
WinBGIm−fortran.text
c:/msys64/home/angelo/programming/WinBGIm−fortran/

1/1
14/06/2015

W I N B G I M − F O R T R A N
=================================

by Angelo Graziosi

I N T R O D U C T I O N
=======================

A basic question for a fortranner is: How to create Fortran
applications with GUI interface? More advanced Fortran GUI programs
could be created with GTK−Fortran library
(https://github.com/jerryd/gtk−fortran), i.e. using the
interoperability between C and Fortran, which comes with the Fortran
2003 standard.

On September 2006 we started writing fortran modules which partially,
if not totally, interface WinBGIm−3.6 library. This is a modern C/C++
re−implementation (using Windows API) of the Borland Graphics
Interface.

Here we present the modules (f03bgi.f90, gks_bgi.f90) and an example
of application (cobra_bgi.f90). As always, details in the comments.

−−
This document has been created using EMACS (and some "friends"
tools like ps2pdf, pdftk etc..).

f03bgi.f90
c:/msys64/home/angelo/programming/WinBGIm−fortran/

1/13
14/06/2015

! ==
!
! Fortran Interface to the WinBGIm−3.6 Library
! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi
!
! It is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
!
!
! Created : Sep 15, 2006
! Last change : May 14, 2015
!
! NOTE 0
! Instead of adding ’use, intrinsic :: iso_c_binding’ in each procedure
! interface, use ’import’ as in the ’f03bgi’ module.
!
! NOTE 1
! Attention should be put on array declarations.
! In C/C++ the array index starts from 0 while in Fortran it starts from
! 1, so if an array expects an index variable or a constant from 0 it
! cannot be declared: integer :: v(MAXDIM) but MUST v(0:MAXDIM−1).
! For example we could have
!
! do i = BLACK,WHITE ...pal&color(i) ... enddo
!
! so ’color()’ in palettetype must be decalred color(0:15) and NOT
! color(16).
!
! NOTE 2
! The attribute ’value’ belongs to F2003 standard
! For the BOZ (binary, octal, hexadecimal) constants, we need the
! conversion with int() function. For example:
!
! RED_VALUE = (iand((v),int(Z’FF’)))
!
! Indeed, F2003 ’thinks’ that "Z’FF" is an integer(8) (64 bit, on Win32)
! or integer(16) (128 bit, on GNU Linux K10.04) and complains about the
! implicit conversion.
! The above happens with GFortran−4.6 .GE. 20100528.
!
! MODULES
!
! f03bgi_types
! f03bgi
!
! ==

module f03bgi_types
 use kind_consts
 use , intrinsic :: iso_c_binding
 implicit none
 integer , parameter :: MAXBUF = 256
 ! ==================
 ! COLORS constants
 ! ==================
 integer , parameter :: MAXCOLORS = 15
 enum, bind (C)
 enumerator :: BLACK, &
 BLUE,GREEN,CYAN,RED,MAGENTA, &
 BROWN,LIGHTGRAY,DARKGRAY,LIGHTBLUE,LIGHTGREEN, &
 LIGHTCYAN,LIGHTRED,LIGHTMAGENTA,YELLOW,WHITE
 end enum
 ! =======================
 ! WRITE_MODES constants
 ! =======================
 enum, bind (C)
 enumerator :: COPY_PUT,&
 XOR_PUT,OR_PUT,AND_PUT,NOT_PUT
 end enum
 ! =======================
 ! LINE_STYLES constants
 ! =======================
 enum, bind (C)
 enumerator :: SOLID_LINE, &
 DOTTED_LINE,CENTER_LINE,DASHED_LINE,USERBIT_LINE
 end enum

