimento MEG [Mori et al., 1999].

La figura mostra il branching ratio in funzione della massa dell’sleptone
per vari valori della massa del gaugino, M2, e tanβ = v1/v2, il rapporto tra
i valore nel vuoto dei due campi di Higgs.19 Il parametro µ è il cosiddetto
parametro di massa dell’Higgs già citato al § 1.4.1, pag. 17.

18 Per ulteriori approfondimenti [Barbieri et al., 1995; Hisano et al., 1997a,b].
19 Il parametro v è stato introdotto al § 1.2.2, pag. 6 e al § 1.2.3, pag. 8.
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Figura 1.8: B(µ→ eγ) in SO(10) SUSY GUT

Dalla figura si nota, inoltre, che la LFV si manifesta solo nel settore destrorso
dell’sleptone, ciò a causa del fatto che gli effetti della rinormalizzazione
contribuiscono solo al settore right-handed (ẽR) e non a quello sinistrorso
(l̃L). Da ciò segue che, nel decadimento µ+ → e+γ, il positrone ha elicità
negativa e potrebbe essere distinto se la distribuzione angolare degli eventi
µ+ → e+γ fosse misurata utilizzando muoni polarizzati.

1.5.2 Le previsioni di SO(10) SUSY GUT

In questo modello gli effetti della LFV sono più marcati poiché si manifestano
sia nel settore right-handed che quello left-handed degli sleptoni.

Per quanto riguarda l’ampiezza del decadimento µ+ → e+γ, il contributo
dominante è determinato dai grafici mostrati nella figura 1.5. Essi risultano
proporzionali a mτ, per cui, rispetto al modello visto prima, il branching
ratio subisce un miglioramento di un fattore (mτ/mµ)

2 [Barbieri et al.,
1995]. In virtù di questo incremento, il branching ratio dei processi LFV
che coinvolgono i muoni può diventare confrontabile con gli attuali limiti
sperimentali (10−11). Queste previsioni sono riportate nella figura 1.8.20

20 Nella quale si utilizzano gli stessi parametri d’ingresso, M2 e tanβ, della figura 1.7.
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Figura 1.9: B(µ→ eγ) in MSSM con neutrino right-handed

1.5.3 Le previsioni del MSSM con neutrini destrogiri

Nelle pagine precedenti (§ 1.4.3 a pag. 20) abbiamo visto come l’aggiunta di
un neutrino di Majorana right-handed possa generare effetti di LFV. Anche
in questo caso si possono eseguire calcoli dettagliati sul branching ratio di
diversi processi LFV [Hisano et al., 1995, 1996, 1998; Hisano e Nomura, 1999].

La parte sinistra della figura 1.9 mostra che i dati sul miscelamento dei
neutrini solari sono confinati in alcune regioni dei valori permessi, le soluzioni
di Mikheyev-Smirnov-Wolfenstein (MSW) a piccolo e grande angolo [Wolfenstein,
1978; Mikheyev e Smirnov, 1985]. Nella parte destra della figura 1.9, si riporta,
invece, la corrispondente previsione per il branching ratio del decadimento
µ+ → e+γ in funzione della massa del neutrino right-handed. Risulta eviden-
te che, combinando il branching ratio con le misure di ∆m2 e dell’angolo di
miscelamento sin2 2α degli esperimenti dei neutrini solari [Davis et al., 1968;
Hirata et al., 1989, 1990], si può discriminare, o fortemente limitare, la massa
del neutrino destrorso il quale è postulato esistere ad energie estremamente
elevate, 1012 ∼ 1015GeV .

1.5.4 Qualche considerazione finale

Da quanto visto finora, emerge chiaramente che ci sono molteplici modelli
teorici che aspirano a sostituire od estendere il Modello Standard, ognuno
dei quali prevede un branching ratio dell’ordine di 10−14 per il decadimento
µ+ → e+γ. Si intuisce, quindi, come abbassare il limite attuale (1.2× 10−11)
in direzione di tale valore, comporti la possibilità effettiva di scoprire una
nuova Fisica che superi il Modello Standard.
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2L A R I C E R C A D E L D E C A D I M E N T O µ+ → e+ γ

Facesti come quei che va di notte,
che porta il lume dietro e sé non giova,
ma dopo sé fa le persone dotte.

Dante, Purgatorio, xxii 67-69

L’utilizzo dei muoni è uno dei sistemi migliori per la ricerca della LFV. Que-
sto ci è testimoniato dalla tabella 2.1, in cui sono riportati i limiti sperimentali
di vari processi che violano la conservazione del numero leptonico. Come si
vede, la sensibilità maggiore si raggiunge con i muoni, principalmente perché
questi possono essere prodotti in grande quantità (1014–1015 all’anno) negli
esperimenti attuali.

I principali canali in cui si manifesta la LFV sono, oltre al già citato deca-
dimento µ+ → e+γ, il decadimento µ+ → e+e+e−, la µ− e conversion e la
conversione muonio-antimuonio.

Noi ci occuperemo principalmente del primo processo, µ+ → e+γ, accen-
nando, a grandi linee, agli altri.

2.1 segnatura e fondi per il decadimento µ+ → e+γ

Questo decadimento è senza dubbio il più popolare dei processi LFV. Esso è
caratterizzato da una firma o segnatura dell’evento ben marcata. Nel sistema
di quiete del muone, il positrone e il fotone sono emessi in coincidenza
temporale, in direzioni opposte, back to back, e ciascuno con un’energia che è
esattamente metà della massa del muone, cioè 52.8MeV .1

Gli esperimenti che intendono sfruttare appieno la cinematica descritta
utilizzano muoni positivi. Infatti, non è possibile utilizzare quelli negativi
perché questi, quando sono fermati nel bersaglio, sono catturati dagli atomi
del materiale e danno origine ad un atomo muonico (µ-mesico).

La ricerca degli eventi di µ+ → e+γ è ostacolata da due sorgenti principali
di rumore (i cosiddetti fondi o eventi di background). Una è di origine fisica
ed è costituita da decadimenti radiativi del muone, µ+ → e+νeνµγ, in
cui il positrone ed il γ sono emessi back to back, con i due neutrini che
sottraggono una minima quantità di energia. L’altra è di natura accidentale
ed è rappresentata dall’osservazione di un positrone proveniente da un
decadimento di Michel, in associazione con un fotone di alta energia. Il
fotone potrebbe provenire, ad esempio, da un decadimento radiativo del
muone, dall’annichilazione in volo di un e+ con un elettrone, oppure da un
processo di bremsstrahlung subito dal positrone di un decadimento normale
del muone.

2.2 il fondo fisico

Il decadimento radiativo del muone, µ+ → e+νeνµγ, rappresenta una delle
principali limitazioni alla ricerca del µ+ → e+γ.

1 In realtà l’energia è E = (mµ/2)[1± (me/mµ)
2] ≈ mµ/2, in quanto (me/mµ)

2 ≈
2.5× 10−5 ≪ 1.

29



30 la ricerca del decadimento µ+ → e+γ

Tabella 2.1: Limiti sul branching ratio di alcuni processi LFV

Processo Limite attuale Referenze

µ+ → e+γ < 1.2× 10−11 Brooks et al. [1999]

µ+ → e+e+e− < 1.0× 10−12 Bellgardt et al. [1988]

µ−Ti → e−Ti < 6.1× 10−13 Wintz [1998]

µ+e− → µ−e+ < 8.3× 10−11 Willmann et al. [1999]

τ→ eγ < 2.7× 10−6 Edwards et al. [1997]

τ→ µγ < 3.0× 10−6 Edwards et al. [1997]

τ→ µµµ < 1.9× 10−6 Bliss et al. [1998]

τ→ eee < 2.9× 10−6 Bliss et al. [1998]

π0 → µe < 8.6× 10−9 Krolak et al. [1994]

K0L → µe < 4.7× 10−12 Ambrose et al. [1998]

K+ → π+µ+e− < 2.1× 10−10 Lee et al. [1990]

K0L → π0µ+e− < 3.1× 10−9 Arisaka et al. [1998]

Z0 → µe < 1.7× 10−6 Akers et al. [1995]

Z0 → τe < 9.8× 10−6 Akers et al. [1995]

Z0 → τµ < 1.2× 10−5 Abreu et al. [1997]

Quando il fotone viene emesso con un’energia Eγ > 10MeV , il branching
ratio vale 1.4%, come riportato dal Particle Data Group (PDG) [Amsler et al.,
2008]. Se immaginiamo che la coppia di neutrini venga emessa con una
piccola quantità di energia e quindi con una quantità di moto altrettanto
piccola, allora il positrone ed il γ, oltre ad avere un’energia prossima alla metà
della massa del muone, Ee ≃ Eγ ≈ mµ/2, viaggiano in direzioni opposte.
Un tale evento può essere facilmente confuso con un decadimento µ+ → e+γ

se l’apparato di misura non ha sufficiente risoluzione per discriminare i due
casi.2

Il problema fondamentale è quello di stabilire, quale deve essere la risolu-
zione del rivelatore affinché il branching ratio per gli eventi di decadimento
radiativo (nelle condizioni cinematiche citate prima) sia inferiore a quello
delle previsioni già discusse per il decadimento µ+ → e+γ (§ 1.5, pag. 21).

Per comprendere questo problema dobbiamo analizzare la larghezza di
decadimento per il processo radiativo del muone. Di tale grandezza si può
eseguire il calcolo esatto. Al fine di non appesantire il discorso ci limitiamo
a riportare i risultati finali rimandando agli articoli in letteratura per tutti i
dettagli [Eckstein e Pratt, 1959; Fronsdal e Überall, 1959].

Per prima cosa introduciamo le energie normalizzate del positrone e del
fotone

x =
2Ee

mµ
, y =

2Eγ

mµ
.

Poiché il caso che ci interessa è quello in cui x ≈ 1 e y ≈ 1, cioè le energie in
gioco sono ∼ 50MeV , in quanto segue si può trascurare il rapporto me/mµ
(nota 1, pag. 29), che tratteremo come rigorosamente nullo. Questo comporta
che le energie normalizzate spaziano nel range 0 ⩽ x ⩽ 1, 0 ⩽ y ⩽ 1.

Se, dunque, consideriamo il caso x ≈ 1 e y ≈ 1, l’angolo θeγ tra positrone
e gamma è approssimativamente 180°, cioè la grandezza z = π− θeγ è quasi
nulla, z ≈ 0.

2 Nel µ+ → e+γ l’angolo tra positrone e fotone è rigorosamente 180°, mentre nel decadimento
radiativo non avrà mai esattamente questo valore (il tutto riferito, ovviamente, al sistema di quiete
del muone.)
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Tenuto conto di queste approssimazioni, la larghezza differenziale per il
decadimento radiativo si può scrivere come segue3

dΓ =
α

16π
Γtot [F1(1− Pµ cos θe) + F2(1+ Pµ cos θe)]dτd(cos θe),

dove α è la costante di struttura fine, Γtot rappresenta la larghezza totale del
decadimento del muone, θe indica l’angolo tra lo spin del muone e l’impulso
del positrone, Pµ è la polarizzazione del muone. Il primo termine corrisponde
ai positroni emessi, principalmente, in direzione opposta a quella dello spin
del muone, l’altro termine è relativo ai positroni emessi concordemente a
tale direzione. Per brevità abbiamo posto dτ ≡ dxdydz.

Tenendo conto dei termini fino al secondo ordine in 1− x, 1− y e z, le
funzioni F1 e F2 sono date da

F1 = 4z (1− x)2 , F2 = 4z

[
4 (1− x) (1− y) −

1

2
z2
]

.

Si può verificare facilmente che l’espressione scritta per dΓ si annulla
quando x = y ≡ 1, esattamente. Ciò, del resto, non stupisce, perché in
tal caso i neutrini avrebbero energia ed impulso rigorosamente nulli e il
decadimento non sarebbe radiativo ma un µ+ → e+γ, che, come abbiamo
visto, nel Modello Standard con mν = 0 è vietato.

Comunque nella realtà, l’apparato di misura ha una risoluzione finita che
introduce degli eventi di background i quali, in ultima analisi, limitano la
sensibilità della ricerca del µ→ eγ.

Se indichiamo con δx, δy e δz la risoluzione del rivelatore,4 relativamente
alle rispettive grandezze, possiamo valutare l’impatto che il decadimento
radiativo ha su tale sensibilità. Infatti, per quanto riguarda le energie (x, y)
la regione del segnale del decadimento µ+ → e+γ è

1− δx ⩽ x ⩽ 1,

1− δy ⩽ y ⩽ 1.

Per quanto riguarda z, invece, in linea di principio essa è

0 ⩽ z ⩽ δz.

In realtà, però, non dobbiamo dimenticare che z, a meno di π, è l’angolo θeγ e
che la cinematica del decadimento a 4 corpi non permette all’angolo tra e+ e
γ di assumere qualunque valore. In particolare, nelle nostre approssimazioni,
le condizioni cinematiche vincolano la variabile z a spaziare nell’intervallo
tra 0 e 2

√
(1− x)(1− y), per x e y assegnati.

Quindi tenendo conto delle condizioni su x e y, si ha

0 ⩽ z ⩽ 2
√
(1− x)(1− y) ⩽ 2

√
δxδy.

A questo punto, se la risoluzione in z è superiore a 2
√
δxδy, la regione

2
√
δxδy ⩽ z ⩽ δz

3 Molti dettagli si possono trovare negli articoli [Kuno e Okada, 1996; Kuno et al., 1997] e nelle
referenze ivi citate.

4 Con δx ecc. indichiamo la semi-larghezza a mezza altezza, Half Width at Half Maximum
(HWHM) che è esattamente la metà della Full Width at Half Maximum (FWHM).
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è proibita dalla cinematica e per z la regione del segnale è data da

0 ⩽ z ⩽ min(δz, 2
√

(1− x)(1− y)).

Tutto ciò ci permette di calcolare il branching ratio per il decadimento
radiativo sulla regione del segnale. Infatti, integrando dΓ

dB(µ+ → e+νeνµγ) ≡
dΓ

Γtot

=
α

16π
[J1(1− Pµ cos θe) + J2(1+ Pµ cos θe)]d(cos θe)

con

J1 =

∫
dτF1 J2 =

∫
dτF2

e gli integrali sono calcolati sulla regione del segnale

1− δx ⩽ x ⩽ 1,

1− δy ⩽ y ⩽ 1,

0 ⩽ z ⩽ min(δz, 2
√
(1− x)(1− y)).

Le funzioni J1 e J2 risultano dei polinomi in δx δy e δz.
Per fissare le idee, consideriamo il caso di muoni non polarizzati, Pµ = 0.

Allora, con un’ulteriore integrazione, si ottiene facilmente

B(µ+ → e+νeνµγ) =
α

8π
(J1 + J2).

Dal punto di vista sperimentale, la risoluzione in energia del positrone è
migliore di quella del fotone, δx < δy, mentre quella angolare è sempre stata
scarsa negli esperimenti passati. Ciò suggerisce di considerare δz ⩾ 2

√
δxδy.

In tal caso le funzioni J1 e J2 sono date da

J1 = (δx)4(δy)2, J2 =
8

3
(δx)3(δy)3.

Esse non dipendono da δz (a differenza del caso δz < 2
√
δxδy [Kuno e

Okada, 1996]), cioè la risoluzione angolare non influenza il branching ratio
del quale si può realizzare il contour plot in funzione di δx e δy. Il risultato è
riportato nella figura 2.1. Come si vede, con delle risoluzioni δx = δy = 0.01,
il branching ratio è dell’ordine di 10−15.

2.3 il fondo accidentale o combinatorio

Con le elevate intensità di muoni utilizzati negli esperimenti moderni, la
possibilità di rilevare in modo accidentale un positrone ed un fotone appar-
tenenti a processi diversi, può diventare la fonte principale che ostacola la
ricerca del decadimento µ→ eγ.

L’evento più comune è che il positrone, proveniente da un decadimento
di Michel, venga registrato simultaneamente ad un γ di un decadimento
radiativo, entrambi con energia approssimativa di 52.8MeV . Proviamo a fare
una stima del branching ratio accidentale per questo tipo di eventi.

Indichiamo con f0e la frazione dello spettro del positrone, integrata sulla
regione del segnale e, analogamente, con f0γ quella del fotone. Allora, se Rµ
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Figura 2.1: Branching ratio per il decadimento radiativo del muone

è il flusso istantaneo di muoni ed Ω è l’accettanza dell’apparato, il numero
di positroni erroneamente attribuibili ad un µ→ eγ risulta

Neacc = Rµ · f0e ·
Ω

4π
· εe.

Similmente, quello per i fotoni è

N
γ
acc = Rµ · f0γ · Ω

4π
· εγ.

Qui εe e εγ indicano le efficienze di rivelazione delle rispettive particelle.
Il nostro falso positivo, però, è costituito dall’osservazione in simultanea di

un e+ e di un γ, e con il vincolo ulteriore di una cinematica back to back.
Quindi se la risoluzione sulla coincidenza temporale è ∆teγ e quella sulla
limitazione angolare è ∆ωeγ (entrambe come FWHM), allora il numero totale
di eventi di background risulta

Nacc = N
e
acc ·N

γ
acc ·

∆ωeγ

Ω
·∆teγ · T ,

essendo T la durata complessiva dell’osservazione.
Per poter ricavare il branching ratio, Bacc dobbiamo tener conto del flusso

utile di muoni,

Nµ = Rµ · T · Ω
4π

· εe · εγ,

da cui si ricava

Bacc ≡
Nacc

Nµ
= Rµ · f0e · f0γ ·

∆ωeγ

4π
·∆teγ.

La frazione f0e può essere valutata usando uno spettro di Michel per il
positrone. Tenendo conto che, sulla regione del segnale, lo spettro è quasi
piatto, il risultato è

f0e ≈ 2δx.
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Figura 2.2: Spettro differenziale del fotone nel decadimento µ+ → e+νeνµγ

Invece per una stima di f0γ, l’unica complicazione è che, per un γ radiativo, bi-
sogna utilizzare il relativo spettro differenziale, dB(µ+ → e+νeνµγ)/dy [Ku-
no et al., 1997], il cui grafico, per muoni non polarizzati, è riportato nella
figura 2.2. Qui si ottiene

f0γ =

∫1
1−δy

dy
dB(µ+ → e+νeνµγ)

dy
≈ [

α

2π
(δy)2[ln(δy) + 7.33].

Se ora introduciamo la risoluzione δθeγ (HWHM) sull’angolo tra positrone e
gamma, quella sul il vincolo cinematico ∆ωeγ diventa

∆ωeγ

4π
=
π(δθeγ)

2

4π
=

(δθeγ)
2

4
,

ed il nostro Bacc può scriversi in termini delle sole risoluzioni δx, δy, δθeγ e
δteγ,

Bacc ≈ Rµ · (2δx)
{ α
2π

(δy)2[ln(δy) + 7.33]
}
·
(δθeγ)

2

4
· (2δteγ).

Se assumiamo qualche valore concreto, ad esempio, 1% per la risoluzio-
ne dell’energia del positrone, 6% per quella del γ, ∆ωeγ ≈ 3× 10−4 sr,
∆teγ ≈ 1ns (tutti valori FWHM), ed un flusso di muoni Rµ ≈ 3× 108 µ+/s,
allora Bacc ≈ 3× 10−13. Questo risultato indica che il fondo accidentale
può severamente limitare la ricerca del µ→ eγ. Diventa importante, quindi,
cercare di ridurre significativamente le risoluzioni del rivelatore.

Nell’espressione scritta per Bacc notiamo che, migliorando la risoluzione
energetica del γ e quella angolare, si ottiene una soppressione quadratica del
fondo accidentale, mentre la riduzione è solo lineare agendo su δx. Dato che
Bacc dipende linearmente dal flusso di muoni, Rµ, migliorare la risoluzione
in energia del positrone equivale ad aumentare tale intensità, ciò, però,
incrementa pure la probabilità di pile-up, cioè che due eventi non correlati
siano ricostruiti, magari come un unico segnale positivo.5

Oltre al decadimento radiativo del muone, ci sono altre sorgenti di fotoni

5 Ad esempio due γ con energie ∼ 25MeV , identificati come un singolo fotone di ∼ 50MeV .
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Figura 2.3: Intensità del fondo di fotoni

d’alta energia, quali l’annichilazione in volo di positroni di Michel e processi
di bremsstrahlung. Il contributo da parte dell’annichilazione dei positroni
dipende dal materiale attraversato nel bersaglio. Un esempio è mostrato
nella figura 2.3. Come si vede, lo spessore del bersaglio (cioè l’annichilazione)
influisce relativamente poco rispetto al fondo radiativo, e predomina solo
quando la risoluzione sull’energia del fotone è molto buona.

2.4 muoni polarizzati e fondi

In questo paragrafo vogliamo brevemente accennare al fatto che l’utilizzo
di muoni polarizzati non solo consente di discriminare vari modelli teorici
(come abbiamo visto al § 1.5.1, pag. 22) ma permette anche di attenuare i
fondi che sono critici per la ricerca del µ→ eγ.

Per quanto riguarda il fondo fisico, ad esempio, il branching ratio discusso
al § 2.2 di pagina 29 riceve due contributi: quello in J1, con i positroni
emessi in direzione opposta allo spin del muone, e quello in J2, con gli e+

concordi con detto spin. Se la risoluzione in energia del positrone è migliore
di quella del fotone, δx < δy, si può facilmente verificare che J2 > J1 e quindi
al fondo fisico contribuiscono prevalentemente i positroni che seguono la
distribuzione 1+ Pµ cos θe. Ciò ci fa comprendere che se nella ricerca del
µ→ eγ selezioniamo i positroni che si muovono in verso opposto allo spin
del muone, allora abbiamo ridotto significativamente il fondo fisico (fig. 2.4).
Naturalmente, nel fare questo, manteniamo elevata solo l’accettanza del
decadimento µ+ → e+R γ poiché segue la distribuzione 1− Pµ cos θe. Oltre
a ciò, variando le risoluzioni δx e δy (da cui dipendono J1 e J2), possiamo
cambiare la distribuzione angolare del decadimento radiativo, ottenendo così
un altro modo per discriminare il background fisico.

Lo stesso principio vale per l’attenuazione del fondo accidentale. Infatti
molte sorgenti di tale fondo hanno distribuzioni angolari ben precise quando
si usano muoni polarizzati. Ad esempio, quando il muone nel decadimento
di Michel è polarizzato, il positrone viene emesso in preferenza lungo la
direzione della polarizzazione, cioè segue la distribuzione 1 + Pµ cos θe.
Questo vale anche per i γ di alta energia (> 50MeV) del decadimento
radiativo.
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Figura 2.4: Distribuzione angolare dei positroni nel decadimento radiativo

(a) TRIUMF (b) Crystal Box

Figura 2.5: Apparati sperimentali per la ricerca del µ→ eγ

2.5 stato della ricerca sperimentale sul decadimento µ+ →
e+γ

Come abbiamo visto (§ 1.1, pag. 3), le ricerche sul decadimento µ→ eγ sono
iniziate più di 50 anni fa con Hincks e Pontecorvo nel 1947.

I primi esperimenti usavano camere a scintilla (spark chambers) per rive-
lare sia il positrone che il fotone [Hincks e Pontecorvo, 1948; Parker et al.,
1964]. In seguito divennero comuni le configurazioni che utilizzavano due
grossi cristalli di NaI, disposti uno di fronte all’altro per una migliore de-
terminazione dell’energia e del timing. Un esempio, relativo all’esperimento
TRIUMF [Depommier et al., 1977], è mostrato nella figura 2.5a. Un’esasperazio-
ne di questa tecnica si è avuta con l’esperimento Crystal Box, nel 1988, il quale
utilizzava un calorimetro quasi a 4π, costituito da 396 cristalli di NaI(Tl) e da
un insieme di camere a drift cilindriche, tutto attorno al bersaglio utilizzato
per lo stop di muoni (fig. 2.5b) [Bolton et al., 1988].

Successivamente, la possibilità di avere fasci di muoni di elevata intensità,
e con energia maggiore, ha contribuito notevolmente alla realizzazione di
nuovi esperimenti.

Con l’aumentare dell’energia, però, era necessario disporre di bersagli
più spessi per fermare le particelle. Di conseguenza, il positrone, nell’at-
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Figura 2.6: Il rivelatore MEGA

traversare il materiale aveva una perdita maggiore di energia e ciò sminui-
va gli sforzi per una risoluzione migliore. Ad esempio, nell’esperimento
presso lo Scwerezeresches Institut für Nuklearforschung (SIN),6 il solo ber-
saglio introduceva un’incertezza di 4MeV/c sulla quantità di moto del
positrone [Van der Schaaf et al., 1980].

Un miglioramento si è avuto quando è stata introdotta la tecnica dei
muoni di superficie. Questi sono originati dal decadimento di pioni fermati
sulla superficie di bersagli secondari. La caratteristica di questi muoni è che,
essendo generati da un decadimento a riposo di un pione, il loro impulso
è circa 29MeV/c. Quindi richiedono un bersaglio di spessore minore per
essere fermati.

L’esperimento più recente, la collaborazione MEGA [Brooks et al., 1999], è
stato realizzato alla fine degli anni ’90 presso il Los Alamos National La-
boratory (LANL). Il rivelatore di questo esperimento era costituito da uno
spettrometro magnetico per il positrone e tre spettrometri a coppie, concen-
trici, per il fotone. Il tutto era immerso in un magnete superconduttore, con
campo magnetico solenoidale di 1.5 T . Lo spettrometro magnetico racchiu-
deva un insieme di camere a fili cilindriche e i contatori a scintillazione per
il timing. La risoluzione (FWHM) in energia per un positrone di 52.8MeV
era compresa nell’intervallo tra 0.5MeV e 0.85MeV , in base al numero di
giri che la traccia effettuava. Ciascuno strato dello spettrometro a coppie,
invece, aveva dei convertitori al piombo, delle camere proporzionali multifili
(multiwire), delle camere a drift e scintillatori. L’energia del fotone aveva
una risoluzione (FWHM) di 1.7MeV sullo strato esterno del convertitore al
piombo e di 3.0MeV su quello più interno. I muoni di superficie con im-
pulso di 29.8MeV/c erano fermati da un foglio di mylar posto al centro del
rivelatore. Tutte le particelle cariche generate dal decadimento dei muoni
erano intrappolate dal campo magnetico dello spettrometro. In numero totale
di muoni fermati è stato valutato in 1.2× 1014. L’analisi dei dati raccolti ha
fissato il limite superiore del branching ratio per il decadimento µ+ → e+γ a
1.2× 10−11. La figura 2.6 da una rappresentazione schematica dell’apparato.

Nella ricerca del µ → eγ gli sforzi sperimentali si sono concentrati so-
prattutto nel migliorare le risoluzioni di rivelazione per quattro variabili
fondamentali: l’energia, Ee, del positrone; quella, Eγ, del fotone; la coinci-
denza temporale (timing), teγ, tra e+ e γ; l’angolo, θeγ, tra i medesimi. Un
riassunto dei risultati principali è riportata nella tabella 2.2.

6 L’attuale Paul Scherrer Institute (PSI).
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2.6 altri processi con la lfv

Come promesso, qui vogliamo riassumere brevemente i principali processi
che violano la conservazione del numero leptonico oltre al decadimento
µ→ eγ.

2.6.1 Il decadimento µ+ → e+e+e−

Accanto al decadimento µ→ eγ, questo è uno dei decadimenti più studiati
per la ricerca della LFV. Dal punto di vista teorico è generato da un termine
d’interazione a quattro fermioni nella lagrangiana. La segnatura dell’evento
è ben evidente. Infatti, nello stato finale ci sono tutte particelle rivelabili e nel
sistema di quiete del muone si può sfruttare completamente la conservazione
dell’energia e della quantità di moto; per di più, la coppia di positroni è in
coincidenza temporale con l’elettrone.

Uno dei principali processi di background fisico è quello in cui il muone
decade nella tripletta elettronica, accompagnata da una coppia di neutrini,
µ+ → e+e+e−νeνµ,7 quando questi portano via una quantità minima di
energia (un po’ come avviene nel decadimento radiativo per il µ→ eγ).

Il fondo accidentale, invece, è costituito di processi in cui si verifica la
coincidenza (accidentale, appunto) tra un positrone di un decadimento nor-
male del muone e una coppia non correlata di e+e−. Questa potrebbe essere
prodotta, ad esempio, da uno scattering BhaBha oppure dalla conversione di
un γ radiativo. In questo caso, però, il fondo può essere facilmente rimosso
perché la coppia e+e− avrebbe una piccola massa invariante e quindi baste-
rebbe escludere gli eventi che presentano l’angolo di apertura tra la coppia
di particelle al di sotto di una certa soglia. Tuttavia, questo causerebbe anche
la perdita di sensibilità sul segnale, soprattutto per quei modelli teorici per i
quali il processo avviene tramite diagrammi di Feynman fotonici.

Un altro evento di background accidentale è costituito da un positrone che
inverte il suo moto e torna indietro verso il bersaglio. Qui potrebbe essere
rivelato in coincidenza con un elettrone simulando, in questo modo, una
coppia e+e−. Fortunatamente l’angolo tra la coppia sarebbe di circa 180° e
quindi l’evento potrebbe essere rigettato.