f03bgi.f90
c:/msys64/home/angelo/programming/WinBGIm−fortran/

2/13
14/06/2015

 ! =======================
 ! FILL_STYLES constants
 ! =======================
 enum, bind (C)
 enumerator :: EMPTY_FILL, &
 SOLID_FILL,LINE_FILL,LTSLASH_FILL,SLASH_FILL, &
 BKSLASH_FILL,LTBKSLASH_FILL,HATCH_FILL,XHATCH_FILL, &
 INTERLEAVE_FILL,WIDE_DOT_FILL,CLOSE_DOT_FILL,USER_FILL
 end enum
 ! ===========================
 ! TEXT_DIRECTIONS constants
 ! ===========================
 enum, bind (C)
 enumerator :: HORIZ_DIR,VERT_DIR
 end enum
 ! ======================
 ! FONT_TYPES constants
 ! ======================
 enum, bind (C)
 enumerator :: DEFAULT_FONT,&
 TRIPLEX_FONT,SMALL_FONT,SANSSERIF_FONT,GOTHIC_FONT,SCRIPT_FONT, &
 SIMPLEX_FONT,TRIPLEXSCRIPT_FONT,COMPLEX_FONT,EUROPEAN_FONT,BOLD_FONT
 end enum
 ! ========================
 ! Text justify constants
 ! ========================
 enum, bind (C)
 enumerator :: LEFT_TEXT, &
 CENTER_TEXT,RIGHT_TEXT
 enumerator :: BOTTOM_TEXT = 0,TOP_TEXT = 2
 end enum
 ! ==========================
 ! Line thickness constants
 ! ==========================
 enum, bind (C)
 enumerator :: NORM_WIDTH = 1,THICK_WIDTH = 3
 end enum
 ! =======================
 ! Others line constants
 ! =======================
 enum, bind (C)
 enumerator :: DOTTEDLINE_LENGTH = 2,CENTRELINE_LENGTH = 4
 enumerator :: USER_CHAR_SIZE = 0
 end enum
 ! =============================
 ! Viewport clipping constants
 ! =============================
 enum, bind (C)
 enumerator :: CLIP_ON = 1,CLIP_OFF = 0
 enumerator :: TOP_ON = 1,TOP_OFF = 0
 end enum
 ! ===
 ! Definitions for the key pad extended keys are added here. I have also
 ! modified getch() so that when one of these keys are pressed, getch will
 ! return a zero followed by one of these values. This is the same way
 ! that it works in conio for dos applications.
 ! ===
 enum, bind (C)
 enumerator :: KEY_HOME = 71,KEY_UP,KEY_PGUP
 enumerator :: KEY_LEFT = 75,KEY_CENTER,KEY_RIGHT
 enumerator :: KEY_END = 79,KEY_DOWN,KEY_PGDN,KEY_INSERT,KEY_DELETE
 enumerator :: KEY_F1 = 59,KEY_F2,KEY_F3,KEY_F4,KEY_F5,KEY_F6,KEY_F7, &
 KEY_F8,KEY_F9
 end enum
 ! ===========================
 ! GRAPHICS_ERRORS constants
 ! ===========================
 enum, bind (C)
 enumerator :: grOk = 0, &
 grNoInitGraph = −1, &
 grNotDetected = −2, &
 grFileNotFound = −3, &
 grInvalidDriver = −4, &
 grNoLoadMem = −5, &
 grNoScanMem = −6, &
 grNoFloodMem = −7, &
 grFontNotFound = −8, &
 grNoFontMem = −9, &