Sperimentalmente, la prima ricerca pioneristica di questo processo è stata
fatta nel 1976, usando uno spettrometro cilindrico. Tra le ricerche più signifi-
cative ricordiamo quelle che hanno utilizzato lo spettrometro SINDRUM presso
lo SIN (l’attuale PSI). Esse hanno utilizzato un flusso di circa 5× 106 µ+/s di
muoni di superficie. Le coppie e+e− venivano tracciate dallo spettrometro
che era costituito da cinque camere proporzionali multifili concentriche e

7 Con branching ratio (3.4± 0.4)× 10−5.

Tabella 2.2: Risoluzioni (FWHM) e limiti nella ricerca per µ+ → e+γ

Luogo ∆Ee ∆Eγ ∆teγ ∆θeγ Limite superiore Referenze

TRIUMF 10% 8.7% 6.7ns < 3.6× 10−9 Depommier et al. [1977]

SIN 8.7% 9.3% 1.4ns < 1.0× 10−9 Van der Schaaf et al. [1980]

LANL 8.8% 8% 1.9ns 37mrad < 1.7× 10−10 Kinnison et al. [1982]

LANL 8% 8% 1.8ns 87mrad < 4.9× 10−11 Bolton et al. [1988]

MEGA 1.2% 4.5% 1.6ns 15mrad < 1.2× 10−11 Brooks et al. [1999]
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Tabella 2.3: Sommario delle ricerche sul decadimento µ+ → e+e+e−

Luogo Limite superiore Referenze

JINR < 1.9× 10−9 Korenchenko et al. [1976]

LANL < 1.3× 10−10 Bolton et al. [1984]

PSI < 1.6× 10−10 Bertl et al. [1984]

PSI < 2.4× 10−12 Bertl et al. [1985]

LANL < 3.5× 10−11 Bolton et al. [1988]

PSI < 1.0× 10−12 Bellgardt et al. [1988]

JINR < 3.6× 10−11 Baranov et al. [1991]

64 contatori a scintillazione. Il tutto in un campo solenoidale di 0.33 T . La
risoluzione sull’impulso era ∆p/p = 12.0(3)%, con p = 50MeV/c.

Un riassunto dei risultati ottenuti sul limite superiore al branching ratio
per questo decadimento è riportato nella tabella 2.3.

2.6.2 La µ− e conversion

Normalmente quando un muone negativo viene fermato in un materiale,
esso è catturato dall’atomo del mezzo e da origine a quello che è chiamato
atomo muonico o µ-mesico (in cui il muone sostituisce un elettrone). Il muone
così catturato subisce una serie di cascate (emettendo prevalentemente raggi
X) verso i livelli più bassi, fino ad arrivare allo stato fondamentale 1s. Qui il
destino del muone è quello o di un decadimento normale (µ→ eνν), in volo,
oppure è catturato dal nucleo con il processo

µ− + (A,Z) → νµ + (A,Z− 1),

in cui A e Z sono, rispettivamente, il numero di massa ed il numero atomico
del nucleo. Questo è ciò che accade normalmente. Se però ammettiamo una
Fisica oltre il Modello Standard, allora possiamo attenderci la LFV attraverso
la reazione

µ− + (A,Z) → e− + (A,Z),

che è la µ− e conversion qui discussa: essa viola (di una unità) la conservazio-
ne sia del numero leptonico elettronico (Le) che quello muonico (Lµ). Invece
il numero leptonico complessivo è conservato.

Ciò che qui ci preme sottolineare è che, dal punto di vista sperimentale,
il processo è molto interessante. Infatti, si intuisce facilmente che l’elettrone
finale è monoenergetico,

Ee = mµ −B1s − EN ≈ mµ −B1s.

Nell’espressione precedente, B1s è l’energia di legame dello stato fondamen-
tale dell’atomo muonico mentre EN è l’energia di rinculo del nucleo, la quale,
dato che EN ∝ 1/mN (mN è la massa del nucleo), può essere trascurata.

L’energia di legame, B1s, dipende dal nucleo del materiale utilizzato. Que-
sto significa che il picco del segnale per Ee è differente per materiali diversi:
va da un valore di 104.3MeV per il titanio fino a 94.9MeV per il piombo. Da-
to che Ee ∼ 102MeV , il segnale è abbastanza lontano dall’estremo superiore
dello spettro di Michel (52.8MeV). Dobbiamo pure osservare che l’elettrone
finale non deve essere rivelato in coincidenza con altre particelle. La ricerca
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Figura 2.7: Il rivelatore SINDRUM-II

sulla µ− e conversion, allora, può sfruttare pienamente le potenzialità dei
fasci di muoni di elevata intensità senza risentire delle problematiche legate
ai fondi accidentali che affliggono invece il decadimento µ→ eγ.

Tra le possibili sorgenti di background ci sono diversi processi. Uno dei
principali è il decadimento in orbita del muone nell’atomo muonico.8 Esso
può dare origine ad un elettrone la cui energia è vicina a quella del segnale.
Altre fonti di background sono: la cattura radiativa dei pioni, π− + (A,Z) →
νµ + (A,Z− 1) + γ, e quella dei muoni, µ− + (A,Z) → νµ + (A,Z− 1) + γ.
In questi casi il γ può subire delle conversioni in e+e−, con un positrone
non osservato e l’elettrone che da falsi positivi.

Diversi esperimenti sono stati realizzati con lo spettrometro SINDRUM-II
presso il PSI. Si tratta di un apparato costituito da un insieme di camere a
drift cilindriche e concentriche, sistemate all’interno di un magnete super-
conduttore, solenoidale, con campo di 1.2 T . Uno schema del rivelatore è
mostrato nella figura 2.7. I muoni negativi (p = 90MeV/c) venivano fermati
da un bersaglio posto al centro del rivelatore. Le particelle cariche con im-
pulso trasverso superiore alla soglia di 80MeV/c raggiungevano le camere
più esterne; quelle al di sotto della soglia erano confinate dal campo dello
spettrometro. Nella regione del segnale è stata raggiunta una risoluzione
(FWHM) sull’impulso del 2.8%. Nell’analisi off-line per la rimozione dei fondi,
venivano eliminati gli eventi che presentavano un ritardo di tempo piccolo
tra le tracce nello spettrometro e il segnale dei contatori di fascio. Nella
tabella 2.4 presentiamo una sintesi dei risultati ottenuti sulla µ− e conversion.

Se si confrontano i limiti riportati nella tabella appena citata con quelli
ottenuti sul decadimento µ→ eγ (tab. 2.2, pag. 38), si può notare che nella

8 Questo processo è anche chiamato il decadimento del muone legato.

Tabella 2.4: Sommario delle ricerche sulla µ− e conversion

Processo Luogo Limite superiore Referenze

µ−Cu → e+Co SREL < 1.6× 10−8 Bryman et al. [1972]

µ−32S → e−32S SIN < 7× 10−11 Badertscher et al. [1982]

µ−Ti → e−Ti TRIUMF < 1.6× 10−11 Bryman et al. [1985]

µ−Ti → e−Ti TRIUMF < 4.6× 10−12 Ahmad et al. [1988]

µ−Pb → e−Pb TRIUMF < 4.9× 10−10 Ahmad et al. [1988]

µ−Ti → e−Ti PSI < 4.3× 10−12 Dohmen et al. [1993]

µ−Pb → e−Pb PSI < 4.6× 10−11 Honecker et al. [1996]

µ−Ti → e−Ti PSI < 6.1× 10−13 Wintz [1998]
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Tabella 2.5: Sommario delle ricerche sulla conversione Mu − Mu

Luogo GMu−Mu/G Referenze

TRIUMF < 42 Marshall et al. [1982]

TRIUMF < 20 Beer et al. [1986]

TRIUMF < 0.29 Huber et al. [1990]

LANL < 0.16 Matthias et al. [1991]

LANL < 6.9 Ni et al. [1993]

PSI < 0.018 Abela et al. [1996]

JINR < 0.14 Gordeev et al. [1997]

PSI < 0.003 Willmann et al. [1999]

µ− e conversion essi tendono ad essere inferiori. In realtà bisogna considerare
che la µ− e conversion non è un processo, per così dire, puramente leptonico, ci
dobbiamo aspettare dei contributi dovuti all’interazione con il nucleo. Infatti
i modelli teorici suddividono i contributi al processo in: fotonici [Weinberg
e Feinberg, 1959] e non fotonici [Marciano e Sanda, 1977]. Per cui esso
può avvenire con dei meccanismi che non contribuiscono al decadimento
µ+ → e+γ. In pratica la sensibilità della µ− e conversion è da 10 a 100 volte
peggiore di quella del processo diretto (µ+ → e+γ) quindi un limite di 10−13

corrisponde in realtà ad un limite per µ+ → e+γ di circa 10−12–10−11.

2.6.3 La conversione muonio-antimuonio

Il muonio è un atomo idrogenoide in cui il nucleo è sostituito da un muone,
µ+. Si presenta, dunque, come uno stato legato tra muone ed elettrone. La
conversione della coppia µ+e− in µ−e+, e viceversa, è un altro processo in
cui si manifesta la LFV. Rispetto a casi visti finora, qui la violazione è tale
che ∆Le = ±2 e ∆Lµ = ±2.9 Curiosamente, la possibilità di studiare questo
sistema per una eventuale ricerca della LFV fu suggerita inizialmente da B.
Pontecorvo nel 1957 [Pontecorvo, 1957], prima ancora che il muonio fosse
effettivamente osservato al ciclotrone di Nevis [Hughes et al., 1960].

Dal punto di vista teorico, si sviluppano dei modelli fenomenologici il cui
risultato principale è il calcolo della probabilità totale di conversione [Fein-
berg e Weinberg, 1961; Willmann e Jungmann, 1997],

P0Mu−Mu = 2.56× 10−5 ·
(
GMu−Mu

G

)2
,

dove GMu−Mu è la costante di accoppiamento che definisce l’intensità della
conversione e G, la costante di Fermi.

La ricerca sperimentale tenta di identificare un atomo di antimuonio dopo
la produzione iniziale di uno di muonio. La segnatura dell’evento consiste in
un e− di alta energia, prodotto dal decadimento standard del muone, ed in
un positrone residuo con energia media di 13.5 eV . Infatti questa è l’energia
di legame tipica del livello 1s nel muonio. Il fatto che i muoni negativi
tendano ad essere catturati dagli atomi del mezzo, abbassa la sensibilità in
questa ricerca. Negli esperimenti più recenti, infatti, si utilizzano atomi di
muonio prodotti nel vuoto.

Le sorgenti principali di background sono essenzialmente due. Una è costi-
tuita dalla coincidenza di un e+ di bassa energia con un elettrone prodotto

9 Ci interessa notare che Le e Lµ si conservano moltiplicativamente [Feinberg e Weinberg, 1961].
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dallo scattering Bhabha. Questo è causato da un positrone proveniente dal
decadimento normale del µ+ nell’atomo muonico. La seconda (di natura
fisica) è rappresentata dal decadimento µ+ → e+e+e−νeνµ (nota 7, pag. 38)
quando l’elettrone è energetico e solo uno dei due positroni è rivelato. An-
che qui mostriamo un riassunto dei principali risultati sperimentali nella
tabella 2.5.
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Dove sono Ella, Kate, Mag, Lizzie e Edith,
il tenero cuore, l’anima semplice, la rumorosa,
l’orgogliosa, la felice?
Tutte, tutte, dormono sulla collina.

Egdar Lee Masters

Antologia di Spoon River

In questo capitolo descriveremo i principi fondamentali su cui si basa
l’esperimento MEG [Mori et al., 1999]. Lo scopo è quello di ricercare il de-
cadimento µ→ eγ con una sensibilità dell’ordine di 10−14, un valore que-
sto che sta due ordini di grandezza sotto il limite attuale riportato dalla
collaborazione MEGA [Brooks et al., 1999].

Abbiamo visto (§ 1.5, pag. 21) come i modelli teorici più accreditati pre-
vedano un branching ratio proprio di questo ordine di grandezza. Quindi
MEG ha concrete possibilità di identificare un tale decadimento. Se invece il
risultato fosse negativo, le conseguenze sarebbero comunque notevoli perché
metterebbe dei limiti severi alle teorie fin qui sviluppate.

L’esperimento è il frutto di una collaborazione internazionale di fisici
italiani, giapponesi, russi, americani e svizzeri. La sua realizzazione è presso
lo PSI (Svizzera), dove si trova, allo stato attuale, la più intensa sorgente di
muoni a bassa energia.

3.1 l’idea dell’esperimento

Il principio di funzionamento dell’esperimento MEG è veramente molto sem-
plice: l’apparato deve identificare la coppia di particelle (e+,γ) in coincidenza
temporale, emessa in condizioni cinematiche back to back, con energie che
sono la metà della massa del muone. Il fascio di muoni è fermato in un sottile
bersaglio posto al centro dell’apparato. L’impulso del positrone è misurato
da un insieme di camere a deriva, Drift Chamber (DC) System, immerse in
un campo magnetico non uniforme, mentre il suo tempo di volo è determi-
nato dal sistema di contatori a scintillazione, Timing Counter (TC) System.
L’energia e il tempo di volo del fotone sono misurati dal calorimetro a xenon
liquido scintillante, Liquid Xenon Calorimeter (LXC). Sia il calorimetro che
lo spettrometro hanno la disposizione geometrica per poter osservare una
coincidenza back to back tra positrone ed fotone di alta energia, e copro-
no complessivamente circa il 10% di angolo solido. Una rappresentazione
schematica del rivelatore è riportata nella figura 3.1.

La sfida sperimentale è dunque quella di raggiungere delle risoluzioni
estreme ed un’alta efficienza, soprattutto per escludere il fondo accidentale.

Se consideriamo la sensibilità sul singolo evento, Single Event Sensitivity
(SES), questa è definita come il branching ratio per il decadimento µ → eγ

tale che il numero di eventi osservati è pari ad uno. Assegnato il valore di
B(µ→ eγ), il numero di eventi è dato da

Nev = Rµ · T · Ω
4π

· εe · εγ · εsel ·B(µ→ eγ),
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Figura 3.1: Vista schematica del rivelatore MEG

dove Rµ e T sono, rispettivamente, il flusso di muoni e la durata dell’espe-
rimento;1 Ω è l’angolo solido coperto dall’apparato mentre εe è l’efficienza
di rivelazione del positrone, εγ quella per il fotone; εsel è l’efficienza di
selezione dell’evento. Essa tiene conto che alle quattro variabili fondamentali
(Ee, Eγ, teγ, θeγ) viene applicato un taglio al 90% quando sono ricostruite,
cioè dipende dalla risoluzione del rivelatore.2 Se assumiamo dei valori tipici
quali εe ≈ 0.9, εγ ≈ 0.6, εsel ≈ (0.9)4 ≈ 0.66, in un anno di esperimento
(T ≈ 2.6× 107 s) e con un flusso di muoni Rµ ≈ 3× 107 µ+/s otteniamo per
la SES un valore di circa 3.6× 10−14. Il fatto però che il numero di even-
ti accidentali, Nacc, dipende quadraticamente da Rµ,3 suggerisce che con
una durata maggiore ad una intensità più bassa aumenti la sensibilità del-
l’esperimento. Infatti già per T ≈ 3.5× 107 s e Rµ ≈ 1.2× 107 µ+/s si ha
SES ≈ 6.7× 10−14.

3.2 fascio e bersaglio

3.2.1 Il fascio

Un punto centrale in questa discussione è che, data la rarità dell’evento, per
poter abbassare il limite sperimentale sul decadimento µ→ eγ è necessario
disporre della fonte più intensa di muoni. Infatti con un branching ratio di
10−14, in un anno (t ∼ 107 s) dobbiamo disporre almeno di 1014 muoni; se
lavoriamo con un’efficienza, ε, del 10%, allora il flusso di muoni deve essere
almeno Rµ ≈ 1014/t · ε ∼ 108 µ+/s.

Ora, tra le fabbriche di muoni ne esistono di due tipi fondamentali: quelle
che producono fasci impulsati di muoni e quelle che ne producono un flusso
continuo. Nelle prime, i muoni vengono impacchettati in bunch di una data
lunghezza temporale (diciamo T1), e tra due bunch consecutivi esiste un certo
ritardo di tempo (diciamo T2). Il rapporto (T1/(T1 + T2)) tra la durata del
bunch ed il tempo totale di chiama duty cycle del fascio. Nelle seconde, invece,
i muoni vengono prodotti con un duty cycle che è circa 1. A parità di flusso
di muoni, il picco maggiore si ha con i fasci impulsati. Il fatto che nel fondo
accidentale, positrone e fotone provengano dal decadimento di due muoni
diversi genera una dipendenza quadratica dal flusso di particelle (nota 3,

1 Il running time.
2 Ricordiamo, infatti, che per una distribuzione gaussiana, il taglio al 90% equivale a tenere gli

eventi che sono compresi in un’ampiezza, circa, 1.4 FWHM della distribuzione.
3 Nel § 2.3 di pag. 32 abbiamo visto che Nacc ∝NeaccN

γ
acc ∼ R2µT .
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Tabella 3.1: Principali caratteristiche del canale πE5

accettanza angolare 150msr

range di impulso 10–20MeV/c
lunghezza 10.4m
banda di impulso (FWHM) 10%
risoluzione d’impulso (FWHM) 2%
emittanza orizzontale 15.3 cmrad
emittanza verticale 3.6 cmrad
dimensione dello spot 4× 4 cm2

pag. 44). Al contrario, sia nel decadimento µ+ → e+γ sia nel fondo radiativo,
i prodotti di decadimento provengono da un solo muone, ciò genera una
dipendenza lineare dal flusso Rµ. Ecco perché l’utilizzo di fasci continui è
preferibile rispetto a quelli impulsati. Da qui la scelta naturale di realizzare
l’esperimento presso il PSI.

In questo laboratorio funziona un anello di ciclotrone che accelera protoni
fino ad un energia di 590MeV . Il fascio ottenuto viene fatto incidere su due
bersagli di carbonio per la produzione di due distinti canali di mesoni. I
due bersagli sono posti in sequenza ed hanno spessori differenti: quello più
sottile (7mm) è chiamato M-target mentre quello più spesso (da 40mm o
60mm) è chiamato E-target. Entrambi hanno una forma geometrica tronco-
conica e sono fatti di un blocco omogeneo di grafite. La loro collocazione
lungo la linea del fascio di protoni è tale che questi ne urtano la superficie
uniformemente. Nell’urto i protoni producono prevalentemente pioni i quali,
decadendo in volo o nei bersagli stessi, producono muoni ed elettroni.

Dai due bersagli si dipartono sette linee di fascio che assumono nomi
diversi a seconda del target che le ha generate. Nel caso dell’esperimento
qui discusso, dalla linea denominata πE5 vengono estratti fasci di pioni e
muoni ad un angolo di 175° rispetto alla direzione iniziale dei protoni. La
tabella 3.1 elenca le principali caratteristiche della linea πE5.

Il fascio πE5 può essere aggiustato (tuned) in modo da estrarre i muoni di
superficie (a cui si è accennato già nel § 2.5 di pagina 36).4 Quando i pioni
decadono a riposo nel bersaglio, i muoni così generati hanno energia cinetica
di 4MeV , corrispondente ad un impulso di 29MeV/c circa. Data la modesta
energia, i muoni riescono ad uscire dal bersaglio solo se i pioni decadono
in prossimità della superficie di questo, altrimenti rimangono intrappolati.
In questo modo è possibile avere un fascio di muoni a basso impulso e ben
definito.

Il vantaggio di utilizzare, nel nostro esperimento, muoni con energia così
bassa sta nel fatto che essi possono essere fermati in un bersaglio sottile. Di
conseguenza, il positrone generato dal loro decadimento subisce gli effetti
minimi del multiplo scattering.5

Il fascio πE5 così prodotto, è inizialmente contaminato dalla presenza
dei positroni, in un numero che è quasi dieci volte superiore a quello dei
muoni. Ciò è causato dal fatto che i muoni rimasti intrappolati nel target E
decadono dando vita a positroni di varia energia; per di più, un’altra sorgente

4 Un approfondimento si può trovare negli articoli [Pifer et al., 1976; Reist et al., 1978].
5 Infatti, come si ricorderà (§ 2.5, pag. 36), questo è stato uno degli inconvenienti maggiori negli

esperimenti del passato.
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è costituita dalla conversione in coppie di γ provenienti dal decadimento di
π0.

Questa contaminazione di e+ deve essere, naturalmente, eliminata o per
lo più ridotta, perché se i positroni raggiungessero il rivelatore MEG, potreb-
bero causare effetti indesiderati nelle camere oppure, fermandosi nella sala
sperimentale, contribuirebbero ad un fondo di radiazione da annichilazione
e ciò abbasserebbe l’efficienza di tutto l’apparato.

Così, per poter utilizzare al meglio il canale πE5, è necessario manipolarlo
prima che giunga al bersaglio posto al centro del rivelatore. A questo scopo
sono stati fatti tutta una serie di studi basati su simulazioni dell’ottica dei
fasci6 e le conclusioni sono state quelle di inserire tra la fine della linea del
fascio e l’apparato i seguenti elementi:

• un tripletto di quadrupoli che rifocheggiano il fascio dopo l’azione del
magnete di curvatura ASC;

• un selettore di velocità (filtro di Wien) che separa spazialmente i muoni
dali elettroni e positroni;

• un altro tripletto di quadrupoli, sempre con azione di rifocheggiamento,
per i muoni dopo la separazione;

• un solenoide di trasporto, BTS, per accoppiare il fascio in uscita dai
quadrupoli con il rivelatore MEG; nel suo punto focale intermedio,
contiene un ulteriore degrader per ridurre l’energia dei muoni.

Il risultato (per una corrente iniziale di protoni di 1.8mA) è un fascio di
circa 108 µ+/s, debolmente contaminato da positroni (e+/µ+ ≈ 10−7). Il
fascio presenta una sezione ellittica (spot) con profili gaussiani aventi σx ≈
5.5mm e σy ≈ 6.5mm. Questi profili, però, si allargano fino ad arrivare a
σ ∼ 10mm, quando il fascio attraversa l’atmosfera di elio che circonda il
bersaglio. La figura 3.2 mostra una rappresentazione schematica di tutta
l’area dell’esperimento MEG.

3.2.2 Il bersaglio

Abbiamo visto come una delle richieste cruciali in questi esperimenti sul
decadimento µ → eγ è che il bersaglio, per fermare i muoni, sia il più

6 Sono stati utilizzati i programmi TRANSPORT e TURTLE [Brown et al., 1973; Brown e Iselin, 1974].
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sottile possibile così da ridurre gli effetti del multiplo scattering sul moto del
positrone.

La strategia adottata è stata quella di suddividere il materiale complessivo
per fermare i muoni, tra l’ultimo degrader, posto nel punto focale intermedio
del BTS, e il bersaglio.

Per arrivare alla soluzione definitiva sono stati analizzati diversi materiali,
come il mylar (C5H4O2)n, il polietilene (CH2)n e il kapton (C22H10N2O5)n.
Tenendo conto del potere frenante e della lunghezza di radiazione di ciascuno
di essi, il miglior risultato, dal punto di vista della soppressione dei fondi e
della qualità del fascio, si è ottenuto con il polietilene.

In questo materiale i muoni di superficie hanno un percorso medio di
1100µm; i test eseguiti hanno mostrato che con uno spessore di 150µm ne
occorrono circa 700µm nel degrader del BTS. Se consideriamo che il bersaglio
è posizionato al centro del rivelatore ed è inclinato di 22° rispetto alla linea
del fascio,7 il percorso effettivo dei muoni è di soli 400µm.

La possibilità di poter utilizzare un bersaglio di dimensioni ridotte permet-
te di ridurre la perdita di energia che il positrone subisce dopo essere stato
creato. Nel polietilene con uno spessore di 150µm, questa e di soli 30 keV .

3.3 il rivelatore per i positroni

Lo spettrometro per i positroni è costituito da tre elementi principali: un
magnete superconduttore appositamente progettato per produrre un campo
a gradiente; un sistema di camere a deriva (drift) per misurare l’impulso del
positrone e ricostruirne la traccia; un sistema di contatori a scintillazione
(TC), per misurare il tempo di volo dei positroni. La caratteristica peculiare
dello spettrometro è che il campo magnetico utilizzato non è solenoidale e
questo per delle ragioni ben precise.

Il campo magnetico solenoidale ha il grande merito di confinare le tracce a
basso impulso, soprattutto quelle che hanno il raggio di curvatura al di sotto
di un certo valore. In questo modo la gran parte dei positroni di Michel non
raggiunge il sistema di tracciamento che è posizionato ad una distanza ra-
diale maggiore. Quando, però, i positroni vengono emessi in direzione quasi
ortogonale al campo, la traccia (che è un elica con passo molto stretto) può
compiere molti giri nelle camere (fig. 3.3a). Questo, oltre a causare problemi
nella ricostruzione della traccia, può determinare delle instabilità nel funzio-
namento delle camere stesse. Con i campi uniformi, inoltre, la proiezione
sul piano trasverso del raggio di curvatura della traiettoria dipende, a parità
di quantità di moto assoluta, dall’angolo di emissione del positrone (cioè
dalla componente trasversa, pT dell’impulso): ciò rende più complicata la
selezione delle tracce in base alla loro energia (fig. 3.3b).

Per poter evitare questi problemi, è stato scelto di adottare un campo
magnetico non uniforme che presenta un gradiente lungo l’asse Z. L’intensità
vale 1.26 T al centro del rivelatore (z = 0) ed è decrescente con il crescere di
|z|. In un campo così fatto, l’elica ha un passo variabile che aumenta nella
regione dove l’intensità è meno forte. I positroni, emessi quasi a 90° con la
direzione del campo, sono spazzati via dal gradiente molto più rapidamente
che non nel caso del campo solenoidale; essi compiono solo uno o due giri
nelle camere. Questa situazione è illustrata nella figura 3.4a.

Il gradiente di campo può anche essere modellato in modo che i positroni,
emergenti dal bersaglio, seguano delle traiettorie che abbiano la proiezione
del raggio di curvatura sul piano trasverso, indipendente dall’angolo di

7 Cioè un rapporto di pendenza 1 : 2.5, circa.
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(a) Positrone emesso quasi orto-
gonalmente al campo

(b) La proiezione del raggio di
curvatura dipende dall’angolo
di emissione

Figura 3.3: Problemi in un campo magnetico solenoidale

(a) Positrone spazzato via rapida-
mente

(b) La proiezione del raggio di
curvatura è indipendente dal-
l’angolo di emissione

Figura 3.4: Vantaggi in un campo magnetico a gradiente
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Figura 3.5: Flusso di positroni di Michel in funzione della distanza radiale

emissione.8 La figura 3.4b mostra un esempio di questo caso. Il fatto che la
curvatura della traiettoria dipende solo dal valore assoluto dell’impulso, e
non da pT, rende più agevole selezionare le tracce che devono essere rivelate
dalle camere. La figura 3.5 mostra il flusso di positroni di Michel in funzione
della distanza radiale. Come si vede ad una distanza maggiore di 20 cm il
numero di positroni che attraversano le camere diminuisce grandemente,
rendendo, così, il loro funzionamento più stabile e rendendo più agevole la
ricostruzione delle tracce.

Questa è la genesi del nome COnstant Bending RAdius spectrometer
(COBRA) dato a questo magnete!

3.3.1 Il magnete superconduttore

Finora abbiamo visto la motivazione che richiede un campo non omogeneo
nel rivelatore MEG. In quanto segue vogliamo descrivere come si può ottenere
un campo con tale caratteristica.

Per poter realizzare un magnete con gradiente di campo, il metodo più
semplice è quello di creare un profilo delle bobine con raggio variabile.9

Uno dei primi modelli studiati è stato quello di una struttura a clessidra,
come mostrato nella figura 3.6a. Però un tale profilo, pur se concettualmente
semplice, presenta dei problemi pratici per quanto riguarda la struttura
di supporto. Un secondo profilo sviluppato, parte dal presupposto che
nella regione occupata dal LXC, il flusso magnetico residuo sia il minimo
possibile [Baldini et al., 2000]. Infatti, per un corretto funzionamento, i fototubi
del LXC non tollerano un campo residuo eccessivo. Il profilo risultante è
mostrato nella figura 3.6b. Anche questo modello, pur essendo interessante
dal punto di vista concettuale, all’atto pratico presenta problemi costruttivi
ancora più gravi di quelli del profilo a cui si è accennato prima.

Siamo così giunti alla soluzione che è quella poi adottata per la costruzione
del magnete. Il magnete COBRA è costituito di cinque gruppi di bobine
superconduttrici, di tre raggi diversi: un gruppo di bobine centrali, due
gruppi di bobine per generare il gradiente di campo e due gruppi di bobine

8 Almeno su un ampio intervallo di valori.
9 Naturalmente diamo per scontato una struttura a simmetria cilindrica.
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(a) Profilo a clessidra (b) Profilo a flusso mini-
mo

Figura 3.6: Alcuni profili preliminari delle bobine

(a) Sezione del cavo supercondut-
tore

Edge−wise

Support cylinder

Superconducting cable

Flat−wise High purity Al strip

R
a
d
ia

l 
d
ir
e
c
ti
o
n
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Figura 3.7: Particolari dei cavi superconduttori

laterali. Questa è nota come struttura a gradino ed è ben visibile nelle
figure 3.1 e 3.9.