f03bgi.f90
c:/msys64/home/angelo/programming/WinBGIm−fortran/

3/13
14/06/2015

 grInvalidMode = −10, &
 grError = −11, &
 grIOerror = −12, &
 grInvalidFont = −13, &
 grInvalidFontNum = −14, &
 grInvalidDeviceNum = −15, &
 grInvalidVersion = −18
 end enum
 ! ===
 ! Graphics drivers constants, includes X11 which is particular to XBGI.
 ! ===
 enum, bind (C)
 enumerator :: DETECT, &
 CGA,MCGA,EGA,EGA64,EGAMONO, &
 IBM8514,HERCMONO,ATT400,VGA,PC3270
 end enum
 ! ==========================
 ! Graphics modes constants
 ! ==========================
 enum, bind (C)
 enumerator :: CGAC0 = 0,CGAC1,CGAC2,CGAC3,CGAHI
 enumerator :: MCGAC0 = 0,MCGAC1,MCGAC2,MCGAC3,MCGAMED,MCGAHI
 enumerator :: EGALO = 0,EGAHI = 1
 enumerator :: EGA64LO = 0,EGA64HI = 1,EGAMONOHI = 3
 enumerator :: HERCMONOHI = 0
 enumerator :: ATT400C0 = 0,ATT400C1,ATT400C2,ATT400C3,ATT400MED,ATT400HI
 enumerator :: VGALO = 0,VGAMED,VGAHI,VGAMAX
 enumerator :: PC3270HI = 0
 enumerator :: IBM8514LO = 0,IBM8514HI
 end enum
 ! =====================================
 ! Kind parameters for mouse functions
 ! From /usr/include/w32api/winuser.h
 ! =====================================
 enum, bind (C)
 enumerator :: WM_MOUSEMOVE = 512,&
 WM_LBUTTONDBLCLK = 515, &
 WM_LBUTTONDOWN = 513, &
 WM_LBUTTONUP = 514, &
 WM_MBUTTONDBLCLK = 521, &
 WM_MBUTTONDOWN = 519, &
 WM_MBUTTONUP = 520, &
 WM_RBUTTONDOWN = 516, &
 WM_RBUTTONUP = 517, &
 WM_RBUTTONDBLCLK = 518
 end enum
 ! ==
 ! Virtual−Key Codes
 ! From:
 ! http://msdn.microsoft.com/en−us/library/dd375731%28v=VS.85%29.aspx
 ! ==
 enum, bind (C)
 enumerator :: VK_LBUTTON = Z’01’,VK_RBUTTON = Z’02’, &
 VK_CANCEL = Z ’03’ , &
 VK_MBUTTON = Z ’04’ , &
 VK_XBUTTON1 = Z ’05’ ,VK_XBUTTON2 = Z ’06’ , &
 VK_BACK = Z ’08’ , &
 VK_TAB = Z ’09’ , &
 VK_CLEAR = Z ’0C’ , &
 VK_RETURN = Z ’0D’ , &
 VK_SHIFT = Z ’10’ , &
 VK_CONTROL = Z ’11’ , &
 VK_MENU = Z ’12’ , &
 VK_PAUSE = Z ’13’ , &
 VK_CAPITAL = Z ’14’ , &
 VK_KANA = Z ’15’ , &
 VK_HANGUEL = Z ’15’ , &
 VK_HANGUL = Z ’15’ , &
 VK_JUNJA = Z ’17’ , &
 VK_FINAL = Z ’18’ , &
 VK_HANJA = Z ’19’ , &
 VK_KANJI = Z ’19’ , &
 VK_ESCAPE = Z ’1B’ , &
 VK_CONVERT = Z ’1C’ , &
 VK_NONCONVERT = Z ’1D’ , &
 VK_ACCEPT = Z ’1E’ , &
 VK_MODECHANGE = Z ’1F’ , &
 VK_SPACE = Z ’20’ , &

f03bgi.f90
c:/msys64/home/angelo/programming/WinBGIm−fortran/

4/13
14/06/2015

 VK_PRIOR = Z ’21’ , &
 VK_NEXT = Z ’22’ , &
 VK_END = Z ’23’ , &
 VK_HOME = Z ’24’ , &
 VK_LEFT = Z ’25’ , &
 VK_UP = Z ’26’ , &
 VK_RIGHT = Z ’27’ , &
 VK_DOWN = Z ’28’ , &
 VK_SELECT = Z ’29’ , &
 VK_PRINT = Z ’2A’ , &
 VK_EXECUTE = Z ’2B’ , &
 VK_SNAPSHOT = Z ’2C’ , &
 VK_INSERT = Z ’2D’ , &
 VK_DELETE = Z ’2E’ , &
 VK_HELP = Z ’2F’
 end enum
 type , bind (C) :: arccoordstype
 integer (C_INT) :: x,y,xstart,ystart,xend,yend
 end type arccoordstype
 type , bind (C) :: fillsettingstype
 integer (C_INT) :: pattern,color
 end type fillsettingstype
 type , bind (C) :: linesettingstype
 integer (C_INT) :: linestyle,upattern,thickness
 end type linesettingstype
 type , bind (C) :: palettetype
 integer (C_SIGNED_CHAR) :: size,colors(0:15)
 end type palettetype
 type , bind (C) :: textsettingstype
 integer (C_INT) :: font,direction,charsize,horiz,vert
 end type textsettingstype
 type , bind (C) :: viewporttype
 integer (C_INT) :: left,top,right,bottom,clip
 end type viewporttype
end module f03bgi_types

module f03bgi
 use , intrinsic :: iso_c_binding
 use f03bgi_types
 implicit none
 interface
 subroutine arc (x,y,stangle,endangle,radius) bind (C)
 import
 integer (C_INT), intent (in), value :: x,y,stangle,endangle,radius
 end subroutine arc
 end interface
 interface
 subroutine bar (left,top,right,bottom) bind (C)
 import
 integer (C_INT), intent (in), value :: left,top,right,bottom
 end subroutine bar
 end interface
 interface
 subroutine bar3d (left,top,right,bottom,depth,topflag) bind (C)
 import
 integer (C_INT), intent (in), value :: left,top,right,bottom,depth,topflag
 end subroutine bar3d
 end interface
 interface
 subroutine circle (x,y,radius) bind (C)
 import
 integer (C_INT), intent (in), value :: x,y,radius
 end subroutine circle
 end interface
 interface
 subroutine cleardevice () bind (C)
 import
 end subroutine cleardevice
 end interface
 interface
 subroutine clearviewport () bind (C)
 import
 end subroutine clearviewport
 end interface
 interface
 subroutine clearmouseclick (kind) bind (C)
 import
 integer (C_INT), intent (in), value :: kind