I cavi superconduttori hanno una struttura multifilamento, costituita da
una lega Niobio-Titanio, immersa in una matrice di rame. Il tutto e confinato
in un supporto rettangolare di alluminio (fig. 3.7a).

Per poter ottenere una densità di corrente differente nei vari gruppi di
bobine, si è agito sia sul numero di strati degli avvolgimenti sia sull’orien-
tamento dei cavi. Infatti, avendo una sezione rettangolare, questi possono
essere posizionati sia in modo flat-wise che edge-wise (fig. 3.7b).

Il problema del campo magnetico residuo nella regione del LXC è stato
risolto adottando due gruppi di bobine di compensazione, di tipo tradizionale,
cioè resistivo (non superconduttore). Rispetto agli altri tipi di bobine, queste
presentano un diametro decisamente più grande. Esse sono chiaramente
visibili nella figura 3.8 della rappresentazione 3-D di tutto il rivelatore MEG.
Il loro utilizzo porta l’intensità del campo magnetico nella regione del LXC,
sotto i 50G.

Una sintesi sulla geometria delle bobine è mostrata nella figura 3.9.
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Figura 3.8: Vista schematica 3-D del rivelatore MEG

Figura 3.9: La geometria del COBRA
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Figura 3.10: Settore di una camera a deriva

Naturalmente, le bobine hanno un supporto che deve essere il più possibile
trasparente agli eventuali fotoni di 52.8MeV che lo devono attraversare per
poter essere rivelati dal calorimetro a xenon liquido. In prossimità del calori-
metro, lo spessore totale equivalente è di 3.83 g/cm2 e corrisponde a 0.197
lunghezze di radiazione. Con questi dati la probabilità che un fotone subisca
una conversione è del 15%, cioè 85% della radiazione γ viene trasmessa
senza subire interazioni importanti.

3.3.2 Il sistema delle camere a drift

La traccia del positrone è ricostruita per mezzo delle informazioni fornite
dal sistema delle camere a deriva. Si tratta di un insieme di camere disposte
radialmente ed intervallate di 10°. Ogni settore (fig. 3.10a) è costituito da due
celle di deriva sfalsate opportunamente, come indicato nella figura 3.10b. Le
camere hanno la forma trapezoidale e coprono un’area sensibile che nella
direzione radiale va da 21.5 cm a 31.0 cm, mentre longitudinalmente la zona
attiva si estende fino a z = ±50 cm alla distanza radiale più interna, e a
z = ±22 cm a quella più esterna. Lo spessore del settore è 1.5 cm. Con una
geometria così fatta, le camere dovrebbero rivelare le tracce dei positroni
emessi con l’angolo polare, θ, ed azimutale, ϕ, tali che

|cos θ| < 0.35, |ϕ| < 60°. (1)

Le pareti delle camere sono fatte di fogli di plastica sui quali è depositato
un sottile strato di alluminio, sagomato in modo da formare delle strisce
catodiche a Zig-Zag, con periodo di 5 cm, chiamate pannelli Vernier (Vernier
pad).

La configurazione a celle sfalsate permette di misurare simultaneamente
sia la coordinata radiale che il tempo assoluto della traccia. La differenza,
t1 − t2, dei tempi di drift in due celle adiacenti fornisce la coordinata radiale,
r, con un’accuratezza di circa 200µm mentre la media, (t1 + t2)/2, da una
misura del tempo assoluto della traccia con un’accuratezza di 5ns: questa
risoluzione temporale è cruciale per un’accurata ricostruzione della traccia.
Il rapporto tra le quantità di carica elettrica raccolte alle estremità del filo
sensibile consente, invece, di avere un’informazione della coordinata z, con
l’accuratezza di circa un 1 cm. Poiché, però, la quantità di carica positiva
indotta su ciascun pannello Vernier è in relazione alla coordinata z (a causa
della forma a Zig-Zag), il rapporto tra le cariche indotte su ciascun pannello
fornisce la coordinata z con l’accuratezza di 300–500µm [Allison et al., 1991].
La figura 3.11 mostra una rappresentazione sintetica del metodo dei pannelli
Vernier.

Il volume di ciascun settore della camera è riempito con una miscela di
50% di elio (He) e 50% di etano (C2H6), alla pressione di 1 atm. L’elio è
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Figura 3.11: Vista schematica del metodo dei pannelli Vernier
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Figura 3.12: Schema di principio dei TC

stato scelto per minimizzare il multiplo scattering che la traccia subisce. Non
dobbiamo dimenticare, infatti, che il multiplo scattering è uno dei principali
processi che limita la risoluzione angolare e dell’impulso. L’etano, invece,
permette di avere sufficiente ionizzazione.

3.3.3 Il sistema dei Timing Counter

Il sistema dei TC è un insieme di scintillatori plastici, posizionati simmetri-
camente su entrambi i lati dello spettrometro magnetico (fig. 3.1). Lo scopo
è quello di misurare il tempo di volo dei positroni e di fornire un segnale
apposito per selezionare gli eventi in cui il positrone, tracciato dalle camere, è
rivelato in coincidenza e collineare con il fotone identificato dal calorimetro.

La figura 3.12 mostra lo schema di principio del sistema dei TC. Consiste in
due strati di barrette di scintillatore, posti ortogonalmente lungo la direzione
in ϕ e in z. La posizione dello strato esterno è compresa tra 25 cm e 105 cm,
sia upstream (z < 0) che downstream (z > 0). Lo strato interno, invece, copre
una regione azimutale ϕ di circa 156° (219° < ϕ < 375°). Tutta la struttura si
trova ad una distanza radiale di circa 32 cm. I positroni emessi nell’intervallo
angolare |cos θ| < 0.35 urtano il sistema dei TC dopo che la loro traccia ha
compiuto circa 1.5 giri.

Le barrette esterne hanno alle loro estremità i tubi fotomoltiplicatori che
misurano sia l’altezza dell’impulso di luce che il tempo d’arrivo di questo.
Lo strato interno, quello incurvato, è costituito da fibre scintillanti lette da
fotodiodi Avalanche Photo-Diode (APD). Il progetto iniziale prevedeva delle
barrette incurvate di scintillatore, lette ugualmente da fototubi, anche per lo
strato interno. Quest’idea, però, è stata abbandonata perché i fotomoltiplica-
tori si sarebbero venuti a trovare in una regione in cui l’intensità del campo
magnetico sarebbe stata eccessiva per un loro corretto funzionamento. In
questo caso, la soluzione adottata è stata quella di sostituire le barrette con
le fibre scintillanti.

I fototubi hanno una durata limitata in atmosfera di elio. Per questo motivo
(fig. 3.13) tutto il sistema dei TC è separato dalla regione delle camere da due
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strati di pellicole (bag) sulla cui superficie è stato depositato un sottile strato
di metallo. Sia lo spazio tra le pellicole che la regione dei TC sono riempiti di
azoto (N2) gassoso. Con questo accorgimento, l’esperienza dimostra che la
vita media dei fototubi è decisamente più lunga.

Come mostra la figura 3.12, quando il positrone impatta degli scintillatori,
i fototubi, o i fotodiodi, registrano i tempi di arrivo, tR e tL degli impulsi
di luce. La differenza, tR − tL, fornisce l’informazione sul punto d’impatto
lungo il materiale scintillante, mentre la media, (tR + tL)/2, ne misura il
tempo assoluto. Per lo strato interno, queste informazioni vengono utilizzate
soprattutto per una selezione preliminare degli eventi. Tutto l’apparato dei
TC è progettato per ottenere una risoluzione di 105 ps (FWHM) sul tempo di
volo dei positroni.

3.4 il rivelatore dei fotoni

La misura accurata dell’energia, del tempo di volo e della direzione del fotone
è uno degli ingredienti fondamentali per la riuscita dell’esperimento MEG. La
misura di queste grandezze è affidata al calorimetro a xenon liquido. Come
si vede dalla figura 3.14, si tratta di un recipiente a forma di C, posizionato
in modo contiguo all’esterno del magnete, con la sua facciata più interna ad
una distanza di 65 cm dalla targhetta e con una profondità di 47 cm. La sua
geometria è tale da coprire un angolo solido complessivo del 12% (Ω/4π),
corrispondente ad eventi cinematici con |cos θ| < 0.35 e |ϕ| < 60°.

Il volume del rivelatore è riempito con circa 800 litri di xenon liquido, alla
temperatura di 165K. Tutte le sue pareti interne sono ricoperte da 850 tubi
fotomoltiplicatori. La particolare forma a C dovrebbe permettere ai fotoni di
urtare la facciata interna del rivelatore quasi ortogonalmente.

La scelta di utilizzare lo xenon liquido è motivata dal fatto che questo
materiale, oltre ad avere una lunghezza di radiazione corta che permette di
avere un rivelatore di dimensioni limitate, ha anche un elevato flusso di luce
scintillante, paragonabile a quella dei cristalli di NaI, e i tempi di risposta
sono particolarmente veloci. Questi ultimi, in particolare, sono l’elemento
essenziale per poter ridurre il problema della sovrapposizione accidentale
(pile-up) di fotoni dovuti ad un elevato flusso di fondi.

Un altro motivo a favore dello xenon liquido è che esso non è affetto dai
problemi di non uniformità che invece limita la risoluzione dei cristalli. La
tabella 3.2 riporta i dati principali sullo xenon liquido.

Il LXC funziona essenzialmente come un dispositivo a scintillazione, cioè
si raccoglie solo la luce prodotta e non la ionizzazione. La luce emessa ha
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Figura 3.13: Disposizione dei TC nel magnete COBRA
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Figura 3.14: Il rivelatore di fotoni a Xenon liquido

Tabella 3.2: Principali parametri dello Xenon liquido

Densità 2.95 g/cm3

Punto di ebollizione e di fusione 167.1K, 161K
Energia per fotone di scintillazione 24 eV

Lunghezza di radiazione 2.77 cm
Tempo di decadimento (ricombinazione) 45ns

Tempo di decadimento (componente veloce) 4.2ns
Tempo di decadimento (componente lenta) 22ns

Picco di emissione (λ) 178nm

Lunghezza di assorbimento > 100 cm

Lunghezza di diffusione Rayleigh ∼ 40 cm

Indice di rifrazione 1.56
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il picco nell’ulravioletto, Vacuum Ultra Violet (VUV), a 178nm di lunghezza
d’onda e viene generata dalle transizioni radiative degli atomi di xenon,
eccitati dalle radiazioni ionizzanti degli sciami elettromagnetici (innescati
dalla conversione del γ).

La principale limitazione che si ha nell’uso dello xenon liquido è la sua
trasparenza alla luce che deve essere raccolta dai fototubi, e ciò si verifica
soprattutto se contiene delle impurità, come molecole di acqua (H2O) ed
ossigeno (O2). Infatti, come noto, la radiazione luminosa nell’attraversare un
mezzo subisce sia fenomeni di assorbimento vero e proprio sia processi di
diffusione elastica (scattering Rayleigh), per cui vede attenuata la sua intensità
di circa 1/3 (1/ e) su una distanza pari a quella che è chiamata lunghezza di
attenuazione, λatt.10 Alcuni test preliminari eseguiti con un prototipo di circa
100 litri, si è visto che purificando lo xenon dalle impurità, la lunghezza di
attenuazione passava da 10 cm a più di 100 cm. Questo ha fatto comprendere
che, per un corretto funzionamento, il calorimetro deve avere un impianto di
purificazione il quale deve essere costantemente monitorato.

Il punto d’impatto del γ viene ricostruito in due tempi: prima si determina
la posizione del picco di luce corrispondente al segnale di un fototubo della
faccia frontale del calorimetro, successivamente si analizzano i segnali dei
fototubi limitrofi. Ciò dovrebbe portare a ricostruire il punto d’impatto con
una risoluzione di 5mm, corrispondente ad una risoluzione angolare, sulla
direzione di volo, di circa 6mrad. Nel caso che il punto di conversione
del fotone di trovi entro 1 cm dalla faccia d’ingresso, allora la risoluzione
angolare potrebbe scendere a 10mrad.

Per quanto riguarda il tempo di volo, si stima una risoluzione (FWHM)
di 100 ps. L’energia, invece, è misurata dalla somma di tutti i segnali dei
fotomoltiplicatori. Qui la risoluzione stimata è di circa 1.4% per un fotone di
52.8MeV . Il caso che il γ converta prematuramente, prima che il lampo di
luce possa essere raccolto adeguatamente dai fototubi, si ripercuote sull’effi-
cienza di rivelazione piuttosto che in una risoluzione peggiore. Infatti solo i
fotoni sopra una certa soglia (40MeV) sono accettati.

3.5 il sistema di acquisizione dati

Il sistema di acquisizione dati dell’esperimento MEG si basa sulla rapida digi-
talizzazione (ad una frequenza di campionamento di 100MHz) dei segnali
forniti dai fototubi del LXC e dalle fibre scintillanti dei TC. In una prima
selezione degli eventi non si possono usare le informazione delle camere a
drift: i tempi di deriva sono troppo lunghi per una selezione veloce degli
eventi utili.

Si stima che, con un flusso di muoni Rµ ≈ 108 µ+/s, quello dei γ, con
Eγ > 45MeV (compreso il flusso dei fotoni di background), nel LXC è
Rγ ≈ 2 kHz.

Per quanto riguarda i positroni che urtano i TC, bisogna tener presente
che già la posizione radiale di questi esclude molti positroni di Michel di
energia più bassa (come abbiamo visto con la figura 3.5). Il flusso stimato
qui è RTC ≈ 2MHz. La struttura segmentata dei TC introduce un ulteriore
fattore fϕ ≈ 5 di rigetto dei positroni non correlati (back to back) con i fotoni
nel calorimetro.

10 Con λatt teniamo conto sia dell’assorbimento che della diffusione Rayleigh.
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Assumendo una finestra temporale di ∆t ≈ ±10ns per la coincidenza tra
LXC e TC, il flusso di eventi di fondo non correlati è stimata in

R = 2∆t · Rγ · RTC

fϕ
·
(

Rµ

108 µ+/s

)2
≈ 20Hz

Fortunatamente questo flusso è piuttosto basso rispetto alle capacità tecno-
logiche attuali dei sistemi di acquisizione dati. Questo fatto dà anche un
margine nel caso che nella precedente stima non si sia tenuto conto di altri
processi di fondo (come fotoni provenienti dai dispositivi di schermaggio
dell’esperimento).

Per la memorizzazione e l’acquisizione dati, il software utilizzato è il siste-
ma denominato Maximum Integration Data Acquisition System (MIDAS) [Ritt,
2001], che è stato usato con successo dagli esperimenti precedenti e che è lo
standard del PSI.

Il flusso di dati acquisiti dipende dalla capacità di selezione degli eventi
e da quella di compressione della forma d’onda dei segnali generati dai
rivelatori. Qui la stima è di circa 100MiB s−1.
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4S I M U L A Z I O N E D E L L O S P E T T R O M E T R O C O B R A

Abbiamo visto che la programmazione è
un’arte, perché richiede conoscenza,
applicazione, abilità e ingegno, ma soprattutto
per la bellezza degli oggetti che produce.

Donald E. Knuth

4.1 schema generale della simulazione

La simulazione ha avuto principalmente lo scopo di studiare le risoluzioni
angolari, spaziali e dell’impulso del positrone nonché di ottimizzare la
configurazione dei TC. A questo scopo sono stati sviluppati due programmi.

• Il Monte Carlo (MC), che è la simulazione vera e propria dello spettro-
metro magnetico. Questo programma simula il passaggio del positrone
attraverso tutto l’apparato tenendo conto di tutti gli effetti fisici (quali,
ad esempio, il multiplo scattering dovuto ai diversi materiali attraversati).
I risultati che fornisce sono soprattutto gli hit della traccia con le ca-
mere e i TC. Il suo sviluppo è stato realizzato con il pacchetto software
GEANT 3.21 [Goossens, 1994].

• Il programma di Ricostruzione (RC). A partire dai dati forniti dal MC,
con opportune tecniche di fit, questo programma, cerca di ricostruire le
principali grandezze fisiche inerenti il positrone, quali impulso e coor-
dinate del punto di decadimento del muone da cui origina la traccia del
positrone. Alla base del programma sta la libreria di minimizzazione
MINUIT [James, 1998].

Entrambi i programmi necessitano di tracciare la traiettoria del positrone
attraverso il campo magnetico prodotto dallo spettrometro, per cui hanno
bisogno della mappa del campo nella regione occupata dal volume del
rivelatore. A questo scopo è stato realizzato un programma apposito che, pur
rimanendo nell’ambito della struttura a simmetria cilindrica del magnete,
consente lo studio di diverse configurazioni geometriche dello spettrometro:
forma a clessidra, a gradino con o senza bobine di compensazione (a queste
geometrie abbiamo fatto cenno nel § 3.3.1 di pagina 49).

Nel seguito daremo un cenno al calcolo delle mappe del campo e descrive-
remo con più particolari il Monte Carlo e il programma di Ricostruzione.
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Figura 4.1: Reticolo per il calcolo della mappa del campo magnetico

4.2 il calcolo delle mappe del campo

Il campo magnetico prodotto dallo spettrometro in un qualunque punto
P(x,y, z) dello spazio è dato dalle seguenti espressioni
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Un cenno sul metodo che permette di ricavarle è dato nell’appendice A, alla
quale si rimanda anche per le notazioni complete. Qui ci basti ricordare che
r =

√
x2 + y2, Ij, j = 1, . . . ,N, sono le correnti, B0 è l’intensità del campo al

centro del magnete, K(k) e E(k) sono, rispettivamente, gli integrali ellittici
completi di 1a e 2a specie nella forma normale di Legendre.

Per poter tracciare la traiettoria del positrone attraverso l’apparato sarebbe
necessario applicare le formule (2) in ogni punto della traccia che, normal-
mente, è suddivisa in piccoli passi ∆s (steps). Tenendo conto che nel magnete
il numero di spire, N, è dell’ordine di ∼ 102, che ∆s ∼ 1mm e che K(k),
E(k) vanno calcolati numericamente, l’applicazione diretta delle (2) è quasi
proibitiva per il tempo di calcolo.

La cosa più appropriata da fare è quella di calcolare il campo nei nodi di
una regione reticolare, determinandone, poi, i valori in un punto qualunque
dello spazio, per interpolazione.

Poiché lo spettrometro gode della simmetria speculare sia nella geometria
che nelle correnti che lo attraversano, I(z) = I(−z), non è difficile verificare
che le equazioni (2) danno

Br(r, z) = −Br(r,−z)

Bz(r, z) = Bz(r,−z),
(3)

per cui, è sufficiente calcolare il campo in una regione z ⩾ 0; la simmetria
cilindrica, inoltre, permette di considerare una griglia bidimensionale r− z
al posto di una tridimensionale (fig. 4.1).

La regione è suddivisa in un insieme di maglie, Nr ×Nz, che formano
un reticolo di (Nr + 1) × (Nz + 1) nodi; ciascuna maglia ha dimensioni
dr× dz, per cui le dimensioni complessive della regione sono Rmax ×Zmax
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con Rmax = Nrdr e Zmax = Nzdz. Se indichiamo il valore del campo nei nodi
con

Br(i,j) ≡ Br(i · dr, j · dz)
Bz(i,j) ≡ Bz(i · dr, j · dz)

i = 0, . . . ,Nr, j = 0, . . . ,Nz,

(4)

in cui i secondi membri sono calcolati con le (2), il valore del campo in
un punto P(x,y, z) dello spazio può essere determinato per interpolazione
bilineare [Press et al., 1992]

Br(r, z) = (1− t) (1− u)Br(i,j) + t (1− u)Br(i+1,j)

+ tuBr(i+1,j+1) + (1− t)uBr(i,j+1),

Bz(r, z) = (1− t) (1− u)Bz(i,j) + t (1− u)Bz(i+1,j)

+ tuBz(i+1,j+1) + (1− t)uBz(i,j+1).

(5)

In queste formule, la coppia (i, j), con i = [r/dr] e j = [z/dz],1 individua la
maglia della griglia in cui cadono le coordinate (r, z) di P (fig. 4.1); (t,u)
sono le coordinate di P riferite alla maglia, cioè

t =
r− i · dr
dr

, u =
z− j · dz
dz

.

Naturalmente, sia t che u hanno i valori compresi tra 0 e 1.
Le figure 4.2 e 4.3 mostrano un esempio dei risultati ottenuti nel calcolo

delle mappe del campo magnetico. In particolare, nella figura 4.3 osserviamo
la forte depressione visibile nella regione del LXC (l’effetto delle bobine di
compensazione accennato al § 3.3.1 di pagina 49).

4.3 le applicazioni basate su geant

Il nostro MC è un programma scritto in FORTRAN fondato sul pacchetto
software GEANT. Prima di passare a descriverne i dettagli è utile una breve
introduzione a questa libreria.

GEANT, ossia GEometry ANd Tracking, è un sistema per la descrizione dei
rivelatori e un insieme di strumenti di simulazione che aiutano i fisici in que-
sti studi. Con esso è possibile simulare il passaggio delle particelle elementari
attraverso la materia. Storicamente è stato sviluppato per gli esperimenti di
Fisica delle Alte Energie, High Energy Physics (HEP). Successivamente ha
trovato applicazione in altri campi quali le scienze mediche e biologiche, le
ricerche sulla radioprotezione e l’astronautica.

Nella fisica delle alte energie le applicazioni principali sono:

• il trasporto, o meglio, il tracking (nel gergo di GEANT), delle particelle
attraverso tutto l’apparato sperimentale al fine di simulare la risposta
del rivelatore;

• la rappresentazione grafica dell’apparato e delle traiettorie delle parti-
celle attraverso di esso.

Esiste una versione interattiva di GEANT che permette di combinare insieme
queste funzioni. Ciò è particolarmente utile, poiché osservare quello che

1 Con [x] indichiamo la parte intera di x.
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Figura 4.3: Mappa 3-D del campo magnetico

accade ad una particella dentro il rivelatore rende più semplice scoprire
difetti dell’apparato e (qualche volta) del programma!

In vista di tali applicazioni, il compito dell’utente è quello di:

• descrivere l’apparato dell’esperimento con una struttura di volumi
geometrici; ad ogni volume viene assegnato un tracking medium che
identifica il materiale con cui il volume è riempito ed alcuni parametri
necessari per il tracking;

• accettare gli eventi simulati con i generatori di Monte Carlo;

• trasportare le particelle attraverso tutte le varie parti del rivelatore
tenendo conto dei contorni geometrici dei volumi e degli effetti fisici
compatibili con la natura delle particelle come, ad esempio, le loro
interazioni con la materia e il campo magnetico;

• salvare le traiettorie delle particelle e le risposte delle parti sensibili
dell’apparato;

• visualizzare il rivelatore e le traiettorie delle particelle.

La libreria contiene delle routine dummy e di default che l’utente deve defi-
nire quando si devono compiere azioni dipendenti dalla propria applicazione.
Infatti sta all’utente:

• codificare le routine necessarie che forniscono i dati per la descrizione
dell’apparato sperimentale;

• assemblare le varie parti del programma e delle utility in un unico
programma eseguibile;
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• comporre le strutture dati appropriate per controllare l’esecuzione del
programma.

Le routine che l’utente può o deve definire iniziano per GU (GUFLD, GUSTEP. . . )
e UG (UGINIT, UGEOM. . . ).

Se l’applicazione non è di tipo interattivo allora l’utente deve fornire anche
il programma principale dell’applicazione (il main). Questo ha una struttura
piuttosto standard: dopo aver allocato la memoria necessaria all’applicazione,
passa il controllo a tre fasi distinte dell’esecuzione in ognuna delle quali
l’utente può aggiungere le proprie routine: inizializzazione, elaborazione
dell’evento e conclusione.

Nel seguito descriveremo le prime due poiché la fase conclusiva dell’appli-
cazione (normalmente sotto il controllo dell’utente) consiste principalmente
nella chiusura di eventuali file aperti (quelli utilizzati, ad esempio, per la
memorizzazione delle informazioni statistiche) e del sistema grafico, qualora
l’applicazione l’abbia richiesto.

4.3.1 Inizializzazione

L’inizializzazione è controllata dall’utente con una routine che, per con-
suetudine, è chiamata UGINIT. In essa si devono chiamare quei sottopro-
grammi di libreria che, oltre a riservare la memoria necessaria, si occupano
prevalentemente di:

• creare ed inizializzare le aree di memoria visibili globalmente (COMMON)
ai valori di default;

• leggere i dati in ingresso che modificano opzioni di default o forniscono
informazioni per l’esecuzione corrente dell’applicazione;

• inizializzare il sistema grafico (se l’applicazione lo richiede);

• riempire la struttura dati con le caratteristiche dei materiali;

• riempire la struttura dati con le proprietà delle particelle;

• calcolare le tabelle relative a sezioni d’urto, perdita di energia e così via,
per vari processi, in modo che queste informazioni, dopo essere state
archiviate in apposite strutture dati, possano essere utilizzate durante
il tracciamento delle particelle.

Inoltre l’utente vi deve aggiungere il proprio codice (UGEOM) per:

• definire, attraverso l’introduzione di un insieme di volumi, la geometria
delle varie parti dell’apparato;

• definire i parametri dei materiali in cui si ha il tracciamento (tracking)
delle particelle;

• specificare quali componenti di questa struttura geometrica devono
essere considerati sensibili, dando una risposta quando sono colpiti (hit)
dalle particelle.

Questa fase, normalmente, si chiude con l’inizializzazione (booking) delle
strutture dati per la raccolta delle informazioni statistiche (UHINIT).
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4.3.2 Elaborazione dell’evento

La fase di elaborazione è attivata con la chiamata della routine di GEANT,
GRUN, le cui azioni principali per ogni evento sono:

• generare o leggere la cinematica dell’evento (ad esempio, vertice ed
impulso iniziali per ciascuna particella che deve essere tracciata);

• trasportare, per ogni vertice, le particelle attraverso tutto l’apparato
sperimentale definito in precedenza;

• controllare se la particella tracciata attraversa un elemento sensibile del
rivelatore; in tal caso l’utente può memorizzare le informazioni utili
nelle apposite strutture dati;

• verificare se durante il tracking della particella corrente si sono generate
delle particelle secondarie; se nella sua applicazione l’utente ha deciso
di tracciare anche i prodotti secondari, questi vengono elaborati prima
che il controllo passi al trasporto della particella successiva: la struttura
dati che memorizza le informazioni sulle particelle da tracciare è uno
stack, Last Input First Output (LIFO);

• simulare la risposta del rivelatore utilizzando tutte quelle informazioni
memorizzate durante la fase di tracking;

• eseguire l’elaborazione di fine evento mettendo in uscita le informazioni
più rilevanti.

Durante la fase di tracciamento vero e proprio, GEANT può simulare lo
scattering multiplo, la perdita di energia per ionizzazione, le interazioni
elettromagnetiche, quelle muoniche e così via. L’intervallo di energia per
questi processi si estende da 10 keV fino a 10 TeV . L’utente ha la possibilità
di decidere quali processi includere in un dato run della sua applicazione,
così da poter valutare gli effetti sui risultati che ottiene. Altre operazioni che
GEANT esegue in questa fase sono:

• simulare le interazioni adroniche utilizzando librerie specifiche, quali
GHEISHA [Fesefeldt, 1985] e FLUKA [Aarnio et al., 1987], per la genera-
zione di sciami adronici; per default GEANT usa la prima e permette
all’utente decidere quale libreria usare con le routine GUPHAD e GUHADR;

• dare il controllo alla routine GUSTEP alla fine di ogni passo di traccia-
mento lungo la traiettoria; qui l’utente può compiere diverse azioni,
come memorizzare un hit (se si è verificato) della particella con le parti
sensibili del rivelatore o elaborare un evento secondario ecc.;

• chiamare la routine GUSWIM per il trasporto di particelle cariche in cam-
po magnetico; pur essendo una routine utente, la sua implementazione
di default in GEANT è sufficiente in molte situazioni; il campo magne-
tico, a meno che non sia costante (lungo l’asse Z), è descritto dalla
routine GUFLD.

4.3.3 Sistemi di riferimento e volumi in GEANT

In generale l’apparato sperimentale è descritto per mezzo di un volume
iniziale dentro il quale sono posizionati tutti gli altri. Ad ognuno di essi viene
attaccato un sistema di riferimento rispetto al quale sono definiti i parametri
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che determinano le forme geometriche che caratterizzano i volumi stessi.
Il sistema di riferimento del volume iniziale è chiamato MAster Reference
System (MARS) e le variabili cinematiche delle particelle tracciate sono definite
relativamente a tale sistema.

Quando un volume ne contiene un altro al suo interno, esso è chiama-
to MOTHER, il volume madre, mentre quello che vi è contenuto è chiamato
DAUGHTER, il volume figlio. Naturalmente i volumi figli ne possono contenere
altri, con una struttura ad albero, fino ad una profondità di 15 livelli. In
questo caso i volumi figli diventano MOTHER dei volumi che contengono. Il
sistema di riferimento del volume MOTHER si chiama Mother Reference Sy-
stem (MRS), mentre quello del volume figlio è chiamato Daughter Reference
System (DRS). Ovviamente, il MRS del primo volume, quello che contiene tutti
gli altri, non è altro che il MARS.

Il posizionamento dei volumi figli nel MOTHER avviene, in generale, con una
traslazione, T , e una rotazione R. La traslazione è semplicemente il vettore
(definito nel MRS) che trasforma l’origine OM del MRS in quella OD del DRS.
La rotazione, invece, è la matrice che trasforma gli assi del MRS in quelli
del DRS: essa si calcola a partire dagli angoli polari sferici (Θ,Φ) di ciascun
asse del DRS rispetto al MRS.2 Indicando con eM

i il versore dell’asse i-esimo
(i = x,y, z) del MRS e con eD

i quello analogo del DRS, la matrice è definita da

eD
i =

∑
j

Rije
M
j

eD
i = sinΘi cosΦieM

1 + sinΘi sinΦieM
2 + cosΘieM

3 ,

con i, j = x,y, z.

4.4 il monte carlo

Il nostro programma, ovviamente, riflette la struttura di una simulazione
GEANT. Risulta strutturato nelle tre fasi a cui abbiamo già fatto riferimento
precedentemente (§ 4.3, pag. 63). Qui vogliamo mettere in evidenza soprat-
tutto le prime due in quanto la parte finale consiste soprattutto nel salvare
alcuni dati generali, come le informazioni sulla geometria delle camere e
dei TC e nella chiusura di file aperti, quelli in cui si sono salvati, durante
l’elaborazione, i dati essenziali per ogni evento simulato. Questi file sono poi
utilizzati per un’analisi, per così dire, off-line dei risultati, alcuni dei quali
riportati nel capitolo successivo.

4.4.1 Definizione dell’apparato

Per gli scopi che ci siamo prefissi, cui si è accennato al § 4.1, a pagina 61,
non simuliamo tutto il rivelatore MEG, che comprende anche il LXC, ma solo
quelle parti che ci sono necessarie, e cioè il campo magnetico, il bersaglio, le
camere a drift, i contatori a scintillazione, ed anche le atmosfere (cioè i gas) in
cui si trovano alcuni degli elementi citati (per esempio, la targhetta si trova
in atmosfera di elio, mentre i TC sono immersi in quella di azoto).

Spesso ci siamo trovati nelle circostanze di decidere, ad esempio, se era il
caso di mettere le camere in posizione radiale più vicina all’asse del magnete,
o se le barrette di scintillatore dovevano essere più lunghe o più strette, o se
ruotate di un dato angolo ecc. Ciò ci ha spinti ad impostare il programma in

2 Naturalmente, 0° < Θ < 180° e 0° <Φ< 360°.



4.4 il monte carlo 69

modo che, per quanto possibile, presentasse una certa adattabilità. Quindi in
fase di inizializzazione il programma legge due tipi di file.

Nel primo ci sono i dati che servono per inizializzare opportunamente
GEANT: quanti eventi generare, il seed del generatore di numeri pseudo-
casuali, se il tracking deve tener conto del multiplo scattering e così via.
Tutti questi dati nel gergo di GEANT sono chiamati cards. Nel secondo file ci
sono i dati (user cards, a questo punto) che riguardano il nostro rivelatore:
le dimensioni geometriche delle singole camere, la loro posizione radiale,
numero di camere ecc., ma anche la possibilità di decidere se simulare il
moto di un positrone da un decadimento µ→ eγ o da quello di Michel. Per
lungo tempo si è discusso sull’utilità o meno di utilizzare nell’esperimento il
sistema dei contatori a scintillazione con le strisce in ϕ (fig. 3.12): nel nostro
programma è possibile, tramite un apposita card, escludere completamente
tale sistema.

Dopo aver letto questi dati, il programma passa alla costruzione del nostro
rivelatore. Per ogni suo componente è necessario definire il materiale di cui
è fatto e la forma geometrica (shape), cioè il volume, che lo rappresenta. Per i
materiali, prima di tutto, si deve definire la composizione chimica (numero
atomico, Z, e di massa, A, per ogni elemento), la densità, il peso atomico
ecc. In GEANT ne esistono già 16 predefiniti, tra cui idrogeno, elio, aria. . . , il
vuoto. Il vuoto è un materiale come gli altri, solo che ha tutti i suoi parametri
(Z, A, densità. . . ) pari a 10−16. Ad ogni materiale così definito si associano,
successivamente, alcuni parametri come:

• la massima intensità del campo magnetico (FIELDM);

• la massima deviazione angolare dovuta al campo magnetico e permessa
in un singolo passo (TMAXFD);

• la massima frazione di energia persa in un singolo step (DEEMAX);

• il massimo passo geometrico consentito (STEMAX);

• l’accuratezza per l’attraversamento delle superfici di separazione di
due mezzi (EPSIL);

• il minimo passo dovuto alla perdita di energia o al multiplo scattering
(STMIN).

Inoltre, è necessario comunicare altri due dati: l’indicazione che il volume
riempito dal materiale sia sensibile o meno (ISVOL) e la qualità del campo
nel materiale (IFIELD). Infatti, il campo può essere assente, uniforme, non
omogeneo, fortemente non omogeneo (il caso del nostro magnete). In ognuna
di queste situazioni verrà utilizzato un algoritmo diverso per il tracking: un
elica per il campo uniforme (attraverso la routine GHELX3), tratti elicoidali per
quello debole (GHELIX), il metodo Runge-Kutta [Press et al., 1992] nel caso
forte (GRKUTA). L’indicazione della sensibilità del volume permetterà poi di
definire quali parti dell’apparato dovranno registrare il passaggio della parti-
cella. In questo modo si completa la definizione dei cosiddetti tracking media.
Va sottolineato che GEANT, normalmente, calcola automaticamente alcuni
parametri di tracciamento, e questo per garantire una maggiore affidabilità
dei risultati.

Per poter definire i volumi, GEANT offre 16 forme (shape) di base per
mezzo delle quali è possibile costruire apparati anche di notevole complessità.
Vediamo con degli esempi concreti, non esaustivi, come il nostro programma
costruisce l’apparato da simulare.
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ECAL BOX specifications 18/11/93

Box   ah  
DX   = cm  100    
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ECAL TUBE specifications 18/11/93
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RMIN = cm  100    
RMAX = cm  200    
DZ   = cm  400    
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Figura 4.4: Le shapes BOX e TUBE

Il Frame

Con questo nome indichiamo il volume principale che contiene tutti gli altri
e il cui sistema di riferimento, il MARS, coincide con quello del laboratorio,
cioè origine nel centro del magnete ed asse Z come la linea del fascio. La
sua forma è un cilindro realizzato con la shape di GEANT chiamata TUBE

(fig. 4.4). Essa è definita da tre parametri: RMIN, il raggio interno, RMAX, quello
esterno, e DZ, la semi-lunghezza in z. Nel nostro caso si tratta di un cilindro
con raggio di 70 cm (RMIN = 0, RMAX = 70 cm) e lunghezza 2× DZ = 250 cm.
Poiché ogni volume di GEANT deve essere riempito con un tracking medium,
il Frame è riempito di vuoto (Vacuum tracking medium).

Il bersaglio

La shape di GEANT utilizzata per definire la targhetta è quella chiamata
BOX, cioè una scatola le cui pareti sono perpendicolari agli assi del sistema
di riferimento locale (DRS) che gli è attaccato. I suoi parametri, DX, DY, DZ,
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Figura 4.5: Relazione tra DRS e MRS nel posizionamento del bersaglio

rappresentano le semi-dimensioni lungo i rispettivi assi (fig. 4.4) e vengono
acquisiti dal MC per mezzo di apposite cards utente.3

Dato che il bersaglio è immerso in atmosfera di elio, è necessario che
abbia un MOTHER riempito da questo gas e con una forma (TUBE) come il
Frame, ma con un raggio di dimensioni ridotte. Questo volume, il Positron
TracKer Frame (PTKF), costituirà il MOTHER anche per tutto il sistema delle
camere. Prima si posizionerà il MOTHER, che avendo la stessa origine e la
stessa orientazione del Frame non richiede alcuna traslazione o rotazione, poi
la targhetta. In questo caso, essendo inclinata di 22° rispetto alla linea del
fascio, il suo posizionamento richiede di definire un appropriata matrice di
rotazione. La traslazione non è necessaria perché la targhetta, come noto, sta
al centro del magnete. Gli angoli polari che definiscono l’orientazione degli
assi del DRS rispetto al MRS sono: (Θ,Φ)x = (112°, 0°), (Θ,Φ)y = (90°, 90°),
(Θ,Φ)z = (22°, 0°); essi si deducono facilmente osservando la figura 4.5.

Le camere

L’assemblaggio dei componenti di questo sistema è stato certamente più
laborioso di quanto descritto finora.

Prima di tutto è stato necessario definire diversi nuovi materiali, quali
il kapton, con cui sono fatte le pareti delle celle delle singole camere, e la
mistura di elio-etano, che le riempe. Inoltre abbiamo trovato utile creare alcuni
volumi ausiliari per mezzo dei quali è stato più semplice posizionare i singoli
elementi.

Inizialmente abbiamo definito un volume madre, a forma di TUBE, che
racchiudesse tutto lo spazio contenente le camere. Questo volume, come
abbiamo visto descrivendo il posizionamento del bersaglio, è il PTKF.

Per quanto riguarda i singoli settori, sappiamo che ognuno di essi è
costituito da una coppia sfalsata di celle: un foglio di kapton le separa
e costituisce le pareti del settore. Ogni cella è semplicemente un volume
della miscela di elio-etano. Allora abbiamo definito un volume fittizio, il
DRift Chamber Element (DRCE), riempito di vuoto, e che facesse da MOTHER al
singolo settore del sistema delle camere. La shape di GEANT utilizzata è quella
identificata con TRD1, che è il volume trapezoidale mostrato nella figura 4.6. I
parametri DX1 e DX2 costituiscono le semi-lunghezze delle basi del trapezoide,
mentre DY e DZ sono rispettivamente il semi-spessore in y e la semi-altezza
in z.4 Con la stessa shape sono stati creati anche i volumi del foglio di kapton,
Kapton Gas Tight Layer (KGTL), e della mistura di elio-etano, Active GAs
Layer (AGAL). Poiché questi tre volumi (DRCE, KGTL, AGAL) hanno la stessa
forma, è piuttosto semplice costruire la singola camera: sono sufficienti delle

3 Tipici valori sono 2× (DX, DY, DZ) = (0.01,4,9.9) cm.
4 Tipici valori per una camera sono 2× (DX1, DX2, DY, DZ) = (100,44,1.5,9.5) cm.
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ECAL TRD1 specifications 18/11/93
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ECAL TUBS specifications 18/11/93
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Figura 4.6: Le shapes TRD1 e TUBS
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Figura 4.7: La costruzione del DRCE

semplici traslazioni dei volumi figli (KGTL, AGAL) rispetto al MOTHER (DRCE).
Tenendo conto che il sistema di riferimento attaccato a questi volumi ha
origine nel loro centro (fig. 4.6), le traslazioni sono rappresentate dal vettore
T i ≡ (0,yi, 0), i = 1, . . . , 5, dove y1 = −DY per il primo foglio di kapton (una
parete della camera), y2 = −DY/2 per la prima cella di AGAL, y3 = 0 per il
secondo foglio di kapton (quello che separa le due celle), y4 = +DY/2 per
la seconda cella di AGAL ed infine y5 = +DY per il terzo foglio di kapton
(l’altra parete della camera). Queste traslazioni sono indicate brevemente
nella figura 4.7. In questo modo si completa l’assemblaggio di un singolo
settore (DRCE) del sistema delle camere.

Il passo successivo è quello di disporre tutti i 17 settori (DRCE) in modo che
assumano posizione radiale nello spettrometro (cioè nel PTKF) e distanziati
di 10° in ϕ (sia il numero totale di settori, NDRC, che la loro separazione
angolare, ∆ϕDRC, possono essere cambiati per mezzo delle cards utente).
In questa fase non è più sufficiente definire le sole traslazioni, ma occorre
definire, per ogni camera, anche un’appropriata matrice di rotazione. Se
indichiamo con ϕi, i = 1, . . . ,NDRC, l’angolo azimutale del piano mediano
dell’i-esima camera (il piano su cui giace il secondo foglio di kapton, cioè
la parete di separazione tra due celle AGAL), allora la traslazione per questo
settore è T i ≡ (ρc cosϕi, ρc sinϕi, 0), dove ρc è la distanza radiale dell’origine
del DRS, attaccato al DRCE, dall’asse Z. La traslazione non ha la componente
z, (T i)z = 0, ed avviene solo nel piano XY. Infatti, come abbiamo visto nel
§ 3.3.2, a pagina 52, il sistema delle camere è speculare rispetto a tale piano,
come risulta evidente anche dalle figure 3.1 e 3.13.

La matrice di rotazione ruota il piano mediano del settore di un angolo
ϕi ed è determinata dalle coordinate sferiche degli assi del DRS rispetto al
MRS: (Θ,Φ)x = (180°, 0°), (Θ,Φ)y = (90°,ϕi + 90°), (Θ,Φ)z = (90°,ϕi). La
posizione relativa tra i sistemi di riferimento citati è illustrata schematica-
mente nella figura 4.8. In essa dobbiamo immaginare che l’asse ZM del MRS è
uscente dalla pagina, mentre quello XD del DRS è entrante. Questo significa che
Θx = 180°, mentre Φx è indefinito; per convenzione lo possiamo assumere
nullo. In ogni caso GEANT, utilizzando la definizione degli altri due assi,
costruirebbe sempre una terna normalizzata e con la giusta orientazione.

I contatori a scintillazione

Il sistema completo dei contatori a scintillazione (§ 3.3.3, pag. 53), od an-
che del tempo di volo, Timing Of Flight (TOF), è costituito dalle strisce di
scintillatore disposte in ϕ, le quali sono state identificate nel programma
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Figura 4.8: MRS e DRS nel posizionamento delle camere. Tra parentesi le
coordinate (Θ,Φ) degli assi.

con Timing Counter Inner (TCI), e dalle barrette longitudinali più esterne,
Timing Counter Outer (TCO) (fig. 3.12). In realtà, come già anticipato, nella
simulazione abbiamo la facoltà di escludere completamente il sistema dei
TCI.

Il volume delle strisce in ϕ è ricavato dalla shape di GEANT denominata
TUBS, e mostrata nella figura 4.6. I parametri RMIN, RMAX e DZ hanno lo stesso
significato visto con la forma TUBE, mentre PHI1 e PHI2 denotano, rispettiva-
mente, l’angolo iniziale e finale, in ϕ, del segmento tubolare. Le dimensioni
di default nel MC sono una larghezza (2× DZ) ed uno spessore (RMAX− RMIN)
di 5mm; in ϕ si estendono da 219° fino a 375°. Tra una striscia e l’altra, c’è
una piccola gap di 1mm ed in tutto, per ogni lato dello spettrometro, sono
128: occupano, così, uno spazio in z di quasi 80 cm (che è la lunghezza tipica
di una barretta esterna). Le barrette del TCO sono semplicemente delle BOX

di dimensioni complessive 3.9 cm× 3.9 cm× 80 cm. Come sempre nel MC
questi dati sono configurabili con le cards utente. Il materiale scintillante
utilizzato è il poliviniltoluene (C9H10).

Poiché tutto il sistema del TOF si trova in atmosfera di azoto (§ 3.3.3,
pag. 53), è stato conveniente definire un volume, il Timing Of Flight Fra-
me (TOFF), a forma di TUBE, che lo contenesse, e riempito di azoto. Contraria-
mente agli esempi visti finora, però, pur essendo la dimensione longitudinale
come quella del Frame, il parametro RMIN della shape non è nullo, ma è calco-
lato insieme a RMAX in base alla configurazione effettiva di tutto il sistema del
TOF. Infatti nel programma prevediamo la possibilità che le barrette esterne
possano essere ruotate intorno al loro asse. Questo significa che il volume
radiale occupato dal sistema del TOF dipende dall’angolo di rotazione delle
barrette.

Se immaginiamo di guardare verso l’asse Z negativo, la configurazione può
essere rappresentata come quella della figura 4.9. Per semplicità mostriamo
una sola barretta. L’angolo γ indica la rotazione in verso orario delle barrette:
un valore γ = 0 corrisponde alla configurazione originaria illustrata nella
figura 3.12. Come si vede, in generale, le barrette si trovano dentro una corona
cilindrica con raggio interno Rm e raggio esterno Rp, che dipendono da γ.
Tenendo conto della gap, ∆Rgap, tra le barrette (TCO) e le strisce (TCI), e dello
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Figura 4.9: Volume radiale determinato dalla rotazione della barretta

spessore, ∆Rslice,5 di queste, la TUBE corrispondente al TOFF ha i parametri
RMIN e RMAX dati da

RMIN = Rm −∆Rgap −∆Rslice

RMAX = Rp.
(6)

La differenza ∆R ≡ Rp − Rm, cioè lo spessore della corona contenente le
barrette, può essere calcolata con la seguente espressione

∆R ≡ Rp − Rm = l sinγ+ d cosγ, (7)

dove l ≡ AB = CD e d ≡ AD = BC sono le dimensioni trasverse delle
barrette (fig. 4.9). In realtà tale formula è ricavata su una configurazione
rettificata, ottenuta cioè immaginando di srotolare la superficie cilindrica che
contiene gli assi delle barrette. Essa ci permette di calcolare Rm e Rp, utilizzati
nella (6), con

Rm = R0 −
1

2
∆R

Rp = R0 +
1

2
∆R,

(8)

in cui R0 è la distanza radiale degli assi delle barrette ed è definita nel
programma, così come l’angolo di rotazione γ, per mezzo di apposite cards
utente. Nella figura 4.10 mostriamo il confronto tra il calcolo approssimato
che abbiamo descritto di Rm e Rp e quello esatto (a cui sarà fatto cenno,
con altri dettagli sul ricavo della (7), nell’appendice B). Come era naturale
aspettarsi, per 0° ⩽ γ ⩽ 90°, la formula (7) funziona molto bene ad eccezione
degli estremi, 0° e 90°, i quali, tra l’altro, possono essere considerati a parte. Se
l’angolo γ avesse valori tali che l’approssimazione per ∆R fosse insufficiente,
il volume del TOFF andrebbe a sovrapporsi parzialmente con quello del PTKF,
e ciò non sarebbe auspicabile per un corretto funzionamento di GEANT. Per
questo abbiamo fatto un’ulteriore verifica: al MC è stato aggiunto un controllo
che, qualora ciò accadesse, il programma lo segnalerebbe e si arresterebbe.
Ad ulteriore conferma della validità dell’espressione (7), ciò non si è mai
verificato.

5 La gap ha un valore tipico di 3mm, mentre, come abbiamo già anticipato, lo spessore delle
strisce è di 5mm.
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Figura 4.10: Il confronto con il calcolo esatto di Rm e Rp
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Figura 4.11: Schema del posizionamento delle strisce TCI

Dopo aver definito il TOFF, e riempito di azoto, si possono posizionare il
sistema dei TCI (quando la simulazione lo richiede) e quello dei TCO. La
TUBS delle strisce interne ha lo stesso parametro RMIN del TOFF, mentre RMAX

è semplicemente RMIN + ∆Rslice. Quindi per il posizionamento non sono
necessarie delle rotazioni ma solo la traslazione, in z, dell’origine del loro
DRS. Se indichiamo con w la larghezza della striscia e con ∆zgap la gap tra
due strisce consecutive, l’i-esima striscia viene sistemata con la traslazione
T i = (0, 0,±zi) definita da

zi = zi−1 +w+∆zgap, i = 2, 3, . . . ,Nslice

z1 = zoff +
w

2
,

dove zoff è il limite inferiore (offset) dello spazio occupato in z e Nslice, il
numero totale di strisce. La figura 4.11 illustra sinteticamente il principio di
questa operazione.

Ben più complicato è il posizionamento delle barrette esterne (TCO). In
questo caso oltre a definire la traslazione del DRS è necessario definirne anche
un’appropriata matrice di rotazione. Se facciamo riferimento alla figura 4.12,
s’intuisce che la traslazione, T i, per l’i-esima barretta è definita da

T i = (R0 cosϕi,R0 sinϕi,±zb),

in cui ϕi è la posizione angolare dell’asse della barretta e zb la coordinata
z del suo baricentro: zb = zoff + DZ, essendo zoff l’offset (in z) delle barrette
e DZ la loro semi-lunghezza; i segni si riferiscono al posizionamento su
entrambe i lati dello spettrometro. La matrice di rotazione, invece, è definita
dalle coordinate angolari degli assi (§ 4.3.3, pag. 67): (Θ,Φ)x = (90°,ϕi − γ),
(Θ,Φ)y = (90°,ϕi + 90° − γ), (Θ,Φ)z = (0°, 0°).

I rivelatori sensibili

Finora, in questa discussione, abbiamo cercato di descrivere gli elementi
principali dell’apparato, trascurando alcuni particolari secondari (quali, ad
esempio, i supporti di vetronite per le camere) che avrebbero appesantito
inutilmente la descrizione.

Qui vogliamo brevemente soffermarci sul fatto che per poter considerare
conclusa l’operazione di costruzione del rivelatore, è necessario, secondo la
consuetudine in GEANT, classificare in insiemi (sets) tutti i componenti sensibili
per i quali l’utente vuole memorizzare le informazioni utili quando essi sono
colpiti dalle particelle tracciate. Normalmente è conveniente (e raccomandato)
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Figura 4.12: Schema del posizionamento delle barrette TCO

avere un set per ogni elemento principale dell’apparato. Nel nostro caso, per
esempio, tutto l’insieme delle camere costituisce un set sensibile chiamato
Positron TRacKer (PTRK); allo stesso modo avremo il set di tutte le strisce
interne dei contatori a scintillazione, il Timing Of Flight Inner (TOFI) e quello
delle barrette esterne, il Timing Of Flight Outer (TOFO).

Oltre a questo raggruppamento per componenti, per così dire, omogenei,
è necessario definire l’hit, cioè l’informazione che viene registrata nella
fase di tracking. Tanto per essere concreti, quando la particella si trova,
per esempio, in una barretta del set TOFO, il nostro programma registra
le coordinate del punto d’ingresso (XA,. . . ,ZA), quelle del punto d’uscita
(XB,. . . ,ZB), il tempo d’impatto (TIMP), l’energia persa nell’attraversare la
barretta (ELOS), la lunghezza della traccia di attraversamento (SLEN), gli angoli
d’impatto (CALP,. . . ) e così via. Il fatto di aver creato i tre set visti prima, ci
permetterà, poi, di registrare (GSAHIT, storing) queste informazioni in banchi
dati differenti così da poterli identificare al momento opportuno. Infatti alla
fine dell’elaborazione dell’evento corrente, sarà necessario prelevare (GFHITS,
f etching) tutti questi dati registrati durante la fase di tracking e salvarli nei
file utilizzati per l’analisi off-line dei risultati, e quindi avremo bisogno di
conoscere se un hit si è verificato su una camera, su una barretta esterna o
su una striscia interna.

Con la definizione dei sets sensibili e la struttura dati (hit) da registrare
quando la particella interagisce con essi, possiamo considerare chiusa la
fase di definizione del rivelatore, cioè di inizializzazione del MC, e passare
a descrivere quella di elaborazione dell’evento. In questo caso, all’utente è
richiesto, essenzialmente, di fornire la propria implementazione di tre routine
di GEANT: GUKINE, GUSTEP, GUOUT. Con la prima si definisce la cinematica
iniziale dell’evento; con la seconda, alla fine di ogni tracking step, si registrano,
nelle rispettive strutture dati, gli hit con i rivelatori e le coordinate spaziali
della traiettoria; con la terza si ha l’output dei risultati per l’evento corrente,
cioè il disegno della traccia e dell’apparato o il salvataggio delle informazioni
essenziali nei file per l’analisi off-line.
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Figura 4.13: La distribuzione dello stop dei muoni nel bersaglio

4.4.2 La cinematica iniziale

Per poter tracciare la traiettoria della particella attraverso tutto l’apparato,
GEANT deve integrare numericamente le equazioni del moto e quindi è
necessario specificare le condizioni cinematiche iniziali per le particelle che
si intendono tracciare.

Con la routine GUKINE l’utente specifica il numero e il tipo (e+, e−, γ, µ,. . . )
delle particelle che vuole tracciare nonché, per ognuna di esse, il vertice da
cui inizia la traccia, cioè la posizione iniziale, e la quantità di moto iniziale.

Il nostro programma prevede la possibilità di generare, fondamentalmente,
due tipi di eventi: decadimenti µ+ → e+γ e quelli di Michel, µ+ → e+νeνµ.
Nel primo caso è possibile tracciare il positrone oppure entrambe le particelle
finali, aventi lo stesso vertice iniziale ma con gli impulsi opposti (pe = −pγ);
nel secondo caso, invece, si traccia soltanto la particella carica dello stato
finale, con energia distribuita secondo lo spettro omonimo

dNe

dx
= 2x2(3− 2x), x =

2Ee

mµ
(9)

essendo x, l’energia normalizzata del positrone.
Sia per gli eventi µ→ eγ che per quelli di Michel, il metodo per generare

il vertice e l’impulso iniziale è praticamente lo stesso.

Generazione del vertice

Il vertice, V , di decadimento viene generato tenendo conto dello sparpaglia-
mento gaussiano del fascio di muoni e della profondità media, a cui avviene
lo stop dei muoni nel bersaglio. Come abbiamo già anticipato nel § 3.2.1 di
pagina 44, a causa dell’atmosfera di elio in cui si trova la targhetta, il fascio
di muoni subisce un allargamento in x e y (z è la direzione del fascio) con
σx,y ≈ 10mm. D’altra parte, sappiamo da uno studio preliminare [Mori et al.,
1999], i cui risultati sono riportati nella figura 4.13, che i muoni si fermano
ad una distanza media (in direzione normale) di circa 50µm dalla superficie,
con distribuzione approssimativamente gaussiana avente σ ≈ 20µm.
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Se indichiamo con d la profondità normale (depth) a cui si ferma il muone,
la coordinata zV del vertice è data dalla seguente espressione

zV = xV · cotgα−
DX

sinα
+

d

sinα
, (10)

dove xV è l’ascissa del vertice, α = 22° è l’inclinazione del bersaglio rispet-
to all’asse Z e DX il suo semi-spessore: come si ricorderà esso rappresenta
uno dei parametri della corrispondente shape. Nell’appendice C si illustra
brevemente la costruzione geometrica che permette di ricavare l’equazio-
ne (10). Utilizzando tre numeri pseudo-casuali con distribuzione normale
(ux,uy,u),6 il MC calcola le coordinate del vertice come

xV = ux · σx
yV = uy · σy

zV = xV · cotgα−
DX

sinα
+
d+ u · σ

sinα
,

(11)

in cui d è la profondità normale media. Ma non basta! Infatti, a causa delle
code gaussiane, potrebbe accadere che il vertice, così come calcolato nella
(11), cada esternamente al bersaglio. Allora trasformando le coordinate di V
dal MOTHER al DAUGHTER è agevole fare tale verifica (appendice C), accettando
solo gli eventi che hanno il vertice effettivamente interno al target.

Generazione dell’impulso

Nel generare l’impulso, l’unica differenza tra gli eventi µ → eγ e quelli di
Michel è che nei primi la quantità di moto assoluta è esattamente 52.8MeV/c
mentre nei secondi è distribuita secondo lo spettro di Michel rappresentato
dall’equazione (9). Teniamo presente che questa formula è data in appros-
simazione me ≪ mµ e quindi Ee ≈ pe [Okun, 1986; Lee, 1981]. Nel MC i
numeri pseudo-casuali x, distribuiti come lo spettro (9), si ottengono per
mezzo di un sottoprogramma di libreria.7

Dopo aver determinato la quantità di moto assoluta dell’evento da si-
mulare, si completa la definizione dell’impulso calcolandone la direzione.
Il nostro programma ci permette di decidere se generare eventi distribuiti
isotropicamente su tutto l’angolo solido o solo nell’intervallo dell’accettanza
angolare di tutto il rivelatore MEG.8 Nel primo caso, se indichiamo con r1
e r2 due numeri pseudo-casuali distribuiti uniformemente nell’intervallo
(0, 1),9 gli angoli polari dell’impulso sono determinati dalle relazioni:10

cos θ = 2 · r1 − 1
ϕ = 2π · r2.

Nel secondo caso, invece, abbiamo

cos θ = (c2 − c1) · r1 + c1
ϕ = (2 · r2 − 1) ·ϕ0,

6 Generati, ad esempio, con la routine RNORMX di CERNLIB [Shiers e Goossens, 1996].
7 HBFUN1 di CERNLIB.
8 Una distribuzione isotropa significa che la densità deve essere proporzionale all’elemento di

angolo solido dΩ = d(cosθ)dϕ, cioè cosθ e ϕ devono essere uniformemente distribuiti.
9 Ottenuti con GRNDM di GEANT, per esempio.

10 Un’introduzione elementare alle tecniche di Monte Carlo è costituita dall’omonima sezione nel
PDG [Amsler et al., 2008, p. 330]
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dove r1 e r2 sono definiti come prima; questo significa che la direzione della
quantità di moto è compresa nell’intervallo

c1 < cos θ < c2, |ϕ| < ϕ0.