f03bgi.f90
c:/msys64/home/angelo/programming/WinBGIm−fortran/

5/13
14/06/2015

 end subroutine clearmouseclick
 end interface
 interface
 subroutine closegraph () bind (C)
 import
 end subroutine closegraph
 end interface
 interface
 subroutine delay (millisec) bind (C)
 import
 integer (C_INT), intent (in), value :: millisec
 end subroutine delay
 end interface
 interface
 subroutine detectgraph (graphdriver,graphmode) bind (C)
 import
 integer (C_INT), intent (out) :: graphdriver,graphmode
 end subroutine detectgraph
 end interface
 interface
 subroutine drawpoly (numpoints,polypoints) bind (C)
 import
 integer (C_INT), intent (in), value :: numpoints
 ! polypoints should be an array of 2*numpoints elements
 integer (C_INT), intent (in) :: polypoints(*)
 end subroutine drawpoly
 end interface
 interface
 subroutine ellipse (x,y,stangle,endangle,xradius,yradius) bind (C)
 import
 integer (C_INT), intent (in), value :: x,y,stangle,endangle, &
 xradius,yradius
 end subroutine ellipse
 end interface
 interface
 subroutine fillellipse (x,y,xradius,yradius) bind (C)
 import
 integer (C_INT), intent (in), value :: x,y,xradius,yradius
 end subroutine fillellipse
 end interface
 interface
 subroutine fillpoly (numpoints,polypoints) bind (C)
 import
 integer (C_INT), intent (in), value :: numpoints
 ! polypoints should be an array of 2*numpoints elements
 integer (C_INT), intent (in) :: polypoints(*)
 end subroutine fillpoly
 end interface
 interface
 subroutine floodfill (x,y,border) bind (C)
 import
 integer (C_INT), intent (in), value :: x,y,border
 end subroutine floodfill
 end interface
 interface
 function getactivepage () bind (C)
 import
 integer (C_INT) :: getactivepage
 end function getactivepage
 end interface
 interface
 subroutine getarccoords (arccoords) bind (C)
 import
 type (arccoordstype) , intent (out) :: arccoords
 end subroutine getarccoords
 end interface
 interface
 subroutine getaspectratio (xasp,yasp) bind (C)
 import
 integer (C_INT), intent (out) :: xasp,yasp
 end subroutine getaspectratio
 end interface
 interface
 function getbkcolor () bind (C)
 import
 integer (C_INT) :: getbkcolor
 end function getbkcolor
 end interface

f03bgi.f90
c:/msys64/home/angelo/programming/WinBGIm−fortran/

6/13
14/06/2015

 interface
 ! ==
 ! This function WORKS only in ’graphics mode’!
 ! See handle_input() C++ source
 ! ==
 function getch () bind (C)
 import
 integer (C_INT) :: getch
 end function getch
 end interface
 interface
 function getcolor () bind (C)
 import
 integer (C_INT) :: getcolor
 end function getcolor
 end interface
 interface
 function getdefaultpalette () bind (C)
 import
 type (C_PTR) :: getdefaultpalette
 end function getdefaultpalette
 end interface
 interface
 function getdrivername () bind (C)
 import
 type (C_PTR) :: getdrivername
 end function getdrivername
 end interface
 interface
 subroutine getfillpattern (pattern) bind (C)
 import
 character (C_CHAR), intent (out) :: pattern(8)
 end subroutine getfillpattern
 end interface
 interface
 subroutine getfillsettings (fillinfo) bind (C)
 import
 type (fillsettingstype) , intent (out) :: fillinfo
 end subroutine getfillsettings
 end interface
 interface
 function getgraphmode () bind (C)
 import
 integer (C_INT) :: getgraphmode
 end function getgraphmode
 end interface
 interface
 ! ==
 ! Calling this routine we should pass the address of bitmap:
 ! call getimage(left,top,right,bottom,c_loc(bitmap))
 ! ==
 subroutine getimage (left,top,right,bottom,bitmap) bind (C)
 import
 integer (C_INT), intent (in), value :: left,top,right,bottom
 type (C_PTR) , value :: bitmap
 end subroutine getimage
 end interface
 interface
 subroutine getlinesettings (lineinfo) bind (C)
 import
 type (linesettingstype) , intent (out) :: lineinfo
 end subroutine getlinesettings
 end interface
 interface
 function getmaxcolor () bind (C)
 import
 integer (C_INT) :: getmaxcolor
 end function getmaxcolor
 end interface
 interface
 function getmaxmode () bind (C)
 import
 integer (C_INT) :: getmaxmode
 end function getmaxmode
 end interface
 interface
 function getmaxx () bind (C)
 import