I parametri c1, c2 e ϕ0 sono definiti dall’utente per mezzo di apposite cards.11

4.4.3 Tracking e hit

Dopo aver completato la definizione della cinematica (GUKINE), GEANT ha tut-
te le informazioni necessarie per poter calcolare le traiettorie delle particelle
di cui è richiesto il tracking, e questo viene fatto in gran parte per mezzo di
routine proprie, non definibili dall’utente.

In GEANT tracciare una particella attraverso tutta la struttura della geome-
tria dell’apparato significa calcolare un insieme di punti in uno spazio a sette
dimensioni (t, x,y, z,px,py,pz): tale insieme costituisce ciò che normalmen-
te si chiama la traiettoria della particella. Per ottenere tutto ciò è necessario
integrare le equazioni del moto, a piccoli passi, da un punto della traiettoria
al successivo, ed applicare le correzioni necessarie dovute alla presenza della
materia.

In generale i passi con cui è calcolata la traccia non sono tutti uguali. GEANT
applica sofisticati algoritmi per una stima dello step da compiere. Questo
dipende oltre che dalla natura della particella (carica, massa, vita media e
così via) anche dal tracking medium corrente in cui si trova la particella. Dopo
aver determinato lo step, il trasporto procede in linea retta per particelle
neutre o in assenza di campo magnetico, mentre subisce una deflessione se
questo è presente. Anche qui GEANT può adottare diversi algoritmi in base
ai parametri del mezzo di tracciamento (IFIELD, § 4.4.1, pag. 68). Tranne nel
caso che il campo sia uniforme, all’utente è richiesto di definire, tramite la
routine GUFLD, come GEANT deve calcolare le componenti del vettore campo
magnetico, B ≡ (Bx,By,Bz), in un punto P(x,y, z) dello spazio.

Nel nostro MC, per z ⩾ 0, il campo è calcolato a partire dalle seguenti
formule

Bx(x,y, z) = Br(r, z) ·
x

r

By(x,y, z) = Br(r, z) ·
y

r

Bz(x,y, z) = Bz(r, z),

dove abbiamo indicato la distanza del punto P dall’asse Z con r ≡
√
x2 + y2.

Le componenti Br e Bz, invece, sono date dall’equazione (5): esse dipendono
dai valori delle mappe ai nodi di una griglia bidimensionale, come descritto
al § 4.2, di pagina 62. Per z < 0 è sufficiente tener conto dell’equazione
(3). Osserviamo, inoltre, che x/r e y/r non sono altro che i coseni direttori
con gli assi X e Y della componente trasversa del campo, Br. Le mappe (4),
precedentemente calcolate e memorizzate in un file, sono caricate in memoria
dal programma in fase di inizializzazione.

Alla fine dello step corrente, l’utente dispone di un insieme di informazioni
che GEANT ha saggiamente registrato durante il tracking. Egli può conoscere
se la particella è trasportata all’interno di un volume o se ne sta uscendo; se
è scomparsa per decadimento oppure perché uscita dall’apparato e così via.
Tutti questi dati sono necessari all’utente per compiere le azioni appropriate

11 Come abbiamo visto al § 3.3.2, a pagina 52, tipicamente si ha c2 = −c1 = 0.35, ϕ0 = 60°.
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con la routine GUSTEP, chiamata alla fine di ogni tracking step. Nel nostro caso,
il programma si prepara a tracciare i prodotti secondari (se ce ne sono stati) e
a registrare gli eventuali hit con i nostri strumenti. Una delle informazioni che
si hanno in questa fase è quella di conoscere in quale dei tre rivelatori sensibili
del nostro apparato (§ 4.4.1, pag. 77) si trova il positrone. Ovviamente può
accadere che non abbia interagito con nessuno dei sistemi previsti e quindi
il programma continua con lo step successivo. Se però la particella si trova
in uno dei tre rivelatori sensibili, abbiamo ciò che si chiama un hit. Il MC in
questo caso registra tutte le grandezze necessarie e alle quali si è fatto cenno
al § 4.4.1 di pagina 77. Per ognuno dei tre rivelatori la sequenza di azioni
che il programma compie per la memorizzazione di queste informazioni
è praticamente la stessa, ma ha particolare importanza la descrizione del
passaggio del positrone attraverso le barrette del TOFO.

4.4.4 L’hit sulle barrette esterne

Quando il positrone colpisce il sistema esterno dei contatori a scintillazione,
una delle grandezze più significative da registrare è quella relativa agli angoli
d’impatto. Infatti lo studio che abbiamo fatto degli angoli d’impatto sulle
barrette esterne ha determinato la modifica progetto iniziale sulla configura-
zione dei TCO. Come spiegato al § 3.3.3, a pagina 53, questo prevedeva delle
barrette longitudinali non ruotate, come mostrato anche nella figura 3.12.
Risulta evidente, però, che se queste sono ruotate di un angolo tale che
la traccia le attraversi perpendicolarmente, ne avrebbe giovamento tutto il
sistema di acquisizione del timing del positrone. Infatti, quando la traccia
attraversa la barretta in direzione perpendicolare, la sua lunghezza all’interno
è minima e ciò produce un lampo di luce molto netto, stretto nel tempo:
proprio ciò che è richiesto per una buona risoluzione temporale. Se invece
la traiettoria procede in modo obliquo nella barretta, la sua lunghezza di
attraversamento è più lunga e la luce di scintillazione presenta un’intensità
con delle code altrettanto lunghe, impoverendo così la risoluzione del timimg.

Alcune delle nostre simulazioni hanno avuto lo scopo di studiare gli
angoli d’impatto in funzione dell’angolo di rotazione delle barrette attorno
al proprio asse. Ciò che si è cercato di determinare è il valore di tale angolo
in modo che il maggior numero di eventi attraversi le barrette quanto più
verticalmente. Alcuni risultati sono riportati nel capitolo successivo.

Un’altra informazione che registriamo è quella che riguarda la prima e
l’ultima delle barrette colpite consecutivamente in un singolo giro.12 Nel MC
le barrette sono identificate con un numero, da 1 a Nbar, in senso orario,13

come indicato schematicamente nella figura 4.14. Allorché una barretta
è colpita, possiamo verificare nel programma se è la prima per l’evento
corrente. In caso affermativo ne memorizziamo l’indice, ibF (F, first). Se
invece ci sono state altre barrette attraversate dalla traccia, conserviamo
l’indice, ibL (L, last), di quella raggiunta attualmente solo se è la consecutiva
all’ultima colpita. Consideriamo l’esempio illustrato nella figura 4.14. Quando
la traiettoria colpisce la barretta A, non ce ne sono altre attraversate prima,
per cui ibF = ibar. La barretta B è colpita solo dopo che è stata attraversata
la A, e ne è la consecutiva, ibar + 1, così ibL = ibar + 1. La stessa cosa vale
per la barretta C rispetto alla B, cioè possiamo assumere ibL = ibar + 2.

12 Risulta evidente che se la traccia compie più giri, la stessa barretta può essere colpita più volte:
il programma non considera questi casi.

13 Non è casuale che le barrette siano numerate in questo verso: se si tiene conto di come è fatto il
magnete e quindi l’orientazione del campo magnetico, ci si rende conto facilmente che questo è
anche il verso in cui spiralizzano, normalmente, i positroni.
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Figura 4.14: Barrette colpite consecutivamente

Quando viene raggiunta la barretta D, questa non è la consecutiva della C
(2 ̸= ibar + 3), per cui non si può aggiornare l’indice, ibL, dell’ultima barretta
colpita, il quale rimane così al valore ibar + 2. Quindi avremo, per l’evento
considerato nell’esempio, che il numero di barrette colpite consecutivamente
è

ibL − ibF + 1 = (ibar + 2) − ibar + 1 = 3.

In conclusione, il MC ci fornisce il numero, ibL − ibF +1, delle barrette consecu-
tive attraversate dalla traccia. Ciò ci ha permesso di effettuare un’analisi delle
efficienze di rivelazione, i cui risultati sono riportati nel capitolo successivo.

4.4.5 L’output dell’elaborazione

Dopo aver completato l’elaborazione dell’evento e prima di passare a quella
del successivo (se ancora ce ne sono) è necessario mostrare i risultati che essa
ha prodotto. In generale, a meno che non si sia attivato il sistema grafico per
disegnare la traiettoria risultante e l’apparato, i risultati vengono memorizzati
in appositi file su disco per una successiva analisi con programmi specifici,
quali PAW o ROOT [Brun et al., 2008; Couet e Goossens, 1999]. In GEANT queste
azioni vengono attuate dall’utente per mezzo della routine GUOUT, chiamata
alla fine dell’elaborazione dell’evento corrente. Nel nostro MC, GUOUT esegue
fondamentalmente tre compiti principali, e cioè:

• salva una parte dei dati in un file, chiamato il file degli eventi, che è
quello utilizzato dal programma di RC;

• memorizza un’altra parte di dati nel file delle ntuple, utilizzato da PAW
per un analisi dei risultati;

• disegna le traiettorie delle particelle generate per l’evento corrente e
alcune parti del rivelatore.

Per quanto riguarda l’ultimo punto, dobbiamo dire che, normalmente ri-
chiediamo il plot degli eventi solo per ragioni di debugging e, per così dire,
didattiche. Inoltre, quando richiediamo l’output grafico, impostiamo i dati in
input in modo che il programma generi solo pochi eventi (∼ 100), altrimenti
l’esecuzione sottrarrebbe, inutilmente, risorse per l’elaborazione numerica.
Alcuni esempi di eventi generati dal MC sono riportati nelle figure 4.15 e 4.16.
In esse le linee di colore rosso indicano le traiettorie dei positroni; in blue, e
tratteggiate, quelle dei fotoni. I cerchietti di colore magenta, rosso e blue si
riferiscono, rispettivamente, agli hit con il sistema delle camere a drift, quello
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Figura 4.15: Un decadimento µ→ eγ

delle strisce in ϕ (TCI) e le barrette esterne (TCO). Nella figura 4.15, oltre alla
traccia del fotone prodotto (back to back con quella del positrone), si notano
pure diversi secondari, prevalentemente γ di bremsstrahlung, ma in qualche
caso, forse, annichilazione e compton.

Più articolata è la questione del salvataggio dei dati da utilizzare successi-
vamente.

Nel caso delle informazioni necessarie al programma di RC, queste consi-
stono prevalentemente nelle coordinate degli hit con le camere. Per testare
poi l’efficacia della nostra ricostruzione sarà necessario passare anche le
coordinate del vertice di decadimento, impulso iniziale ecc., in modo da
poter effettuare un confronto con le corrispondenti grandezze ricostruite.
Tutto ciò non richiede una particolare struttura del file degli eventi, e i dati vi
si possono memorizzare in formato libero, che qualunque altro programma
può facilmente interpretare.

Diverso è il caso dei dati che dovranno essere analizzati con PAW. In questo
caso non è necessario memorizzare, ad esempio, tutte le coordinate degli hit
sulle camere o nelle barrette. Se la traccia compie più giri, è evidente che un
singolo elemento del rivelatore può essere colpito più volte. Non avrebbe
senso memorizzare tutte queste informazioni, ma conservare il primo o al più
il secondo degli hit per componente è sufficiente. Oltre a ciò, la struttura dati
deve essere organizzata in modo che sia interpretabile da PAW. Normalmente
le informazioni che sono analizzate da PAW vengono strutturate in ntuple:
in sintesi per ogni evento è come se fosse definito un array i cui elementi
sono le grandezze che si vogliono elaborare per quell’evento. Nel nostro caso,
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Figura 4.16: Traccia di un positrone di Michel

oltre alle grandezze che costituiscono l’hit,14 e a cui si è fatto cenno al § 4.4.1,
a pagina 77, per ogni evento, l’ntupla memorizza il numero dell’evento, il
vertice, la quantità di moto, gli indici (ibF e ibL) della prima e dell’ultima
delle barrette colpite (lo stesso per le camere e le strisce interne) e così via,
per un totale di oltre 100 grandezze.

Va precisato che, per conseguire quanto descritto finora, il MC necessita,
proprio tramite GUOUT, di rielaborare tutte le informazioni registrate nella fase
di tracking. Infatti queste si trovano, diciamo per semplificare, in tre aree di
memoria distinte, corrispondenti alla suddivisione di tutto il rivelatore nei tre
componenti principali descritti precedentemente (§ 4.4.1, pag. 77). Si intuisce
che in ciascuno dei tre gruppi, gli hit sono ordinati cronologicamente, ma
non è detto che ci sia una relazione di ordinamento temporale tra gli hit
di un gruppo con quelli di un altro, come è mostrato, per esempio, nella
figura 4.15: la traccia prima attraversa le camere (hit in colore magenta),
poi attraversa qualche striscia interna (hit in colore rosso), successivamente
colpisce qualche barretta esterna (hit in colore blue), di nuovo qualche striscia
e ancora qualche barretta. Quindi il programma riordina cronologicamente
gli hit di tutti i gruppi in modo che, per ogni evento, si abbia l’esatta sequenza
di hit, e gli assegna un codice identificativo così da poter sempre identificare
dove essi si sono prodotti. Tutto ciò rende più semplice ricostruire la storia
dell’evento (anche per fini di debugging) e facilita la redistribuzione delle
informazioni tra il file degli eventi e quello delle ntuple.

14 In effetti vengono utilizzati i primi due hit.



86 simulazione dello spettrometro cobra

4.5 il programma di ricostruzione

Come il MC, anche il programma di RC è scritto in FORTRAN. Poiché si tratta,
fondamentalmente, di un programma per la ricerca dei minimi di funzioni,
anziché scrivere dei nostri sottoprogrammi allo scopo, abbiamo preferito
utilizzare quelli di librerie già consolidate quali MINUIT [James, 1998]. Questa
libreria fa parte del gruppo più ampio di CERNLIB ed è stata concepita per
trovare il minimo di funzioni multi-parametriche.

Breve introduzione a MINUIT

Una vasta classe di problemi, in differenti aree di ricerca, possono essere
ricondotti al problema di trovare il più piccolo valore che una funzione, di-
pendente da uno o più parametri, può assumere. L’esempio più noto è quello
della stima dei parametri sconosciuti di una teoria scientifica attraverso la
minimizzazione della differenza (il chi-quadrato) tra teoria e dati sperimentali.
La teoria può essere idealmente rappresentata da una funzione f(α), in cui
α = (α1, . . . ,αN) sono i parametri sconosciuti.

Non è necessario conoscere la funzione f(α) analiticamente, ma è sufficien-
te avere un metodo per poter calcolare ogni suo valore in corrispondenza
di qualunque punto α dello spazio dei parametri. Se tale spazio è limitato da
restrizioni fisiche, abbiamo quello che è noto come problema di minimo condi-
zionato. In certi casi può essere utile fornire qualche informazione aggiuntiva,
come i valori numerici delle derivate ∂f/∂α (il gradiente) in ogni punto α

dello spazio parametrico, oppure le espressioni analitiche per calcolarle. La
minimizzazione viene sempre eseguita calcolando f(α) ripetutamente in pun-
ti differenti così come sono determinati dall’algoritmo di minimizzazione,
fino a che si raggiunge qualche minimo.

In questo caso, l’utente può sentire la necessità di avere un’idea della
soluzione che ha trovato. Per esempio, quanto rapidamente cresce la funzione
f(α) allontanandosi dal minimo, αmin. Questa è la fase che i fisici chiamano
analisi dell’errore.

Una complicazione nella ricerca del minimo è costituita dal caso in cui
la funzione presenta più di un minimo (i cosiddetti minimi locali). In questa
situazione l’utente deve decidere se è necessario conoscere la posizione di
ogni minimo o se è sufficiente la conoscenza di quello globale.

La libreria MINUIT è un sistema di sottoprogrammi in grado di risolvere i
problemi sopra delineati. In linea di principio, MINUIT è stato progettato per
gestire qualunque funzione f(α) e può soddisfare le esigenze degli utenti
più disparati. Risulta evidente che se un utente lavora spesso con una classe
molto ristretta di funzioni, è probabile che scrivendo delle routine specifiche
per il suo problema, il processo di minimizzazione risulti più rapido ed
efficace. Anche in questo caso, però, MINUIT offre un valido ambiente in cui
l’utente può inserire le proprie routine.

All’utente normale MINUIT consente, con un unico programma, di affrontare
la minimizzazione di funzioni di diverso genere. Infatti la libreria mette a
disposizione fondamentalmente tre routine di minimizzazione: SEEK, SIMPLX
e MIGRAD. Esse possono essere caratterizzate sinteticamente come segue:

• SEEK, è una routine che ricerca il minimo con metodi di Monte Carlo.
Essa può essere utilizzata all’inizio di un fit, quando non si ha una
sufficiente conoscenza di un buon punto di partenza. Anche quando si
sospetta che ci possa essere più di un minimo è utile impiegare questa
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routine. Non ci si deve aspettare, comunque, che ci sia una convergenza
nel senso classico.

• SIMPLX, è una routine di minimizzazione che utilizza il metodo del
simplesso [Nelder e Mead, 1965].15 Si tratta di un algoritmo molto sicuro
e abbastanza rapido anche quando si è lontani dal minimo. Può essere
usato per la convergenza verso il minimo esatto. Fornisce le stime degli
ordini di grandezza sugli errori dei parametri.

• MIGRAD, è un sottoprogramma per la minimizzazione basato sul cosid-
detto metodo a metrica variabile [Fletcher, 1970]. Il procedimento è molto
veloce in prossimità del minimo o in ogni regione in cui la funzione ha
andamento quasi-quadratico; se però la funzione ha un comportamento
irregolare il metodo è estremamente lento. Esso utilizza le derivate
prime della funzione, le quali sono fornite dall’utente o stimate da
MINUIT.

Nella libreria è codificato anche qualche automatismo, nel senso che, se ad
esempio per qualche ragione MIGRAD fallisce, allora viene chiamata la routine
SIMPLX per compiere un ulteriore tentativo. Oltre a ciò, è possibile guidare
la minimizzazione o articolarla in più step attraverso l’uso dei comandi FIX,
RELEASE e RESTORE i quali permettono che un parametro variabile possa
essere mantenuto fisso ad un certo valore oppure che riacquisti lo status
variabile tra uno step e l’altro. Si può anche forzare un parametro libero a
variare entro un dato intervallo durante la minimizzazione.

Nei fit che abbiamo eseguito con il programma di RC e che saranno descritti
nelle pagine che seguono, il nostro metodo è stato quello di utilizzare in un
primo tempo SIMPLX per localizzare il minimo, e poi di rifinire la ricerca con
MIGRAD.

4.5.1 Strategia della ricostruzione

Lo scopo principale del nostro programma di RC è quello di ricostruire
le coordinate V = (xV,yV, zV) del vertice del decadimento del muone e
l’impulso, pe, del positrone negli eventi µ → eγ. Per fare questo utilizza i
dati forniti dal MC. Da essi si ricavano le coordinate spazio-temporali dei punti
di intersezione della traccia con le camere (hit). Questi punti li possiamo
chiamare i punti misurati o sperimentali, P(m)

i = (xi,yi, zi, ti), i = 1, . . . ,Nhit.
Il problema è quello di determinare V e pe in modo che la corrispondente
traiettoria sia la migliore passante per tali punti (best fit). Ciò si ottiene
ricorrendo alla tecnica dei minimi quadrati [Eadie et al., 1971].16

La complicazione è che non abbiamo un modello analitico della traiettoria.
Infatti il nostro campo è a gradiente e tutto quello che possiamo fare è una
stima dei nostri parametri e generare una traccia integrando numericamente
le equazioni del moto. La traiettoria così generata, incontrerà le camere nei
punti P(t)

i = (ξi,ηi, ζi, τi) che possiamo chiamare i punti teorici o aspettati,
con i quali si può costruire lo scarto quadratico totale

χ2(V ,pe) ≈
∑
i

[(xi − ξi)
2 + (yi − ηi)

2 + (zi − ζi)
2].

15 Il simplesso in uno spazio n-dimensionale è un politopo con il minor numero di vertici: un punto
nello spazio a dimensione zero, un triangolo nel caso bidimensionale, un tetraedro in quello
tridimensionale e così via. Il politopo è l’evoluzione della definizione di poligono o poliedro
applicata allo spazio n-dimensionale.

16 Tale tecnica è stata inventata nel 1801 da C. F. Gauss per calcolare l’orbita di Cerere, il pianetino
scoperto il 1

o Gennaio 1801 dall’abate Piazzi [Gauss, 1874].
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Al variare di V e pe varierà anche χ2, per cui le nostre grandezze ricostruite,
Vrec e prec

e , saranno quelle che determineranno il minimo di χ2,

χ2(V ,pe) ⩾ χ
2(Vrec,prec

e ).

La traccia relativa sarà quella che meglio approssima i punti sperimentali,
P
(m)
i . I paragrafi che seguono sono dedicati ad illustrare come il programma

di RC sviluppa questa strategia.

4.5.2 Inizializzazione

Il programma ha una fase di inizializzazione generale in cui:

• carica in memoria la mappa del campo magnetico necessaria per
generare la traiettoria;

• acquisisce i dati sulla geometria delle camere e del sistema del TOF;
prevalentemente il programma di RC deve conoscere lo spazio occu-
pato radialmente e in z di questi oggetti, così da poter determinare le
intersezioni della traiettoria con essi;

• inizializza le strutture dati necessarie per memorizzare i risultati, in
particolare le grandezze ricostruite per ogni evento.

Bisogna precisare che, contrariamente al MC, qui si usa una stilizzazione piana
per le camere e cilindrica per i TC.

Successivamente passa ad acquisire i dati forniti dal MC. Questi consistono
soprattutto nelle coordinate degli hit con le camere e i tempi d’impatto in
cui si sono verificati.

Come abbiamo visto, gli elementi sensibili delle camere sono le celle
AGAL descritte in precedenza (§ 4.4.1, pag. 71). Quando la traccia attraversa
un singolo settore del sistema delle camere, ognuna delle celle sfalsate
produce un hit. Quindi l’hit con una camera consiste in realtà in una coppia
di punti i quali, dopo essere stati acquisiti dal programma di RC, sono
sostituiti dal valor medio: questo sarà il punto misurato, P(m)

i , utilizzato nel
fit. Naturalmente tra gli eventi del MC ce ne sarà sempre qualcuno che colpirà
di striscio le camere producendo un hit in una sola cella: un tale hit viene
semplicemente ignorato; non l’evento, però, che potrebbe fornire hit utili
sulle altre camere (per esempio, la traccia potrebbe colpire pienamente le
prime camere e di striscio l’ultima: i primi hit sarebbero sempre utili, in ogni
caso).

Poiché il campo magnetico non è omogeneo, la traccia non è un elica, al più
la possiamo considerare come un’elica distorta, sia nel passo che nel raggio
di curvatura. Indubbiamente però il tratto di traccia corrispondente al primo
giro è quello che più si può considerare un elica, e per una stima iniziale dei
parametri da ricostruire, si utilizzerà proprio tale approssimazione. Quindi il
fit sarà eseguito utilizzando solo gli hit del primo giro della traiettoria.

Se Ntot e N1g indicano, rispettivamente, il numero di hit totali e quelli
corrispondenti al primo giro, è evidente che l’intervallo di tempo ∆ti =

ti − ti−1, i = 2, . . . ,N1g, tra due hit consecutivi del primo giro è inferiore
all’intervallo tra l’ultimo hit, tN1g , e il primo del secondo giro, tN1g+1,

∆ti ≪ ∆tN1g+1 = tN1g+1 − tN1g

Questo ci permette di filtrare gli hit sulle camere e utilizzare solo quelli del
primo giro.
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Figura 4.17: Il fit per determinare C = (xC,yC) e RC

4.5.3 Ricostruzione

A questo punto può iniziare la fase di ricostruzione dell’evento vera e propria.
Come abbiamo detto questa consiste nel minimizzare lo scarto totale tra gli hit
misurati e quelli teorici. Qui non vogliamo sviluppare la trattazione completa
della ricerca dei minimi (che si può approfondire in appositi testi [Press et al.,
1992] e a cui, tra l’altro, abbiamo già fatto cenno), ma vogliamo accennare
brevemente alla problematica di base.

In generale nella ricerca del minimo di una funzione è necessario avere
un punto di partenza che inneschi il procedimento. Ad esempio, se è possi-
bile calcolare il gradiente, cioè la direzione in cui la funzione cresce, allora,
muovendosi in direzione opposta è possibile, a passi successivi, raggiungere il
minimo. Il problema, però, è che se il punto di partenza non è sufficiente-
mente vicino al minimo c’è il rischio che tutto il procedimento fallisca, non
converga, oppure che converga verso un altro minimo, non quello cercato
(se, per esempio, la funzione ha più minimi).

Questo ci fa comprendere che per avere una buona garanzia che il procedi-
mento di ricerca del minimo abbia successo è bene avere una buona stima
dei parametri da ricostruire. Nel caso nostro, i parametri da ricostruire sono
5, e cioè:

• la quantità di moto assoluta del positrone, p = |pe|;

• l’angolo λ (dip angle) che l’impulso pe del positrone forma con il
piano XY; λ è il complementare dell’angolo polare θ, λ+ θ = π/2; la
componente trasversa dell’impulso pT si esprime tramite p e λ con
pT = p cos λ;

• l’angolo azimutale ϕp dell’impulso del positrone;

• le coordinate sul piano XY, xV e yV, del vertice di decadimento; poiché il
decadimento avviene nella targhetta, e questa è molto sottile (∼ 100µm)
ed inclinata di 22° rispetto all’asse Z, la coordinata zV del vertice non è
indipendente, cioè xV = zV tan 22°, oppure zV = xV cotg 22°.

Per poter stimare questi parametri, faremo l’ipotesi che l’arco di traiettoria
corrispondente al primo giro sia quello di un’elica con asse parallelo all’asse
Z.
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Figura 4.18: Il fit per determinare d0 ≡ tan λ e z0

Ricostruzione dell’elica

Con l’ipotesi citata, la proiezione dell’elica sul piano trasverso, XY, è un
circonferenza il cui centro lo indichiamo con C = (xC,yC), e il cui raggio
con RC. Essa è rappresentata schematicamente nella figura 4.17. I parametri
di questa circonferenza possono essere determinati con un best fit dei punti
P
(m)
Ti = (xi,yi), i = 1, . . . ,N1g, che sono la proiezione sul piano trasverso

degli hit misurati. Se indichiamo con ϕi la loro coordinata angolare riferita ad
un sistema di assi cartesiani la cui origine è nel centro C della circonferenza,
i parametri cercati sono quelli che minimizzano la funzione

f(xC,yC,RC) =
∑
i

[(xi − ξCi)
2 + (yi − ηCi)

2],

in cui

ξCi = xC + RC cosϕi ηCi = yC + RC sinϕi

sono le coordinate dei punti teorici, Qi, sulla circonferenza (fig. 4.17). Per
poter inizializzare il procedimento di fit, abbiamo bisogno delle stime dei
valori iniziali di xC, yC e RC. Per ottenere ciò, dobbiamo immaginare il
processo di fit come una circonferenza che si muove nel piano XY variando
il suo raggio finché la funzione scritta sopra non assume il valore minimo.
Allora possiamo considerare una circonferenza iniziale centrata nell’origine
del nostro sistema di riferimento (cioè con x(0)C = y

(0)
C = 0) e con raggio

iniziale uguale a quello della traiettoria di un positrone con impulso di
52.8MeV/c che si muove in un campo magnetico di intensità B0 = 1.26 T ,17

cioè

R
(0)
C ≈ p(MeV/c)

3 ·B0(T)
≈ 15 cm.

L’acquisizione di (xC,yC,RC) ci permette di calcolare rmax, la distanza radiale
massima che l’elica ha dall’asse Z. Questo dato ci tornerà utile per le stime
di d0 ≡ tan λ e p.

Sempre nell’ipotesi di poter approssimare la traccia con un arco di elica
al primo giro, possiamo immaginare di srotolarla, ottenendo come noto una
linea retta. Questo è riportato nella figura 4.18, in cui s = RCϕ è l’ascissa

17 Come si ricorderà (§ 3.3, pag. 47) questo valore è quello del nostro campo nell’origine del
sistema di riferimento.
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curvilinea sulla circonferenza (ϕ è l’angolo di rivoluzione attorno all’asse).
L’equazione dell’elica, in questa rappresentazione, è semplicemente

z(s) = z0 + tan λ · s = z0 + d0s.

Per determinare i parametri (z0, d0) di questa equazione è sufficiente un fit
lineare. In questo caso possiamo assumere come valore iniziale z(0)0 = 0, men-
tre per d0 possiamo procedere come segue. Se il campo fosse rigorosamente
uniforme, il punto alla distanza

rmax ≡
√
(xC)2 + (yC)2 + RC (12)

sarebbe diametralmente opposto al punto iniziale V dell’elica (il punto Qmax
della figura 4.17), cioè s(rmax) corrisponde a metà circonferenza, πRC. Per cui
indicando con z(rmax) la coordinata z del punto più distante da Z si avrebbe

z(rmax) − z
(0)
0 = d

(0)
0 s(rmax) = d

(0)
0 πRC,

e poiché stiamo assumendo z(0)0 = 0, si ha

d
(0)
0 =

z(rmax)

πRC
.

Per z(rmax) si può assumere la coordinata z dell’hit più distante dall’asse Z.
Il calcolo di (z0, d0) ci consente di assumere z(0)V = z0 e λ(0) = arctand0,

mentre il fatto che la coordinata xV del nostro vertice è legata a zV da
xV = zV tan 22°, ci permette di avere anche la sua stima corrispondente. Per
yV, invece, possiamo assumere il valore y(0)V = 0, dato che in ogni caso, viste
le dimensioni della targhetta (4 cm in y), la traccia ha origine in prossimità
dell’origine.

Con la determinazione dei parametri fin qui fatta, possiamo calcolare
anche la stima per ϕp. Infatti, poiché ϕp è l’angolo ϕ di pT nel vertice V ,
esso è semplicemente l’angolo ϕC, del centro della circonferenza, aumentato
di π/2 (basta osservare la figura 4.17 per rendersene conto). In sintesi,

ϕ
(0)
p ≡ ϕC +

π

2

ϕC = arctan

(
yC − y

(0)
V

xC − x
(0)
V

)
.

La stima dell’impulso

Rimane da stimare p, la quantità di moto assoluta del positrone. In questo
caso ricorriamo a due principi fisici: la conservazione del momento angolare
generalizzato e l’invarianza adiabatica.

Nel primo caso, si può dimostrare che per una particella di carica q in
moto in un campo magnetico a simmetria assiale,18 il momento angolare
generalizzato è conservato, cioè

(ρ∧P)z = pTr sinα+ qrAϕ = cost., (13)

18 Per un approfondimento si può consultare il Cern Yellow Report 81-06 [Eichinger e Regler, 1981]
e [Birsa et al., 1977]
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Figura 4.19: Moto in un campo a simmetria assiale

dove abbiamo indicato, rispettivamente, con ρ = (x,y, z) e r = |r|, il raggio
vettore e la distanza radiale dall’asse Z, di un punto Q(x,y, z) della traiet-
toria; P = pe + qA è la quantità di moto generalizzata; α è l’angolo tra la
componente trasversa dell’impulso, pT, e la linea radiale r = (x,y, 0); Aϕ
è la componente cilindrica del potenziale vettore.19 Introducendo l’angolo
azimutale ϕ di Q, e quello ϕ ′ di pT, possiamo scrivere

ρ = (r cosϕ, r sinϕ, z)

pe = (pT cosϕ ′,pT sinϕ ′,p sin λ)

A = (−Aϕ sinϕ,Aϕ cosϕ, 0),

con |A| = Aϕ (le linee di flusso di A sono circonferenze concentriche
con l’asse Z) e ϕ ′ − ϕ ≡ α. Alcune di queste grandezze sono illustrate
schematicamente nella figura 4.19.

Per quanto riguarda l’invarianza adiabatica, invece, si può dimostrare che
per una variazione lenta delle condizioni del moto (stiamo assumendo un
arco di elica nel primo giro), gli invarianti adiabatici restano costanti [Landau
e Lifshitz, 1978a], cioè

I =
p2T
B

= cost. (14)

Applicando le equazioni (13) e (14) al punto iniziale, Q0 ≡ V , e a quello
diametralmente opposto, Qmax, della traccia,20 possiamo scrivere(

pTr sinα+ qrAϕ
)
0
=
(
pTr sinα+ qrAϕ

)
max(

p2T
B

)
0

=

(
p2T
B

)
max

.

Risolvendo rispetto a pT0, e tenendo conto che αmax = 90°, otteniamo

pT0 =
−q(rmaxAϕ(rmax) − r0Aϕ0)√

B(rmax)

B0
rmax − r0 sinα0

(15)

19 In generale, in coordinate cilindriche [Amaldi et al., 1986], vale A = (Ar,Aϕ,Az); nel nostro
caso il campo è tale che Ar =Az = 0.

20 Cioè quello alla distanza rmax!
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da cui si ricava p(0) = pT0/ cos λ(0).
A questo punto si potrebbe obiettare come mai si è utilizzato il valore

90° per αmax ma non per α0. Infatti la componente trasversa dell’impulso
è ortogonale alla linea radiale sia nel punto iniziale, V , che in quello a
distanza massima, Qmax. Prima di tutto non dobbiamo dimenticare che
stiamo cercando i valori dei nostri parametri per inizializzare il fit. In base
alla nostra definizione di α, abbiamo

α(r0) ≡ α0 = ϕ ′(r0) −ϕ(r0) = ϕ
(0)
p −ϕ(r0)

ϕ(r0) = arccos

(
x
(0)
V
r0

)
, r0 =

√
(x

(0)
V )2 + (y

(0)
V )2

Risulta evidente che, quanto più le nostre stime di ϕ(0)
p e (x(0)V , y(0)V ) risul-

teranno buone tanto più il valore di α0 sarà prossimo a 90°. Oltre a ciò,
dobbiamo fare anche un’altra considerazione. La nostra ipotesi che l’arco
di traiettoria nel primo giro sia un’elica, e quindi che la sua proiezione
sul piano trasverso sia una circonferenza, è vera solo approssimativamente.
Infatti basta guardare la figura 4.15 per rendersi conto che la proiezione della
traccia è leggermente schiacciata, per cui se l’impulso trasverso è con buona
approssimazione ortogonale alla linea radiale nel punto più distante dall’asse
Z, l’ortogonalità è un po’ più scarsa nel punto iniziale.

Come si vede nella formula (15) compare il potenziale vettore, Aϕ. Quindi
abbiamo bisogno anche della mappa di tale campo. In realtà questa può
essere dedotta da quella del campo magnetico B. Infatti esprimendo la
definizione B = rotA in coordinate cilindriche [Amaldi et al., 1986] e tenendo
conto della simmetria cilindrica del nostro campo (nota 19, a pagina 92),
abbiamo

Br(r, z) = −
∂Aϕ(r, z)

∂z
, Bz(r, z) =

1

r

∂rAϕ(r, z)
∂r

,

da cui con banali integrazioni si ricava Aϕ,

Aϕ(r, z) = Aϕ(r, 0) −
∫z
0
Br(r, z ′)dz ′

Aϕ(r, 0) =
1

r

∫r
0
r ′Bz(r

′, 0)dr ′.
(16)

Poiché Br e Bz sono le nostre mappe calcolate nei nodi di un reticolo dr×dz,
gli integrali possono essere calcolati numericamente: ad esempio, con il
metodo dei rettangoli o con quello dei trapezi.21

4.5.4 Il fit della traccia

A questo punto abbiamo i valori di V e pe per avviare il processo di fit
della traccia. Come già detto, si tratta di minimizzare lo scarto totale tra i

21 Considerando che il potenziale vettore ci serve solo per delle stime, sarebbe illusorio calcolarlo
con una precisione maggiore, per esempio con lo stesso metodo con cui abbiamo calcolato le
mappe per B, e descritto nell’appendice A.
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Figura 4.20: Inclinazione della traccia con la dimensione trasversa delle
camera

punti misurati e quelli teorici. Per la precisione la funzione che il programma
minimizza è la seguente

χ2(V ,pe) =
∑
i


(
r
(m)
i − r

(t)
i (V ,pe)

)2
σ2r +

(
σT

cos δr

)2 +

(
z
(m)
i − z

(t)
i (V ,pe)

)2
σ2z +

(
σT

cos δz

)2
 , (17)

dove r(m)
i =

√
x2i + y

2
i , r(t)

i =
√
ξ2i + η

2
i e z(t)

i ≡ ζi, i = 1, . . . ,N1g. Si tratta
di una funzione tipo chi-quadrato in cui gli scarti sono pesati con le incertezze
di misura, cioè le risoluzioni (dell’ordine di 100µm) a cui abbiamo fatto
riferimento nel § 3.3.2, a pagina 52. Nella precedente espressione si tiene
conto anche del fatto che la traccia, come riportato sommariamente nella
figura 4.20, attraversa le camere con una certa inclinazione, δr e δz. Questi
angoli sono determinati nella fase di calcolo della traiettoria la quale è
ottenuta per punti integrando numericamente le equazioni del moto:

dρ

ds
=

p

p
dp

ds
= C00

p

p
∧B,

dove s (in cm) è la lunghezza dell’arco di traiettoria, p (in MeV/c) è la
quantità di moto del positrone (p ≡ |p|), ρ ≡ (x,y, z) sono le coordinate
spaziali (in cm) della stessa particella, B ≡ B(x,y, z) è il campo magnetico (in
T ) e C00 = 2.99792458 è la carica elettrica del positrone espressa nelle unità di
misura (MeV/c) cm−1 T−1 [Eichinger e Regler, 1981].22 Il metodo utilizzato
è quello del 4

o ordine di Runge-Kutta [Press et al., 1992]: esso produce i
punti Q0,Q1, . . . Qk, . . . della traccia, che risulta così una linea spezzata i cui
segmenti hanno lunghezza ∆s (il passo d’integrazione). Quando uno di tali
segmenti attraversa una camera ne viene calcolata l’intersezione assumendo
per quella la forma stilizzata di un piano (il piano mediano). Il punto così
trovato non è altro che uno degli hit teorici (r(t)

i , z(t)
i ,) che entrano nel χ2 da

minimizzare.
Le proiezioni, ∆sr e ∆sz, del segmento permettono, invece, di calcolare

l’inclinazione della traccia. Infatti, se indichiamo con ϕi l’angolo azimutale
dell’i-esima camera, con ϕT quello del piano trasverso T, con ϕr quello

22 Come si riconoscerà, C00 non è altro che la mantissa del valore numerico della velocità della
luce nel vuoto, c, così come espresso nel Sistema Internazionale (SI).
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della proiezione ∆sr e con Qk−1 = (ξk−1,ηk−1, ζk−1), Qk = (ξk,ηk, ζk) gli
estremi del segmento ∆s, abbiamo δr ≡ ϕr −ϕT, con ϕT = ϕi − π/2 e

ϕr = arctan
(
ηk − ηk−1
ξk − ξk−1

)
.

Nel caso di δz, molto più semplicemente abbiamo

ζk − ζk−1 ≡ ∆sz sin δz.

Se la traccia non è eccessivamente inclinata possiamo usare anche l’approssi-
mazione ∆sz ≈ ∆s.

Alla fine del processo di fit, abbiamo per l’evento dato i valori Vrec e prec
e

che determinano la miglior traccia passante per i punti generati dal MC.
Con questa traccia possiamo determinare il tempo d’impatto sui contatori
a scintillazione. Questo si può fare calcolando le intersezioni della traccia
così ricostruita con le barrette. Se però utilizzassimo la configurazione delle
barrette ruotate, gli algoritmi necessari allungherebbero eccessivamente i
tempi di esecuzione del programma. Se vogliamo testare le capacità di
ricostruzione del nostro programma basta eseguire un run del MC con la
configurazione classica delle barrette, cioè con angolo di rotazione γ = 0.
A questo punto il programma di RC può determinare le intersezioni della
traiettoria con la stilizzazione di una superficie d’impatto cilindrica per le
barrette.

4.5.5 L’output della ricostruzione

Dopo il fit della traiettoria, come discusso fin qui, si può considerare conclusa
la fase di ricostruzione dell’evento corrente. Come per il MC, i dati di questa
elaborazione sono organizzati in ntuple (§ 4.4.5, pag. 83), le quali vengono
salvate in un file per una successiva analisi con PAW [Couet e Goossens,
1999]. Per ogni evento, oltre alle ovvie grandezze ricostruite (p, λ, ϕ, . . . )
e le analoghe generate dal MC, l’ntupla ne contiene anche altre aggiuntive,
quali il minimo che la funzione (17) ha in corrispondenza delle grandezze
ricostruite e il numero di hit nel primo giro, N1g. In totale, l’ntupla di ciascun
evento contiene oltre 30 grandezze. Una sintesi dei risultati ottenuti sarà
mostrata nel capitolo successivo.
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E quindi uscimmo a riveder le stelle.

Dante, Inferno, xxxiv 139

Per poter analizzare i file (.hbook) delle ntuple prodotti sia dal MC che
dal programma di RC è stato necessario scrivere due apposite macro (.kumac)
di PAW. Ciascuna di esse produce un file PostScript con oltre 150 pagine di
figure, costituite essenzialmente da grafici di istogrammi. In questo capitolo
vogliamo illustrare i risultati più significativi ottenuti. Essi si riferiscono ai
run eseguiti su macchine a 64 bit, dotate di sistema operativo Scientific Linux
CERN 4 (SLC4) [Cern, 2007] con compilatore FORTRAN, GNU g77 [FSF, 1999].

5.1 risultati ottenuti con il monte carlo

In tutte le simulazioni effettuate con il MC sono stati generati 105 eventi.
Alcune prove sono state fatte anche con 106 eventi ma ciò non ha portato a
differenze significative se non a stressare il sistema nella produzione di file
di grande dimensione sia in fase di esecuzione che di analisi, e conseguente
allungamento dei tempi complessivi di elaborazione. Come vedremo, per il
programma di RC il discorso è totalmente differente.

Nelle figure che mostrano i risultati del MC, come si può vedere, sono
presenti delle informazioni aggiuntive, quali in numero di camere utilizzate
nella simulazione (NDRC), quello delle barrette esterne TCO (NBAR), il loro an-
golo di rotazione (γ), la distanza radiale dei loro assi (R0), le loro dimensioni
trasverse (D, L cioè le variabili d e l dell’equazione (7)). Come si ricorderà
(§ 4.4.1, pag. 73), nel MC possiamo escludere dalla simulazione il sistema del-
le strisce TCI: la scritta TWO SLICES OF SCINTILLATOR sta ad indicare invece,
che i risultati si riferiscono ad una simulazione completa, con entrambe i
sistemi dei contatori a scintillazione (TCI+TCO).

il calcolo delle efficienze di rivelazione Come accennato al
§ 3.3.3, a pagina 53, lo scopo delle barrette esterne è quello di misurare il
tempo di volo del positrone. Quindi è naturale domandarsi quanti eventi tale
sistema è in grado di registrare (o meglio quanti eventi il nostro MC prevede
che possano essere rivelati). Questo dato è calcolato utilizzando il metodo
descritto al § 4.4.4 di pagina 82. La macro di PAW che analizza questa parte
della simulazione fa una serie di plot della grandezza ibL − ibF + 1, ognuno
dei quali si differenzia per una condizione aggiuntiva (cut nel gergo di PAW),

ibL − ibF + 1 = 1, 2, 3, . . .

cioè quanti eventi hanno 1 barretta colpita (una singola), 2 barrette consecutive
colpite (una doppia), 3 barrette consecutive colpite (una tripla) e così via.
Questo ci ha permesso di ricavare agevolmente i dati riportati nelle tabelle 5.1
e 5.2

La prima si riferisce ad eventi di Michel (µ+ → e+νeνµ). In questo caso
l’efficienza è tanto più buona quanto minore è il numero di positroni di Michel
che giungono sulle barrette. Infatti questo tipo di decadimenti costituisce

97
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Tabella 5.1: Michel isotropi (105 eventi generati)

Molteplicità N. Eventi N. Eventi (%)

1 barretta 1407 1.4
2 barrette 1565 1.6
3 barrette 906 0.9
4 barrette 185 0.2
5 barrette 18 0.0

Totale 4081 4.1

Tabella 5.2: µ+ → e+γ nell’accettanza del rivelatore (105 eventi generati)

Molteplicità N. Eventi N. Eventi (%)

1 barretta 14261 14.3
2 barrette 32225 32.2
3 barrette 34369 34.4
4 barrette 12244 12.2
5 barrette 1551 1.6

Totale 94748 94.7

una sorgente di rumore che deve essere ridotta quanto più possibile (§ 3.3,
pag. 47). Come si vede dalla tabella, l’efficienza complessiva è del 4% (almeno
1 barretta colpita) ed ha un picco, per così dire, intorno a 1.6%, quando ci
sono 2 barrette consecutive ad essere attraversate dalle tracce. Naturalmente
questi risultati dipendono dalla scelta accurata della distanza radiale R0 delle
barrette. Se fosse ridotta (ad esempio R0 = 31 cm), si avrebbe, probabilmente,
un leggero incremento dell’efficienza dei positroni provenienti dagli eventi
di segnale (µ+ → e+γ), ma peggiorerebbe quella dei decadimenti di Michel,
che pure aumenterebbero causando il corrispondente incremento di rumore.
Se invece fosse aumentata (diciamo a 33 cm), si avrebbe sicuramente un
abbassamento del rumore ma anche quello dell’efficienza di rivelazione del
segnale. Da questo punto di vista, possiamo dire che il MC ci ha permesso
di stabilire una distanza ottimale per il sistema dei TC di 32 cm. Per ridurre
l’effetto negativo dei positroni di Michel, si potrebbe anche pensare di mettere
in coincidenza 2 o 3 barrette, cioè di acquisire l’evento solo quando la traccia
attraversa 2 barrette (oppure 3). Con 3 barrette ad esempio, il rumore sarebbe
ridotto a meno dell’1%, ma purtroppo, l’efficienza sul segnale sarebbe solo
del 34%, come indicato dalla tabella 5.2!

La tabella 5.2 è relativa, invece, alle efficienze degli eventi di segnale. Come
si può constatare, l’efficienza complessiva è quasi del 95% con un picco
(34%) quando sono colpite 3 barrette consecutive. In questo caso si potrebbe
immaginare di acquisire gli eventi solo se si ha almeno una coincidenza doppia
(cut di PAW ibL − ibF + 1 ⩾ 2) oppure una tripla (ibL − ibF + 1 ⩾ 3). Infatti
è ragionevole pensare che quando una traccia attraversa 2 o più barrette
consecutive, le attraversi pienamente senza colpirle di striscio o malamente.
Ciò implicherebbe che almeno una barretta registrerebbe un segnale pulito
e, alla luce di quanto abbiamo detto al § 4.4.4 di pagina 82, si otterrebbe
un miglioramento della risoluzione sul tempo di volo del positrone. Come
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Figura 5.1: Doppie e triple coincidenze

dimostra la figura 5.1, però, l’efficienza totale con almeno le doppie scenderebbe
a circa l’80% (e potrebbe ancora essere accettabile), mentre quella delle triple
finirebbe sotto il 50% (e non avrebbe più senso usare questa coincidenza).

la verifica della curva di landau Come noto quando una parti-
cella carica attraversa uno strato di materia subisce una perdita di energia
per unità di percorso la quale, a causa delle fluttuazioni, ha una distribu-
zione caratteristica nota come curva di Landau [Landau, 1944]. Poiché il MC
calcola l’energia che il positrone perde nell’attraversare le barrette (ELOS)
e la lunghezza della traccia (SLEN) tra punto d’ingresso e quello d’uscita,
abbiamo voluto fare la verifica che, appunto, il nostro dE/dx sia distribuito
come una landau. Il risultato è mostrato nella figura 5.2 (in cui, tra l’altro,
abbiamo utilizzato solo gli eventi che hanno almeno una doppia coincidenza).
In effetti questo test è una verifica indiretta di come funziona GEANT!

il numero di giri delle tracce L’analisi del tempo d’impatto sulle
barrette, cioè del tempo di volo del positrone, ha prodotto il grafico della
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Figura 5.3: Tempo d’impatto

figura 5.3. In essa vi si notano tre picchi ben evidenti ed un quarto, quasi im-
percettibile, compreso tra 12ns e 14ns. Risulta piuttosto intuitivo affermare
che ciascuno di questi picchi corrisponde al numero di giri che la traccia com-
pie prima di colpire il sistema dei TC.1 Come è facile verificare, la separazione
tra il primo e il secondo picco si ha a 6ns, cioè gli eventi con

timp < 6ns (18)

corrispondono alle tracce che compiono solo 1 giro prima di impattare sulle
barrette. In questo caso, è ragionevole ritenere che esse siano quelle di
lunghezza minore, e che quindi i corrispondenti eventi siano tra quelli che
subiscono gli effetti più limitati di fenomeni quali il multiplo scattering.

1 Forse sarebbe più esatto dire: il numero di giri+(1/2) circa (fig. 4.15).
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la distribuzione del punto d’impatto sulle barrette Una del-
le grandezze più interessanti da analizzare è la coordinata zimp del punto
d’impatto delle tracce sul sistema esterno dei contatori a scintillazione. Que-
st’analisi non solo ci permette di stabilire la posizione ottimale lungo l’asse
Z delle barrette, ma ci consente anche di fare le considerazioni seguenti.

Come abbiamo già detto (§ 3.3.2, pag. 52), l’accettanza geometrica del-
l’apparato è definita dall’equazione (1). Qui vogliamo fissare l’attenzione su
|cos θ| < 0.35. Se il MC generasse gli eventi con un tale cos θ, essi avrebbero
la componente pz ∼ cos θ equamente ripartita tra valori positivi e negativi.
Poiché però anche il nostro spettrometro è speculare rispetto all’asse Z, le
distribuzioni dei punti d’impatto sarebbero pure simmetriche. Allora non si
ha perdita di generalità se gli eventi sono generati restringendo l’intervallo
del cos θ ai soli valori negativi. Infatti basterebbe generare un numero di
eventi doppio con il cos θ in tutto l’intervallo (−0.35, 0.35) per ottenere gli
stessi risultati.

La distribuzione di zimp che abbiamo ottenuto utilizzando solo eventi con
−0.35 < cos θ < 0 è mostrata nella figura 5.4. In essa vi si nota un fenomeno
che, probabilmente, sarebbe stato più difficile evidenziare se gli eventi fossero
stati generati con il cos θ nell’intervallo completo. Poiché gli eventi hanno
la componente pz < 0, ci aspetteremmo che i positroni spiralizzando in
verso orario (per chi guarda da z > 0 verso z < 0) procedano lungo l’asse Z
negativo, e che quindi il punto d’impatto si trovi in tale regione. In realtà,
come mostra la figura 5.4a, un limitato numero di eventi, pur avendo una
componente pz negativa, impattano nella regione z > 0! Come è possibile
che accada una cosa del genere? La nostra spiegazione è la seguente.

Tra gli eventi generati, alcuni avranno i positroni emessi quasi verticalmen-
te, cioè con il cos θ prossimo a 0, pz ≈ 0 ( p ≈ pT). Quindi, è sufficiente che
essi subiscano un modesto effetto del multiplo scattering affinché acquistino
una piccola componente pz > 0. In tal caso, allora, la traccia comincerà
a spiralizzare verso la regione z > 0. Non solo: anche il dip angle (§ 4.5.3,
pag. 89) sarà piccolo, cioè la traccia comincerà a spiralizzare con un piccolo
passo e, probabilmente, effettuerà diversi giri prima di impattare. Questo
è confermato in modo chiaro dall’analisi riportata nella figura 5.4b, in cui
abbiamo adottato la condizione (18) per selezionare gli eventi del primo giro.
Come si vede, il gruppo di eventi nella regione z > 0 viene eliminato quasi
completamente.

Se si confrontano le figure 5.4a e 5.4b, notiamo che, mentre la prima ha
un andamento quasi piatto per z < 0, la seconda presenta uno smussamento,
soprattutto verso |z| maggiori. Infatti se la traccia compie più giri, il punto
d’impatto sarà più lontano da quello in cui essa ha origine, cioè eliminare gli
eventi con le tracce che compiono più giri significa tagliare quelli che hanno
un punto d’impatto più lontano. In questo caso, come è facile verificare,
l’efficienza complessiva è intorno al 75%.

la distribuzione degli angoli d’impatto In base alle ragioni
esposte al § 4.4.4, a pagina 82, per ottenere una buona risoluzione sulla misura
del tempo di volo del positrone è molto importante che le tracce attraversino
le barrette quanto più verticalmente possibile. Nella configurazione originaria
(descritta al § 3.3.3 di pagina 53), è intuitivo ritenere che il numero degli
eventi soddisfacenti la precedente condizione sia molto limitato. Se invece
le barrette vengono ruotate opportunamente, questo numero è destinato ad
aumentare. Il problema è quale criterio adottare per fare una tale verifica.

Tenendo conto della 3-dimensionalità della traccia, abbiamo definito tre
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Figura 5.4: Coordinata z d’impatto su TCO
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Figura 5.5: Angolo d’impatto α

angoli d’impatto: α, β e θ. Ognuno di essi, in linea generale, è l’angolo che
l’impulso del positrone nel punto d’impatto o le sue proiezioni su determinati
piani, formano con la normale esterna alla barretta (l’asse XD della figura 4.12).
Le definizioni esatte sono riportate nell’appendice D, dove si danno anche le
formule con cui il MC calcola i loro coseni.

Con queste definizioni ed avendo istruito il MC per il calcolo di tali angoli,
sono state effettuate una serie di simulazioni ognuna con un angolo γ di
rotazione delle barrette diverso, e si è cercato di determinarlo in modo
che la forchetta tra impulso e normale risultasse la meno ampia possibile. I
risultati migliori sono stati ottenuti con un angolo γ = 70°. Le corrispondenti
distribuzioni degli angoli d’impatto sono riportate nelle figure 5.5, 5.6 e 5.7.
Come si vede, sono stati utilizzati solo gli eventi le cui tracce compiono
1 giro (la condizione (18)), ed il risultato migliore è quello di α, circa 8°.
Questo significa che la proiezione delle tracce sul piano trasverso attraversa
le barrette quasi verticalmente. Il fatto che non si possa ridurre il valore
di β e θ al di sotto dei 37°, dovrebbe essere abbastanza ovvio: le tracce si
muovono lungo l’asse Z e quindi presentano sempre una componente in
quella direzione, la stessa in cui sono posizionate le barrette! Con un angolo
γ = 60°, i risultati per i tre angoli d’impatto sarebbero stati peggiori di circa
1°.

la risoluzione sul tempo di volo Nel MC, in parallelo al calcolo
di ibF e ibL, come descritto al § 4.4.4 di pagina 82, eseguiamo anche quello
di ciò che potrebbe definirsi la risoluzione normalizzata sul timing. Infatti,
i contatori a scintillazione sono progettati per misurare il tempo con una
risoluzione di 105 ps (§ 3.3.3, pag. 53). Ammettiamo, allora, che tale valore
corrisponda ad un rilascio 10MeV nell’attraversamento di una barretta, cioè
che la risoluzione singola sia

∆tbi = (105 ps)
10MeV

∆Ebi(MeV)
,
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Figura 5.6: Angolo d’impatto β
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in cui ∆Ebi è l’energia rilasciata nella barretta i-esima dal positrone. Con
questa ipotesi, la risoluzione finale per il singolo evento è determinata dalle
leggi della statistica [Eadie et al., 1971],

1

(∆t)2
=

∑
i

1

(∆tbi)2
,

dove la sommatoria è estesa a tutte le barrette attraversate consecutivamente.
L’istogramma di ∆t (FWHM) è riportato nella figura 5.8. Come si vede, il
suo valore medio è intorno ai 75 ps, cioè, combinando le misure indipen-
denti delle singole barrette si otterrebbe un miglioramento della risoluzione
complessiva.
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5.2 i risultati del programma di ricostruzione

Come abbiamo accennato nel § 4.5.1, a pagina 87, il programma di RC
necessità dei dati forniti dal MC per poter essere utilizzato. A questo punto
si potrebbe pensare di adoperare i run del MC descritti fin qui anche per la
ricostruzione. In effetti, a parte la complicazione delle barrette ruotate (§ 4.5.4,
pag. 93), ciò è possibile, solo che i tempi di esecuzione del programma di RC
sarebbero estremamente lunghi. Infatti, se il MC impiega solo pochi minuti
per elaborare 105 eventi, per la ricostruzione sarebbero necessarie almeno 5h
(su macchina a 64 bit)! Da qui la necessità di eseguire dei run specifici del
MC, da usarsi in combinazione con il programma di RC, con soli 104 eventi.
Bisogna considerare che durante lo sviluppo di questi programmi, i primi
test della ricostruzione impiegavano oltre 20h per ricostruire 104 eventi!!!2

Successivamente, con l’affinamento degli algoritmi e l’eliminazione di colli di
bottiglia (ed anche con l’aumento della potenza di calcolo dei calcolatori), i
tempi di esecuzione (sempre riferiti a 104 eventi) si sono man mano abbassati,
fino ad arrivare al valore attuale di circa 30min.

L’analisi della ricostruzione è riportata nelle figure che seguono. In esse
vengono indicate alcune informazioni circa i criteri di selezione degli eventi
utilizzati per produrle. In particolare:

• NDF indica il numero di gradi di libertà del fit di ricostruzione, Number of
Degrees of Freedom (NDF). In generale NDF è la differenza tra il numero
di punti fittati e quello dei parametri del fit. Nel nostro caso dunque

NDF = N1g − 5,

perché 5 sono i nostri parametri da fittare (§ 4.5.3, pag. 89). Quin-
di, NDF > 0 nelle figure sta ad indicare che gli eventi utilizzati negli
istogrammi sono quelli le cui tracce sono state ricostruite utilizzando
almeno 5 punti (hit) delle camere.

• Naturalmente, non possiamo aspettarci che per tutti gli eventi ana-
lizzati il vertice ricostruito sia interno al bersaglio così come per gli
eventi generati: ce ne sarà sempre qualcuno che cadrà appena fuori
dal bersaglio. Nell’analisi della ricostruzione vengono utilizzati solo
gli eventi che hanno il vertice ricostruito interno al bersaglio, da qui
l’indicazione: In the target.

• Sulla base del ragionamento esposto nel punto precedente, lo stesso
criterio è stato adottato in riferimento all’impulso ricostruito: poiché il
MC genera eventi con l’impulso del positrone nell’accettanza geometrica
del rivelatore (§ 4.4.2, pag. 80), anche nel caso della ricostruzione si
utilizzano, nell’analisi, solo eventi con tale caratteristica.

• Un ulteriore affinamento dell’analisi è stato fatto utilizzando gli eventi
per i quali la funzione (17) ha un minimo inferiore a 10, χ2 < 10.

la ricostruzione del vertice e dell’impulso I risultati della rico-
struzione del vertice di decadimento del muone e dell’impulso del positrone
sono riportati nelle figure che seguono (dalla figura 5.9 alla 5.14). In ognuna
di esse è stato riportato l’istogramma della differenza tra grandezza gene-
rata e quella ricostruita (∆x = xgen − xrec,. . . ). Solo per la quantità di moto
assoluta, si è fatto il grafico di prec, visto che pgen ≡ 52.8MeV/c. In ciascun

2 Con un vecchio PENTIUM-II.
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Figura 5.9: Ricostruzione della coordinata x del vertice

caso sono stati eseguiti dei fit gaussiani per meglio determinare le risoluzioni
(FWHM) sulle grandezze ricostruite.3 Come si vede l’efficienza è del 96% e
scende all’82% con una selezione ulteriore (χ2 < 10) degli eventi.

la ricostruzione del tempo di volo Se riflettiamo sul fatto che,
nella ricostruzione, il fit delle tracce viene effettuato utilizzando solo gli
hit del primo giro, giungiamo alla conclusione che, molto probabilmente
esso sarà buono per la parte iniziale della traccia ma non altrettanto per
quella terminale sui TC. Questo ci è confermato dalla figura 5.15, in cui
riportiamo l’istogramma della grandezza ∆t = tgen − trec. In essa si nota un
forte sparpagliamento di ∆t, ed un cut a 20ns non è sufficiente ad eliminare
le code. Con un ulteriore taglio a 0.2ns, si è provato ad effettuare un fit
gaussiano i cui risultati sono mostrati nella figura 5.16. Come indica la
figura 5.17, un netto miglioramento della risoluzione si ha se invece della
gaussiana si usa una breit-wigner. Infatti questa curva ha una decrescenza
meno rapida della gaussiana e quindi riesce a rappresentare meglio le code.
Con la gaussiana, il miglioramento si ottiene se si esegue il fit utilizzando gli
eventi la cui traccia compie solo un giro prima di impattare sugli scintillatori,
ma come riporta la figura 5.18, in questo caso l’efficienza passa dal 56% al
40%.

Allo stadio attuale, cioè all’epoca in cui è stata scritta questa tesi, questo
rappresenta un grosso problema. Nel frattempo, nell’esperimento, si sta
percorrendo una strada migliorativa per la ricostruzione. Al posto di MINUIT
si sta utilizzando un Kalman Filter [Kalman, 1960], in cui si tiene conto anche
dell’informazione contenuta nelle strisce e nelle barrette del Timing Counter.

3 Il legame tra Γ , la FWHM, e σ, la deviazione standard, è ovviamente Γ = 2
√
2 ln2σ ≈ 2.35σ
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Figura 5.10: Ricostruzione della coordinata y del vertice
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Figura 5.11: Ricostruzione della coordinata z del vertice
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Figura 5.12: Ricostruzione della quantità di moto assoluta del positrone
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Figura 5.13: Ricostruzione dell’angolo λ
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Figura 5.14: Ricostruzione dell’angolo ϕ
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Figura 5.15: Ricostruzione del tempo d’impatto sui TC
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Figura 5.16: Ricostruzione del tempo d’impatto con una gaussiana
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Figura 5.17: Ricostruzione del tempo d’impatto con una breit-wigner
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Figura 5.18: Ricostruzione del tempo d’impatto con una gaussiana (1 giro)

Come abbiamo accennato al § 3.3.3 di pagina 53, il progetto del sistema
dei TC prevede di raggiungere una risoluzione di 105 ps nella misura dei
tempi. Quindi, alla luce dei nostri risultati, possiamo valutare l’effetto che
la risoluzione della nostra ricostruzione ha su quella finale. Assumendo il
nostro risultato peggiore (quello della figura 5.16), ∆trec ≈ 70 ps, abbiamo

∆tfinale =
√
(70)2 + (105)2 ≈ 126 ps

che è un risultato confrontabile con quello di progetto.

5.3 conclusioni

Nel corso delle pagine precedenti abbiamo visto che, per ottenere successo
nella misura di B(µ+ → e+γ), l’esperimento MEG deve effettuare una mi-
sura molto precisa dell’energia delle particelle coinvolte nonché della loro
coincidenza temporale e dell’angolo tra i loro impulsi.

Con il nostro MC abbiamo dimostrato che si ha un miglioramento generale
delle prestazioni del sistema se le barrette sono ruotate di un angolo di
70° attorno al loro asse. Ciò non solo comporta un incremento complessivo
di efficienza rispetto al caso piatto, ma anche una risoluzione migliore sul
tempo di volo del positrone. Infatti la rotazione delle barrette determina
un aumento del volume medio occupato dal sistema dei TC e permette che
i segnali luminosi sui fototubi siano meno sparpagliati. Inoltre con questa
modifica non si ha un peggioramento del flusso di positroni di Michel
che giungono sui contatori: esso si mantiene sempre intorno al 4%. Come
già abbiamo avuto modo di dire, questi nostri risultati hanno determinato
una modifica della geometria iniziale dei TC e l’esperimento in corso di
svolgimento presso lo PSI ha adottato la configurazione delle barrette ruotate
di 70°.

Buoni risultati si sono ottenuti anche nella ricostruzione. Infatti le riso-
luzioni che abbiamo ottenuto (∆p/p ∼ 0.7%, 10mrad su quella angolare
e qualche mm nella ricostruzione del vertice) sono molto simili a quelle
riportate nella Proposta [Mori et al., 1999] dell’esperimento e che sono poste a
fondamento per una buona riuscita di questo.
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Il punto debole, però, come abbiamo evidenziato, sono i tempi estremamen-
te lunghi per la ricostruzione dei singoli eventi (∼ 0.2 s/ev.). Nell’esperimento
reale, naturalmente, il flusso di dati da elaborare sarà molto più alto e quindi
oltre ad un incremento della potenza di calcolo sarà opportuno sviluppare
degli algoritmi che riducano notevolmente i tempi di esecuzione. Non solo.
Questi devono anche tener conto che nel fit non si potrà utilizzare solo gli
hit del primo giro della traiettoria, ma occorrerà anche qualche altro punto,
altrimenti la ricostruzione sul tempo di volo sarà estremamente difficile (vedi
considerazioni sulla ricostruzione del tempo di volo nel § 5.2, a pagina 106).
Un’idea sarebbe quella di utilizzare, oltre ai punti iniziali, anche uno più
distante come, ad esempio, quello d’impatto sui TC. Infatti questo punto
costituirebbe come un vincolo per la traccia e porterebbe sicuramente ad un
netto miglioramento nella precisione delle grandezze ricostruite.

In conclusione, le nostre simulazioni ci inducono a ritenere che l’esperi-
mento MEG ha concrete possibilità di successo e che quindi, al termine del
suo completamento, sarà data una prova concreta sulla possibilità di una
nuova Fisica oltre il Modello Standard.
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A P P E N D I C I





AI L C A M P O M A G N E T I C O

Il magnete è sostanzialmente un insieme di spire circolari coassiali, a sim-
metria cilindrica. Orientando l’asse Z come l’asse del magnete e facendo
coincidere il piano XY con il piano mediano, lo spettrometro risulta speculare
rispetto a detto piano, esibendo la simmetria z→ −z.1 Il campo in un punto
dello spazio è dovuto alla sovrapposizione dei campi prodotti, nel medesimo
punto, dalle singole spire ed è quindi necessario calcolare prima il campo
prodotto da una singola spira.

a.1 il campo di una spira circolare

In questo paragrafo illustreremo i punti salienti del calcolo del campo ma-
gnetico generato nello spazio da una spira circolare percorsa da corrente. Il
calcolo non presenta difficoltà concettuali, ma si articola in lunghe e noiose
trasformazioni algebriche atte ad esprimere tutti gli integrali che vi compa-
iono in termini dei soli integrali ellittici K(k) ed E(k) che, in ultima analisi,
sono poi calcolati numericamente con opportuni sottoprogrammi [Shiers e
Goossens, 1996].

Supponendo che la spira, di raggio R, sia posizionata sul piano z = ζ e
che il suo asse coincida, ovviamente, con l’asse Z (cioè l’asse del magnete), il
campo, in un punto P(x,y, z) dello spazio, è determinato dalla legge di Biot
e Savart [Becker, 1941] (nota pure come 1a formula di Laplace [Amaldi et al.,
1986])

B(P) =
µ0
4π
i

∮
dl∧ ρ

ρ3

in cui l’elemento lineare dl ha coordinate (ξ,η, ζ) e componenti (dξ,dη, 0);2

ρ è il vettore che va dall’elemento dl al punto P ed ha componenti (x− ξ,y−
η, z− ζ); l’integrale curvilineo è fatto su tutta la spira (fig. A.1).

Indicando con θ l’angolo azimutale di dl e con ϕ quello di P (fig. A.2), la
distanza ρ si scrive

ρ =
√

(x− ξ)2 + (y− η)2 + (z− ζ)2

=
√
r2 + R2 + (z− ζ)2 − 2rR cos(θ−ϕ)

= Q

{
1− k2 cos2

(
θ−ϕ

2

)} 1
2

,

dove si è indicato con r =
√
x2 + y2 la distanza radiale di P dall’asse della

spira e sono state utilizzate le relazioniξ = R cos θ

η = R sin θ

x = r cosϕ

y = r sinϕ.

1 Il verso dell’asse Z è scelto in modo da soddisfare la regola della mano destra: quando le dita della
mano destra si avvolgono nel verso delle correnti, il pollice punta nel verso dell’asse Z.

2 dζ = 0, essendo il piano della spira fisso.
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X
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ζ

i

R

ρ

B

P

dl

Figura A.1: Le grandezze che figurano nella legge di Biot e Savart
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x

y

r

θ

ϕ

dl

Bx

By

R

P

Br

i

Figura A.2: Proiezione sul piano XY della spira
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Inoltre si è posto

Q ≡ Q(r, z) =
√
(r+ R)2 + (z− ζ)2

k ≡ k(r, z) =
√
4rR

Q
. (19)

Ricordando che dl ≡ (dξ,dη, 0) e ρ ≡ (x− ξ,y− η, z− ζ), si ha

(dl∧ ρ)x = dη(z− ζ) = R cos θdθ(z− ζ)

e la componente Bx del campo risulta

Bx =
µ0
4π
i
(z− ζ)R

Q3

∫2π
0

cos θdθ{
1− k2 cos2

(
θ−ϕ

2

)} 3
2

.

Eseguendo il cambiamento di variabile θ ′ = θ−ϕ, si può riscrivere

Bx =
µ0
4π
i
(z− ζ)R

Q3

∫2π−ϕ
−ϕ

cos (θ ′ +ϕ) dθ ′{
1− k2 cos2

(
θ ′

2

)} 3
2

.

Poiché la funzione integranda ha periodo 2π, l’integrale può essere calcolato
tra 0 e 2π. Inoltre essendo

cos
(
θ ′ +ϕ

)
= cos θ ′ cosϕ− sin θ ′ sinϕ,

la parte in sin θ ′ sinϕ non contribuisce. Per cui

Bx =


µ0
4π
i
(z− ζ)R

Q3

∫2π
0

cos θdθ[
1− k2 cos2

(
θ

2

)] 3
2

 cosϕ ≡ Br cosϕ,

avendo rinominato in θ la variabile d’integrazione e avendo posto uguale a
Br l’espressione tra graffe.

Il calcolo di By è del tutto analogo e porta al risultato

By = Br sinϕ.

Per Bz si ha invece

(dl∧ ρ)z = dξ(y− η) − dη(x− ξ) =
[
R2 − rR cos (θ−ϕ)

]
dθ,

cioè

Bz =
µ0
4π
i
R

Q3

∫2π
0

[R− r cos (θ−ϕ)] dθ{
1− k2 cos2

(
θ−ϕ

2

)} 3
2

.
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Come per Bx, la trasformazione θ ′ = θ−ϕ permette di scrivere

Bz =
µ0
4π
i
R

Q3

∫2π
0

[R− r cos θ] dθ{
1− k2 cos2

(
θ

2

)} 3
2

,

con una rinomina θ ′ → θ.
Ponendo

I(k) =
1

4

∫2π
0

cos θdθ{
1− k2 cos2

(
θ

2

)} 3
2

e

J(k) =
1

4

∫2π
0

dθ{
1− k2 cos2

(
θ

2

)} 3
2

si ha una semplificazione della scrittura

Br =
µ0
4π
i
(z− ζ)R

Q3
4I(k)

Bz =
µ0
4π
i
R

Q3
4 [RJ(k) − rI(k)] .

Con il cambiamento di variabile, θ = π− 2β, si ottiene

I(k) = −
1

4
2

∫π/2
−π/2

cos 2βdβ{
1− k2 sin2 β

} 3
2

.

In questo caso la funzione integranda ha periodo π ed è pari: l’integrale tra
−π/2 e π/2 è il doppio di quello calcolato tra 0 e π/2, cioè

I(k) = −

∫π/2
0

cos 2βdβ{
1− k2 sin2 β

} 3
2

. (20)

Con la stessa sostituzione si trova

J(k) =

∫π/2
0

dβ{
1− k2 sin2 β

} 3
2

. (21)

Apparentemente, sembra che il calcolo del campo sia ricondotto al calcolo
dei due integrali I(k) e J(k), ma come vedremo tra breve, essi non sono
indipendenti.

a.1.1 Il calcolo di I(k) e J(k)

Vogliamo far notare che, per α qualunque, vale la seguente identità

−
cos 2β(

1− k2 sin2 β
)α =

2− k2

k2
1(

1− k2 sin2 β
)α −

2

k2
1(

1− k2 sin2 β
)α−1 .
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(22)

Allora, assumendo α = 3/2, si può verificare facilmente che la funzione
integranda di I(k) nella (20) si scrive così

−
cos 2β{

1− k2 sin2 β
} 3
2

=
2− k2

k2
1{

1− k2 sin2 β
} 3
2

−
2

k2
1{

1− k2 sin2 β
} 1
2

cioè

I(k) =
2− k2

k2
J(k) −

2

k2
K(k) (23)

in cui K(k) è l’integrale ellittico completo di 1
a specie nella forma normale di

Legendre,

K(k) =

∫π/2
0

dβ√
1− k2 sin2 β

.

Con un po’ di algebra si può verificare che

1{
1− k2 sin2 β

} 3
2

=

√
1− k2 sin2 β+2k2

sin2 β{
1− k2 sin2 β

} 3
2

−k4
sin4 β{

1− k2 sin2 β
} 3
2

.

Quindi la (21) si riscrive

J(k) = E(k) + 2k2J1(k) − k
4J2(k) (24)

dove

E(k) =

∫π/2
0

√
1− k2 sin2 βdβ

è l’integrale ellittico completo di 2
a specie nella forma normale di Legendre,

mentre con J1 e J2 abbiamo indicato

J1(k) =

∫π/2
0

sin2 βdβ{
1− k2 sin2 β

} 3
2

J2(k) =

∫π/2
0

sin4 βdβ{
1− k2 sin2 β

} 3
2

anche questi possono essere espressi tramite K(k), E(k). Infatti, per quanto
riguarda J1, è banale verificare che

sin2 β{
1− k2 sin2 β

} 3
2

=
1

k2


1(

1− k2 sin2 β
) 3
2

−
1√

1− k2 sin2 β


cioè

J1(k) =
1

k2
[J(k) −K(k)] . (25)
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Considerando l’identità

sin4 β = sin2 β
(
1− cos2 β

)
= sin2 β−

1

4
sin2 2β,

J2 si esprime in questo modo

J2(k) = J1(k) −
1

4
J3(k) (26)

con

J3(k) =

∫π/2
0

sin2 2βdβ{
1− k2 sin2 β

} 3
2

.

Quest’ultimo integrale, sfruttando l’uguaglianza

sin2 2β{
1− k2 sin2 β

} 3
2

=
2

k2 sin 2β
d

dβ

 1√
1− k2 sin2 β

 ,

si riscrive

J3(k) =
2

k2

∫π/2
0

sin 2β
d

dβ

 1√
1− k2 sin2 β

 dβ.

Integrando per parti ed utilizzando la (22) per α = 1/2, si ottiene il risultato

J3(k) =
4
(
2− k2

)
k4

K(k) −
8

k4
E(k). (27)

Ora non rimane che inserire questo risultato nella (26), e sostituire le formule
(25), (26) nella (24), per ottenere, con un’ulteriore algebra

J(k) = −E(k) +
(
2− k2

)
J(k).

Risolvendo rispetto a J(k), si ottiene il risultato, semplice ed elegante,

J(k) =
E(k)

1− k2
.

Con ciò si vede che I(k) si esprime in termini dei soli integrali ellittici K(k)
ed E(k)

I(k) =
2− k2

k2
E(k)

1− k2
−
2

k2
K(k).

Un’ulteriore sostituzione, (19), permette di ricavare

Bx = Br cosϕ, By = Br sinϕ

Bz(P) =
µ0
2π

i

Q

{
K(k) +

R2 −
[
r2 + (z− ζ)2

]
(r− R)2 + (z− ζ)2

E(k)

}
(28)
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con

Br(P) =
µ0
2π

i

Q

z− ζ

r

{
−K(k) +

R2 +
[
r2 + (z− ζ)2

]
(r− R)2 + (z− ζ)2

E(k)

}
. (29)

K(k) e E(k) sono, rispettivamente, gli integrali ellittici completi di 1a e 2a spe-
cie nella forma normale di Legendre [Smirnov, 1978; Silov, 1978; Abramowitz e
Stegun, 1972]:

K(k) =

∫ π
2

0

dθ√
1− k2 sin2 θ

, E(k) =

∫ π
2

0

√
1− k2 sin2 θdθ.

Come era naturale aspettarsi, data la simmetria cilindrica del sistema, il
calcolo del campo si riduce solo a quello delle componenti radiale, Br, e
longitudinale (lungo l’asse Z), Bz.

a.2 il campo del cobra

Se il magnete è costituito da N spire, ciascuna con il proprio raggio Rj,
percorsa dalla corrente Ij e alla posizione ζj, il campo complessivo prodotto
nel punto P(x,y, z) è determinato da

Br(P) ≡ Br(r, z) =
µ0
2π

1

r

N∑
j=1

Ij

Qj

(
z− ζj

)−K (kj)+ P
(+)
j

P
(0)
j

E
(
kj
)

Bz(P) ≡ Bz(r, z) =
µ0
2π

N∑
j=1

Ij

Qj

K (kj)+ P
(−)
j

P
(0)
j

E
(
kj
)


(30)

in cui

r =
√
x2 + y2

Qj ≡ Qj(r, z) =
√(
r+ Rj

)2
+
(
z− ζj

)2
kj ≡ kj(r, z) =

√
4rRj

Qj

P
(0)
j ≡ P(0)j (r, z) =

(
r− Rj

)2
+
(
z− ζj

)2
P
(+)
j ≡ P(+)

j (r, z) = R2j +
[
r2 +

(
z− ζj

)2]
P
(−)
j ≡ P(−)

j (r, z) = R2j −
[
r2 +

(
z− ζj

)2]



. (31)

Uno dei parametri fondamentali del magnete è il valore del campo nell’ori-
gine delle coordinate, il quale, data la simmetria speculare, si riduce alla sola
componente Bz (Br(0, 0) = 0). Questo parametro è importante perché deter-
mina il raggio di curvatura della traiettoria del positrone (Rc ∝ 1/B(0, 0)),
che a sua volta è legato al posizionamento radiale delle camere.

Con qualche semplice manipolazione possiamo esprimere le formule
precedenti (30) in termini di3

B0 ≡ |B(0, 0)| ≡ Bz(0, 0) > 0.

3 Il segno si spiega considerando la scelta del verso dell’asse Z, nota 1 a pag. 117.
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Infatti, essendo

Qj(0, 0) =
√
R2j + ζ

2
j

P
(0)
j (0, 0) = R2j + ζ

2
j

P
(−)
j (0, 0) = R2j − ζ

2
j

kj(0, 0) = 0

K(0) = E(0) =
π

2

si ha

B0 ≡ Bz(0, 0) =
µ0
2
H

(N)
0

con

H
(N)
0 =

N∑
j=1

R2j Ij{
R2j + ζ

2
j

}3/2 .

Quindi

µ0
2

=
Bz(0, 0)

H
(N)
0

=
B0

H
(N)
0

e le formule (30) (con le notazioni (31)) si riscrivono

Br(r, z) =
B0

πH
(N)
0

1

r

N∑
j=1

Ij

Qj

(
z− ζj

)−K (kj)+ P
(+)
j

P
(0)
j

E
(
kj
)

Bz(r, z) =
B0

πH
(N)
0

N∑
j=1

Ij

Qj

K (kj)+ P
(−)
j

P
(0)
j

E
(
kj
)


. (32)

Quest’ultima scrittura è particolarmente comoda in quanto:

• svincola, in un certo senso, le espressioni dalle unità di misura; le
componenti Br e Bz hanno le stesse unità di B0, essendo i fattori
(I/Q)/H

(N)
0 e (z− ζ)/r, così come le espressioni tra quadre, adimensio-

nali; ciò rende possibile l’uso di unità di misura miste, come kilogauss
per B, cm per le lunghezze, ampere per le correnti;

• permette di usare correnti fittizie, non necessariamente quelle che
determinano B0; le componenti del campo sono lineari nelle correnti
Ij e così pure il fattore a denominatore H(N)

0 , per cui uno scaling delle
correnti, I → cost. · I, non altera le formule (32); ciò rende il calcolo
indipendente dai dettagli costruttivi del magnete e lo lega ai parametri
fisici che caratterizzano il campo magnetico.



BL O S P E S S O R E D E L T O F F

In questa appendice vogliamo brevemente accennare ai metodi per calcolare
lo spessore del volume tubolare che contiene tutto il sistema del TOF immerso
in atmosfera di azoto. Come si è visto a pagina 73, descrivendo la geometria
dei contatori a scintillazione, esso è determinato essenzialmente dall’angolo
di rotazione delle barrette esterne.

b.1 il metodo approssimato o geometrico

Poiché le barrette sono ruotate dello stesso angolo γ rispetto al piano tan-
gente, τ, alla superficie cilindrica che contiene i loro assi (fig. 4.9, pag. 75),
immaginando di srotolarle, esse assumono una posizione obliqua come quella
mostrata sinteticamente nella figura B.1. Da questa deduciamo facilmente
che

BÂH = CB̂K ≡ γ.

Quindi

∆R = Rp − Rm ≡ HK
= HB+BK

= AB sinγ+CB cosγ

= l sinγ+ d cosγ,

che ci permette di calcolare lo spessore del TOFF con le equazioni (8) e (6).

b.2 il metodo esatto o numerico

In questo caso abbiamo realizzato un programmino che calcola le distanze
radiali degli spigoli A,B,C,D delle barrette (fig. 4.9, pag. 75). Se queste
distanze sono rA, rB, rC, rD, allora

Rm = min (rA, rB, rC, rD)

Rp = max (rA, rB, rC, rD),

γ

A

B

C

D

H

K

τ

R0
Rm

Rp

Figura B.1: Configurazione srotolata delle barrette
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CI L V E RT I C E N E L M O N T E C A R L O

In questa appendice vogliamo accennare brevemente alla determinazione
delle coordinate del vertice negli eventi simulati nel MC, con particolare
riferimento alla coordinata z.

c.1 le coordinate xV e yV

Nella figura C.1 abbiamo indicato schematicamente il bersaglio, inclinato
di un angolo α = 22° rispetto alla linea del fascio, cioè l’asse Z. In essa V
rappresenta il vertice di decadimento, ossia il punto in cui si ferma il muone;
tale punto si trova ad una distanza d dalla superficie. Il semi-spessore
DX del target è indicato dal segmento OD. Le coordinate xV e zV sono,
rispettivamente, i segmenti VB e OB; yV, invece, non è visibile nella figura
perché l’asse Y va immaginato uscente dal foglio.

A causa dello sparpagliamento gaussiano in atmosfera di elio, le coordinate
trasverse del vertice possono essere calcolate come segue{

xV = ux · σx
yV = uy · σy,

dove ux e uy sono due numeri pseudo-casuali con distribuzione normale,
mentre σx e σy misurano l’entità dello scostamento rispetto alla linea ideale
rappresentata dall’asse Z. Più articolato è il calcolo della coordinata zV.

X

Z

P

V
C

D

A B

E

O

α

d
µ+

Figura C.1: Determinazione del vertice di decadimento
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c.2 la coordinata zV

Sempre con riferimento alla figura C.1, possiamo riassumere

d ≡ PV

α ≡ PĈV = DÊO

xV ≡ VB = CA

DX ≡ OD
zV ≡ OB.

Però abbiamo OB = OA+AB e OA = EA− EO, per cui, essendo

AB ≡ CV =
PV

sinα
=

d

sinα

EO =
OD

sinα
=

DX

sinα
EA = CA · cotgα = xV · cotgα,

otteniamo

zV = OB = EA− EO+AB = xV · cotgα−
DX

sinα
+

d

sinα

che rappresenta l’equazione (10). Nel calcolo finale, d è calcolato con distri-
buzione gaussiana attorno alla media d, ossia

d = d+ u · σ,

dove u è un numero pseudo-casuale distribuito normalmente.

c.3 verifica del vertice

Poiché le coordinate di V dipendono dai numeri (ux,uy,u), distribuiti nor-
malmente, esiste sempre qualche probabilità che abbiano valori sufficiente-
mente grandi tali che V cada fuori il bersaglio!1 Quindi è necessario fare
una verifica. Questa risulta molto semplice se si trasformano le coordinate
di V dal MRS al DRS. Infatti nel DRS il bersaglio è semplicemente un BOX di
dimensioni 2× (DX, DY, DZ). Se (x ′,y ′, z ′) sono le coordinate di V nel DRS, è
sufficiente verificare che

|x ′| < DX, |y ′| < DY, |z ′| < DZ.

Le coordinate di V nel DRS si ottengono semplicemente con la trasformazione
z ′ = cosα · xV + sinα · zV

x ′ = − sinα · xV + cosα · zV

y ′ = yV,

che è semplicemente una rotazione di un angolo α attorno all’asse Y (si
osservi anche la figura 4.5).

1 Per esempio, P(|u| > 1) ≈ 1− 68% = 32%, P(|u| > 2) ≈ 1− 95% = 5%. . .
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Definizione di α

La figura D.1 riassume brevemente la definizione dell’angolo α (si faccia
riferimento anche alla figura 4.12). In essa possiamo notare:

• la traccia del positrone e+ al punto d’impatto I nella barretta;

• la componente trasversa pT dell’impulso del positrone nel punto
d’impatto I;

• gli assi XD e YD del riferimento associato con la barretta (l’asse ZD esce
dal piano della figura), cioè il DRS; n e j sono i versori, rispettivamente,
degli assi XD e YD.

L’angolo α è definito come l’angolo tra pT e n, la normale esterna delle barretta.
Per cui

cosα =
pT ·n
|pT|

Si può definire pT in termini dell’impulso totale p,

pT = (p ·n)n+ (p · j)j

da cui

cosα =
p ·n√

(p ·n)2 + (p · j)2

avendo utilizzato n · j = 0. Nel DRS le componenti sono p = (pD
x ,pD

y ,pD
z ),

pT = (pD
x ,pD

y , 0) e n = (1, 0, 0), j = (0, 1, 0), per cui

cosα =
pD
x√

(pD
x )
2 + (pD

y)
2

Definizione di β

Nella figura D.2 è rappresentata (nel DRS) la sezione longitudinale (cioè
quella contenente l’asse maggiore) della barretta. La proiezione longitudinale
dell’impulso nel punto d’impatto I è indicata nella figura con pL, mentre k è
il versore lungo l’asse ZD. In termini dell’impulso p del positrone si ha:

pL = (p ·n)n+ (p · k)k.

Come si vede, l’angolo β è quello tra pL e la normale esterna n. Dunque,

cosβ =
pL ·n
|pL|

,
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ossia

cosβ =
p ·n√

(p ·n)2 + (pz)2
,

in cui pz = p · k è la componente z dell’impulso (uguale nei riferimenti
MARS e DRS), e n · k = 0. Il cosβ si calcola facilmente in DRS. Infatti in questo
riferimento si vede facilmente che è dato da

cosβ =
pD
x√

(pD
x )
2 + (pD

z )
2

,

essendo p · k ≡ pz ≡ pD
z .

Definizione dell’angolo θ

L’angolo θ è semplicemente quello tra l’impulso p nel punto d’impatto I e la
normale esterna n della barretta, come mostra la figura D.3, cioè

cos θ =
p ·n
|p|

Anche in questo caso tutto risulta più semplice nel DRS,

cos θ =
pD
x√

(pD
x )
2 + (pD

y)
2 + (pD

z )
2

.



la definizione degli angoli d’impatto 131

e+
AB

C D

E

FG

H

I

XD

ZD
YD

XD

θ

p

p

n

Figura D.3: La definizione dell’angolo θ





B I B L I O G R A F I A

Aarnio, P. A. et al. (1987), «FLUKA user’s guide», Rap. Tecn. TIS-RP-190,
CERN. (Citato a pagina 67.)

Abela, R. et al. (1996), «Improved Upper Limit on Muonium to Antimuonium
Conversion», Phys. Rev. Lett., vol. 77, pp. 1950–1953. (Citato a pagina 41.)

Abramowitz, M. e Stegun, I. A. (1972), Handbook of Mathematical Functions
With Formulas, Graphs, and Mathematical Tables, Dover books on intermediate
advanced mathematics, US. Nat. Bureau Stand., New York, NY, http:
//www.math.sfu.ca/~cbm/aands. (Citato a pagina 123.)

Abreu, P. et al. (1997), «Search for lepton flavor number violating Z0 decays»,
Z. Phys. C, vol. 73, pp. 243–251. (Citato a pagina 30.)

FSF (1999), «Fortran», home page, http://www.gnu.org/software/fortran.
(Citato a pagina 97.)

Aharmim, B. et al. (2005), «Electron energy spectra, fluxes, and day-night
asymmetries of 8B solar neutrinos from measurements with NaCl dis-
solved in the heavy-water detector at the Sudbury Neutrino Observatory»,
Phys. Rev. C, vol. 72, p. 055502. (Citato a pagina 16.)

Ahmad, Q. R. et al. (2001), «Measurement of the Rate of νe + d→ p+ p+ e−

Interactions Produced by 8B Solar Neutrinos at the Sudbury Neutrino
Observatory», Phys. Rev. Lett., vol. 87, p. 071301. (Citato a pagina 16.)

Ahmad, Q. R. et al. (2002a), «Direct evidence for neutrino flavor trans-
formation from neutral-current interactions in the Sudbury Neutrino
Observatory», Phys. Rev. Lett., vol. 89, p. 011301. (Citato a pagina 16.)

Ahmad, Q. R. et al. (2002b), «Measurement of day and night neutrino energy
spectra at SNO and constraints on neutrino mixing parameters», Phys. Rev.
Lett., vol. 89, p. 011302. (Citato a pagina 16.)

Ahmad, S. et al. (1988), «Search for muon-electron and muon-positron
conversion», Phys. Rev. D, vol. 38, pp. 2102–2120. (Citato a pagina 40.)

Ahmed, S. N. et al. (2004), «Measurement of the Total Active 8B Solar Neu-
trino Flux at the Sudbury Neutrino Observatory with Enhanced Neutral
Current Sensitivity», Phys. Rev. Lett., vol. 92, p. 181301. (Citato a pagina 16.)

Ahn, M. H. et al. (2006), «Measurement of neutrino oscillation by the K2K
experiment», Phys. Rev. D, vol. 74, p. 072003, [hep-ex/0606032]. (Citato a
pagina 14.)

Akers, R. et al. (1995), «A Search for lepton flavor violating Z0 decays», Z.
Phys. C, vol. 67, pp. 555–564. (Citato a pagina 30.)

Allison, J. et al. (1991), «The diamond shaped cathode pads of the OPAL
muon barrel drift chambers», NIM A, vol. 310, pp. 527–534. (Citato a
pagina 52.)

Amaldi, E., Bizzarri, R. e Pizzella, G. (1986), Fisica Generale, Zanichelli
Editore. (Citato alle pagine 92, 93 e 117.)

133

http://www.math.sfu.ca/~cbm/aands
http://www.math.sfu.ca/~cbm/aands
http://www.gnu.org/software/fortran
http://arxiv.org/abs/hep-ex/0606032


134 bibliografia

Amaldi, U., de Boer, W. e Fürstenau, H. (1991), «Comparison of grand
unified theories with electroweak and strong coupling constants measured
at LEP», Phys. Lett. B, vol. 260, pp. 447–455. (Citato a pagina 19.)

Ambrose, D. et al. (1998), «New Limit on Muon and Electron Lepton Number
Violation from K0L → µe Decay», Phys. Rev. Lett., vol. 81, pp. 5734–5737.
(Citato a pagina 30.)

Amsler, C. et al. (2008), «Particle Data Group», Phys. Lett. B, vol. 667, p. 1,
http://pdg.lbl.gov. (Citato alle pagine 19, 30 e 80.)

Apollonio, M. et al. (1999), «Limits on neutrino oscillations from the CHOOZ
experiment», Phys. Lett. B, vol. 466, pp. 415–430, [hep-ex/9907037]. (Citato
a pagina 13.)

Apollonio, M. et al. (2003), «Search for neutrino oscillations on a long
base-line at the CHOOZ nuclear power station», Eur. Phys. J. C, vol. 27, pp.
331–374, [hep-ex/0301017]. (Citato a pagina 13.)

Arisaka, K. et al. (1998), «Search for the lepton-family number violating
decays K0L → π0µ+e−», Phys. Lett. B, vol. 432, pp. 230–234. (Citato a
pagina 30.)

Athanassopoulos, C. et al. (1998), «Results on νµ → νe Neutrino Oscilla-
tions from the LSND Experiment», Phys. Rev. Lett., vol. 81, pp. 1774–1777.
(Citato a pagina 14.)

Badertscher, A. et al. (1982), «A search for muon-electron and muon-
positron conversion in sulfur», Nucl. Phys. A, vol. 377, pp. 406–440. (Citato
a pagina 40.)

Baldini, A. et al. (2000), «Note on the magnet design and the positron
spectrometer simulation for the µ → eγ search at PSI», Rap. tecn., INFN,
http://meg.web.psi.ch/docs/prop_psi/magnet.ps. (Citato a pagina 49.)

Baranov, V. A. et al. (1991), «Search for µ+ → e+e+e− decay», Sov. J. Nucl.
Phys., vol. 53, pp. 802–807. (Citato a pagina 39.)

Barbieri, R. e Hall, L. J. (1994), «Signals for Supersymmetric Unification»,
Phys. Lett. B, vol. 338, pp. 212–218. (Citato a pagina 23.)

Barbieri, R., Hall, L. J. e Strumia, A. (1995), «Violations of lepton flavour
and CP in supersymmetric unified theories», Nucl. Phys. B, vol. 445, pp.
219–251. (Citato alle pagine 23 e 24.)

Becker, R. (1941), Teoria della Elettricità, vol. I, Sansoni Edizioni Scientifiche.
(Citato a pagina 117.)

Beer, G. A. et al. (1986), «Emission of Muonium into Vacuum from a Silica-
Powder Layer», Phys. Rev. Lett., vol. 57, pp. 671–674. (Citato a pagina 41.)

Bellgardt, U. et al. (1988), «Search for the decay µ+ → e+e+e−», Nucl. Phys.
B, vol. 299, pp. 1–6. (Citato alle pagine 30 e 39.)

Bertl, W. et al. (1984), «A new upper limit for the decay µ+ → e+e+e−»,
Phys. Lett. B, vol. 140, pp. 299–303. (Citato a pagina 39.)

Bertl, W. et al. (1985), «Search for the decay µ+ → e+e+e−», Nucl. Phys. B,
vol. 260, pp. 1–31. (Citato a pagina 39.)

http://pdg.lbl.gov
http://arxiv.org/abs/hep-ex/9907037
http://arxiv.org/abs/hep-ex/0301017
http://meg.web.psi.ch/docs/prop_psi/magnet.ps


bibliografia 135

Bilenky, S. M., Petcov, S. T. e Pontecorvo, B. (1977), «Lepton mixing,
µ+ → e+γ decay and neutrino oscillations», Phys. Lett. B, vol. 67, pp.
309–312. (Citato a pagina 21.)

Bilenky, S. M. e Pontecorvo, B. (1978), «Lepton Mixing and Neutrino
Oscillations», Phys. Rep., vol. 41, pp. 225–265. (Citato a pagina 12.)

Birsa, R. et al. (1977), «Reconstruction of the momentum of a particle moving
in an axially symmetric magnetic field», NIM, vol. 146, pp. 357–365. (Citato
a pagina 91.)

Bliss, D. W. et al. (1998), «New limits for neutrinoless tau decays», Phys. Rev.
D, vol. 57, pp. 5903–5907. (Citato a pagina 30.)

Bolton, R. D. et al. (1984), «Search for the Muon-Number-Nonconserving
Decay µ+ → e+e+e−», Phys. Rev. Lett., vol. 53, pp. 1425–1428. (Citato a
pagina 39.)

Bolton, R. D. et al. (1988), «Search for rare muon decays with the Crystal
Box detector», Phys. Rev. D, vol. 38, pp. 2077–2101. (Citato alle pagine 36,
38 e 39.)

Borzumati, F. e Masiero, A. (1986), «Large Muon- and Electron-Number
Nonconservation in Supergravity Theories», Phys. Rev. Lett., vol. 57, pp.
961–964. (Citato a pagina 21.)

Brooks, M. L. et al. (1999), «New Limit for the Lepton-Family-Number
Nonconserving Decay µ+ → e+γ», Phys. Rev. Lett., vol. 83, pp. 1521–1524.
(Citato alle pagine 4, 23, 30, 37, 38 e 43.)

Brown, K. L., Carey, D. C., Iselin, F. C. e Rothacker, F. (1973), TRANSPORT:
a computer program for designing charged-particle beam transport systems, CERN,
Ginevra. (Citato a pagina 46.)

Brown, K. L. e Iselin, F. C. (1974), DECAY TURTLE: a computer program for
simulating charged-particle beam transport systems, including decay calculations,
CERN, Ginevra. (Citato a pagina 46.)

Brun, R., Rademakers, F., Canal, P., Antcheva, I. e Buskulic, D. (2008),
ROOT: An Object-Oriented Data Analysis Framework: Users Guide 5.20, CERN,
Ginevra, http://root.cern.ch. (Citato a pagina 83.)

Bryman, D. A., Blecher, M., Gotow, K. e Powers, R. J. (1972), «Search
for the Reaction µ−Cu → e+Co», Phys. Rev. Lett., vol. 28, pp. 1469–1471.
(Citato a pagina 40.)

Bryman, D. A. et al. (1985), «Search for µ− e conversion in Ti», Phys. Rev. Lett.,
vol. 55, pp. 465–468. (Citato a pagina 40.)

Cern (2007), «SLC4», home page, http://linux.web.cern.ch/linux/

scientific4. (Citato a pagina 97.)

Cleveland, B. T. et al. (1998), «Measurement of the Solar Electron Neutrino
Flux with the Homestake Chlorine Detector», ApJ, vol. 496, pp. 505–526.
(Citato a pagina 12.)

Coleman, S. e Mandula, J. (1967), «All Possible Symmetries of the SMatrix»,
Phys. Rev., vol. 159, pp. 1251–1256. (Citato a pagina 17.)

http://root.cern.ch
http://linux.web.cern.ch/linux/scientific4
http://linux.web.cern.ch/linux/scientific4


136 bibliografia

Conversi, M., Pancini, E. e Piccioni, O. (1947), «On the Disintegration of
Negative Mesons», Phys. Rev., vol. 71, pp. 209–210. (Citato a pagina 3.)

Couet, O. e Goossens, M. (1999), PAW: Physics Analysis Workstation, long
writeup Q121, CERN Program Library, CERN, Ginevra, http://paw.web.

cern.ch/paw. (Citato alle pagine 83 e 95.)

Danby, G. et al. (1962), «Observation of High-Energy Neutrino Reactions and
the Existence of Two Kinds of Neutrinos», Phys. Rev. Lett., vol. 9, pp. 36–44.
(Citato a pagina 4.)

Davis, R., Harmer, D. S. e Hoffman, K. C. (1968), «Search for Neutrinos
from the Sun», Phys. Rev. Lett., vol. 20, pp. 1205–1209. (Citato a pagina 25.)

Depommier, P. et al. (1977), «New Limit on the Decay µ+ → e+γ», Phys. Rev.
Lett., vol. 39, pp. 1113–1116. (Citato alle pagine 36 e 38.)

Dimopoulos, S. e Georgi, H. (1981), «Softly broken supersymmetry and
SU(5) », Nucl. Phys. B, vol. 193, pp. 150–162. (Citato a pagina 19.)

Dimopoulos, S. e Sutter, D. (1995), «The supersymmetric flavor problem»,
Nucl. Phys. B, vol. 452, pp. 496–512. (Citato a pagina 19.)

Dohmen, C. et al. (1993), «Test of lepton-flavour conservation in µ− e conver-
sion conversion on titanium», Phys. Lett. B, vol. 317, pp. 631–636. (Citato a
pagina 40.)

Eadie, W. T., Drijard, D., James, F. E., Roos, M. e Sadoulet, B. (1971), Statis-
tical methods in experimental physics, North-Holland, Amsterdam. (Citato
alle pagine 87 e 105.)

Eckstein, S. G. e Pratt, R. H. (1959), «Radiative muon decay», Ann. Phys.,
vol. 8, pp. 297–309. (Citato a pagina 30.)

Edwards, K. W. et al. (1997), «Search for neutrinoless τ decays: τ→ eγ and
τ→ µγ», Phys. Rev. D, vol. 55, pp. R3919–R3923. (Citato a pagina 30.)

Eichinger, H. e Regler, M. (1981), «Review of track-fitting methods in
counter experiments», Rap. Tecn. Cern Yellow Report 81-06, CERN, Gene-
va, http://documents.cern.ch/cgi-bin/setlink?base=cernrep&categ=

Yellow_Report&id=1981-006. (Citato alle pagine 91 e 94.)

Eitel, K. et al. (1999), «KARMEN: Neutrino oscillation limits and new results
with the upgrade», Nucl. Phys. B, Proc. Suppl., vol. 70, pp. 210–213. (Citato
a pagina 14.)

Ellis, J., Kelley, S. e Nanopoulos, D. V. (1991), «Probing the desert using
gauge coupling unification», Phys. Lett. B, vol. 260, pp. 131–137. (Citato a
pagina 19.)

Feinberg, G. (1958), «Decays of the µ Meson in the Intermediate-Meson
Theory», Phys. Rev., vol. 110, pp. 1482–1483. (Citato a pagina 3.)

Feinberg, G. e Weinberg, S. (1961), «Conversion of Muonium into
Antimuonium», Phys. Rev., vol. 123, pp. 1439–1443. (Citato a pagina 41.)

Fesefeldt, H. C. (1985), «Simulation of hadronic showers, physics and ap-
plications», Rap. Tecn. PITHA 85-02, III Physikalisches Institut, RWTH
Aachen Physikzentrum, 5100 Aachen, Germany. (Citato a pagina 67.)

http://paw.web.cern.ch/paw
http://paw.web.cern.ch/paw
http://documents.cern.ch/cgi-bin/setlink?base=cernrep&categ=Yellow_Report&id=1981-006
http://documents.cern.ch/cgi-bin/setlink?base=cernrep&categ=Yellow_Report&id=1981-006


bibliografia 137

Feynman, R. P. e Gell-Mann, M. (1958), «Theory of the Fermi Interaction»,
Phys. Rev., vol. 109, pp. 193–198. (Citato a pagina 3.)

Fletcher, R. (1970), «A new approach to variable metric algorithms», Comput.
J., vol. 13, p. 317. (Citato a pagina 87.)

Fronsdal, C. e Überall, H. (1959), «µ-Meson Decay with Inner
Bremsstrahlung», Phys. Rev., vol. 113, pp. 654–657. (Citato a pagina 30.)

Fukuda, Y. et al. (1998), «Evidence for Oscillation of Atmospheric Neutrinos»,
Phys. Rev. Lett., vol. 81, pp. 1562–1567, [Super-Kamiokande Collaboration].
(Citato a pagina 12.)

Fukuda, Y. et al. (1999), «Measurement of the Solar Neutrino Energy Spectrum
Using Neutrino-Electron Scattering», Phys. Rev. Lett., vol. 82, pp. 2430–2434,
[Super-Kamiokande Collaboration]. (Citato a pagina 12.)

Fukuda, Y. et al. (2001), «Constraints on Neutrino Oscillations Using 1258

Days of Super-Kamiokande Solar Neutrino Data», Phys. Rev. Lett., vol. 86,
pp. 5656–5660, [Super-Kamiokande Collaboration]. (Citato a pagina 12.)

Gauss, C. F. (1874), Werke. Bd. 6. Astronomische Abhandlungen, Koeniglichen
Gesselschaft der Wissen, Goettingen, http://www.wilbourhall.org/pdfs/
Carl_Friedrich_Gauss_Werke___6.pdf. (Citato a pagina 87.)

Gell-Mann, M. (1964), «A Schematic Model of Baryons and Mesons», Phys.
Lett., vol. 8, pp. 214–215. (Citato a pagina 8.)

Gell-Mann, M., Ramond, P. e Slansky, R. (1979), «Complex Spinors and
Unified Theories», in «Supergravity: Proceedings of the Supergravity Work-
shop at Stony Brook», pp. 315–321, Amsterdam, North-Holland. (Citato a
pagina 20.)

Georgi, H. e Glashow, S. L. (1974), «Unity of All Elementary-Particle Forces»,
Phys. Rev. Lett., vol. 32, pp. 438–441. (Citato a pagina 19.)

Glashow, S. L. (1961), «Partial symmetries of weak interactions», Nucl. Phys.,
vol. 22, pp. 579–588. (Citato a pagina 8.)

Goossens, M. (1994), GEANT: Detector Description and Simulation Tool, long
writeup W5013, CERN Program Library, CERN, Ginevra, http://wwwasdoc.
web.cern.ch/wwwasdoc/pdfdir/geant.pdf. (Citato a pagina 61.)

Gordeev, V. A. et al. (1997), «New method for investigating muonium-to-
antimuonium conversion», Phys. At. Nucl., vol. 60, pp. 1164–1178. (Citato a
pagina 41.)

Guler, M. (2000), «OPERA experiment proposal», Rap. Tecn. SPSC 2000-028,
CERN. (Citato a pagina 14.)

Haag, R., Lopuszanski, J. T. e Sohnius, M. (1975), «All possible generators
of supersymmetries of the S-matrix», Nucl. Phys. B, vol. 88, pp. 257–274.
(Citato a pagina 17.)

Haber, H. E. e Kane, G. L. (1985), «The search for supersymmetry: Probing
physics beyond the standard model», Phys. Rep., vol. 117, pp. 75–263.
(Citato a pagina 17.)

Halzen, F. e Martin, A. D. (1984), Quarks and Leptons: An introductory course
in Modern Particle Physics, John Wiley & Sons. (Citato a pagina 5.)

http://www.wilbourhall.org/pdfs/Carl_Friedrich_Gauss_Werke___6.pdf
http://www.wilbourhall.org/pdfs/Carl_Friedrich_Gauss_Werke___6.pdf
http://wwwasdoc.web.cern.ch/wwwasdoc/pdfdir/geant.pdf
http://wwwasdoc.web.cern.ch/wwwasdoc/pdfdir/geant.pdf


138 bibliografia

Helmer, R. (2000a), «The Sudbury Neutrino Observatory», NIM A, vol. 449,
pp. 172–207. (Citato a pagina 15.)

Helmer, R. (2000b), «The Sudbury Neutrino Observatory», Nuclear Science,
IEEE Transactions on, vol. 47, pp. 2087–2081. (Citato a pagina 15.)

Higgs, P. W. (1964), «Broken Symmetries, Massless Particles and Gauge
Fields», Phys. Lett., vol. 12, pp. 132–133. (Citato a pagina 10.)

Hincks, E. P. e Pontecorvo, B. (1948), «Search for Gamma-Radiation in the
2.2-Microsecond Meson Decay Process», Phys. Rev., vol. 73, pp. 257–258.
(Citato alle pagine 3 e 36.)

Hirata, K. S. et al. (1989), «Observation of 8B solar neutrinos in the
Kamiokande-II detector», Phys. Rev. Lett., vol. 63, pp. 16–19. (Citato a
pagina 25.)

Hirata, K. S. et al. (1990), «Results from one thousand days of real-time,
directional solar-neutrino data», Phys. Rev. Lett., vol. 65, pp. 1297–1300.
(Citato a pagina 25.)

Hisano, J., Moroi, T., Tobe, K. e Yamaguchi, M. (1996), «Lepton-flavor vio-
lation via right-handed neutrino Yukawa couplings in the supersymmetric
standard model», Phys. Rev. D, vol. 53, pp. 2442–2459. (Citato a pagina 25.)

Hisano, J., Moroi, T., Tobe, K. e Yamaguchi, M. (1997a), «Exact event rates
of lepton flavor violating processes in supersymmetric SU(5) model», Phys.
Lett. B, vol. 391, pp. 341–350. (Citato a pagina 23.)

Hisano, J., Moroi, T., Tobe, K. e Yamaguchi, M. (1997b), «Exact event rates
of lepton flavor violating processes in supersymmetric SU(5) model [Phys.
Lett. B 391 (1997) 341]», Phys. Lett. B, vol. 397, p. 357. (Citato a pagina 23.)

Hisano, J., Moroi, T., Tobe, K., Yamaguchi, M. e Yanagida, T. (1995),
«Lepton-flavor violation in the supersymmetric standard model with
seesaw-induced neutrino masses», Phys. Lett. B, vol. 357, pp. 579–587.
(Citato a pagina 25.)

Hisano, J. e Nomura, D. (1999), «Solar and atmospheric neutrino oscillations
and lepton flavor violation in supersymmetric models with right-handed
neutrinos», Phys. Rev. D, vol. 59, p. 116005. (Citato a pagina 25.)

Hisano, J., Nomura, D., Okada, Y., Shimizu, Y. e Tanaka, M. (1998), «En-
hancement of µ → eγ in the supersymmetric SU(5) GUT at large tanβ»,
Phys. Rev. D, vol. 58, p. 116010. (Citato a pagina 25.)

Honecker, W. et al. (1996), «Improved Limit on the Branching Ratio of
µ− e conversion on Lead», Phys. Rev. Lett., vol. 76, pp. 200–203. (Citato a
pagina 40.)

Huber, T. M. et al. (1990), «Search for mixing of muonium and antimuonium»,
Phys. Rev. D, vol. 41, pp. 2709–2725. (Citato a pagina 41.)

Hughes, V. W., McColm, D. W., Ziock, K. e Prepost, R. (1960), «Formation
of Muonium and Observation of its Larmor Precession», Phys. Rev. Lett.,
vol. 5, pp. 63–65. (Citato a pagina 41.)

James, F. (1998), MINUIT: Function Minimization and Error Analysis, long writeup
D506, CERN Program Library, CERN, Ginevra. (Citato alle pagine 61 e 86.)



bibliografia 139

Kalman, R. E. (1960), «A new approach to linear filtering and prediction
problems», Trans. ASME, D, vol. 82, pp. 35–44. (Citato a pagina 107.)

Kielczewska, D. et al. (2000), «Neutrino oscillations at Super-Kamiokande»,
Nucl. Phys. B, Proc. Suppl., vol. 81, pp. 133–142, [Super-Kamiokande
Collaboration]. (Citato a pagina 12.)

Kinnison, W. W. et al. (1982), «Search for µ+ → e+γ», Phys. Rev. D, vol. 25,
pp. 2846–2868. (Citato a pagina 38.)

Korenchenko, S. M., Kostin, B. F., Mitselmakher, G., Nekrasov, K. G. e
Smirnov, V. S. (1976), «Search for µ+ → e+e+e− Decay», Sov. Phys. JETP,
vol. 43, p. 1. (Citato a pagina 39.)

Krolak, P. et al. (1994), «A limit on the lepton-family number violating
process π0 → µe», Phys. Lett. B, vol. 320, pp. 407–410. (Citato a pagina 30.)

Kuno, Y., Maki, A. e Okada, Y. (1997), «Background suppression for µ+ →
e+γ with polarized muons», Phys. Rev. D, vol. 55, pp. R2517–R2520. (Citato
alle pagine 31 e 34.)

Kuno, Y. e Okada, Y. (1996), «Proposed µ+ → e+γ Search with Polarized
Muons», Phys. Rev. Lett., vol. 77, pp. 434–437. (Citato alle pagine 31 e 32.)

Lagarrigue, A. e Peyrou, C. (1952), «Capture of Negative µ Mesons in
Copper and Tin», Compt. Rend. Acad. Sci. Paris, vol. 234, pp. 1873–1875.
(Citato a pagina 3.)

Landau, L. D. (1944), «On the energy loss of fast particles by ionization», J.
Phys., vol. 8, pp. 201–205. (Citato a pagina 99.)

Landau, L. D. e Lifshitz, E. M. (1978a), Fisica Teorica - Teoria dei Campi, vol. II,
Editori Riuniti. (Citato a pagina 92.)

Landau, L. D. e Lifshitz, E. M. (1978b), Fisica Teorica - Teoria Quantistica
Relativistica, vol. IV, Editori Riuniti. (Citato a pagina 17.)

Langacker, P. e Luo, M. (1991), «Implications of precision electroweak
experiments for mt, ρ0, sin2 θW , and grand unification», Phys. Rev. D,
vol. 44, pp. 817–822. (Citato a pagina 19.)

Lee, A. M. et al. (1990), «Improved limit on the branching ratio of K+ →
π+µ+e−», Phys. Rev. Lett., vol. 64, pp. 165–168. (Citato a pagina 30.)

Lee, T. D. (1981), Particle Physics and Introduction to Field Theory, Harwood
Accademic Pub. (Citato alle pagine 5 e 80.)

Lokanathan, S. e Steinberger, J. (1955), «Search for Improbable Meson
Decays», Phys. Rev., vol. 98, p. 240. (Citato a pagina 3.)

Lyubimov, V. A. (1980), «An estimate of the νe mass from the β-spectrum of
tritium in the valine molecule», Phys. Lett. B, vol. 94, pp. 266–268. (Citato a
pagina 11.)

Maki, Z., Nakagawa, M. e Sakata, S. (1962), «Remarks on the Unified Model
of Elementary Particles», Prog. Theor. Phys., vol. 28, pp. 870–880. (Citato a
pagina 12.)

Mandl, F. e Shaw, G. (1984), Quantum Field Theory, John Wiley & Sons.
(Citato alle pagine 5, 6 e 11.)



140 bibliografia

Marciano, W. J. e Sanda, A. I. (1977), «Reaction µ− +Nucleus → e− +

Nucleus in Gauge Theories», Phys. Rev. Lett., vol. 38, pp. 1512–1515. (Citato
a pagina 41.)

Marshall, G. M., Warren, J. B., Oram, C. J. e Kiefl, R. F. (1982), «Search
for muonium-to-antimuonium conversion», Phys. Rev. D, vol. 25, pp. 1174–
1180. (Citato a pagina 41.)

Matthias, B. E. et al. (1991), «New search for the spontaneous conversion of
muonium to antimuonium», Phys. Rev. Lett., vol. 66, pp. 2716–2719. (Citato
a pagina 41.)

Mikheyev, S. P. e Smirnov, A. Y. (1985), «Resonance Enhancement of Os-
cillations in Matter and Solar Neutrino Spectroscopy», Sov. J. Nucl. Phys.,
vol. 42, p. 913. (Citato a pagina 25.)

Mori, T. et al. (1999), «Search for µ+ → e+γ down to 1014 branching ratio»,
Rap. Tecn. R-99.05.01, PSI. (Citato alle pagine 23, 43, 79 e 112.)

Nambu, Y. e Jona-Lasinio, G. (1961a), «Dynamical Model of Elementary
Particles Based on an Analogy with Superconductivity. I», Phys. Rev., vol.
122, pp. 345–358. (Citato a pagina 7.)

Nambu, Y. e Jona-Lasinio, G. (1961b), «Dynamical Model of Elementary
Particles Based on an Analogy with Superconductivity. II», Phys. Rev., vol.
124, pp. 246–254. (Citato a pagina 7.)

Neddermeyer, S. H. e Anderson, C. D. (1937), «Note on the Nature of
Cosmic-Ray Particles», Phys. Rev., vol. 51, pp. 884–886. (Citato a pagina 3.)

Nelder, J. A. e Mead, R. (1965), «A Simplex Method for Function
Minimization», Comput. J., vol. 7, pp. 308–313. (Citato a pagina 87.)

Ni, B. et al. (1993), «Search for spontaneous conversion of muonium to
antimuonium», Phys. Rev. D, vol. 48, pp. 1976–1989. (Citato a pagina 41.)

Nilles, H. P. (1984), «Supersymmetry, supergravity and particle physics»,
Phys. Rep., vol. 110, pp. 1–162. (Citato a pagina 17.)

Nishijima, K. (1957), «Vanishing of the Neutrino Rest Mass», Phys. Rev., vol.
108, pp. 907–908. (Citato a pagina 3.)

Okun, L. B. (1986), Leptoni e Quark, Editori Riuniti. (Citato a pagina 80.)

Parker, S., Anderson, H. L. e Rey, C. (1964), «Search for the Decay µ+ →
e+γ», Phys. Rev., vol. 133, pp. B768–B778. (Citato a pagina 36.)

Perkins, D. H. (1982), Introduction to High Energy Physics, Addison-Wesley
Pub. (Citato a pagina 12.)

Petcov, S. T. (1977), «The Processes µ → eγ, µ → eeē, ν ′ → νγ in the
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