f03bgi.f90
c:/msys64/home/angelo/programming/WinBGIm−fortran/

7/13
14/06/2015

 integer (C_INT) :: getmaxx
 end function getmaxx
 end interface
 interface
 function getmaxy () bind (C)
 import
 integer (C_INT) :: getmaxy
 end function getmaxy
 end interface
 interface
 function getmodename (mode_number) bind (C)
 import
 type (C_PTR) :: getmodename
 integer (C_INT), intent (in), value :: mode_number
 end function getmodename
 end interface
 interface
 subroutine getmoderange (graphdriver,lomode,himode) bind (C)
 import
 integer (C_INT), intent (in), value :: graphdriver
 integer (C_INT), intent (out) :: lomode,himode
 end subroutine getmoderange
 end interface
 interface
 subroutine getmouseclick (kind,x,y) bind (C)
 import
 integer (C_INT), intent (in), value :: kind
 integer (C_INT), intent (out) :: x,y
 end subroutine getmouseclick
 end interface
 interface
 subroutine getpalette (palette) bind (C)
 import
 type (palettetype) , intent (out) :: palette
 end subroutine getpalette
 end interface
 interface
 function getpalettesize () bind (C)
 import
 integer (C_INT) :: getpalettesize
 end function getpalettesize
 end interface
 interface
 function getpixel (x,y) bind (C)
 import
 integer (C_INT) :: getpixel
 integer (C_INT), intent (in), value :: x,y
 end function getpixel
 end interface
 interface
 subroutine gettextsettings (texttypeinfo) bind (C)
 import
 type (textsettingstype) , intent (out) :: texttypeinfo
 end subroutine gettextsettings
 end interface
 interface
 subroutine getviewsettings (v) bind (C)
 import
 type (viewporttype) , intent (out) :: v
 end subroutine getviewsettings
 end interface
 interface
 function getvisualpage () bind (C)
 import
 integer (C_INT) :: getvisualpage
 end function getvisualpage
 end interface
 interface
 function getx () bind (C)
 import
 integer (C_INT) :: getx
 end function getx
 end interface
 interface
 function gety () bind (C)
 import
 integer (C_INT) :: gety
 end function gety

f03bgi.f90
c:/msys64/home/angelo/programming/WinBGIm−fortran/

8/13
14/06/2015

 end interface
 interface
 subroutine graphdefaults () bind (C)
 import
 end subroutine graphdefaults
 end interface
 interface
 function grapherrormsg (errorcode) bind (C)
 import
 type (C_PTR) :: grapherrormsg
 integer (C_INT), intent (in), value :: errorcode
 end function grapherrormsg
 end interface
 interface
 function graphresult () bind (C)
 import
 integer (C_INT) :: graphresult
 end function graphresult
 end interface
 interface
 function imagesize (left,top,right,bottom) bind (C)
 import
 integer (C_INT) :: imagesize
 integer (C_INT), intent (in), value :: left,top,right,bottom
 end function imagesize
 end interface
 interface
 subroutine initgraph (graphdriver,graphmode,pathtodriver) bind (C)
 import
 integer (C_INT), intent (inout) :: graphdriver,graphmode
 !character(C_CHAR), dimension(*), intent(in) :: pathtodriver
 character (C_CHAR), intent (in) :: pathtodriver(*)
 end subroutine initgraph
 end interface
 interface
 subroutine initwindow (width,height,title,left,top) bind (C)
 import
 integer (C_INT), intent (in), value :: width,height
 character (C_CHAR), intent (in) :: title(*)
 integer (C_INT), intent (in), value :: left,top
 end subroutine initwindow
 end interface
 interface init_window
 module procedure initwindow2,initwindow3,initwindow4,initwindow5
 end interface init_window
 ! interface
 ! ! ===
 ! ! This routine is not implemented in the C++ version of BGI
 ! ! ’detect’ is a function pointer, see (get/put)image
 ! ! ===
 ! function installuserdriver(name,detect) bind(C)
 ! import
 ! integer(C_INT) :: installuserdriver
 ! character(C_CHAR), intent(in) :: name(*)
 ! integer(C_INT), intent(in), value :: detect
 ! end function installuserdriver
 ! end interface
 ! interface
 ! ! ===
 ! ! This routine is not implemented in the C++ version of BGI
 ! ! ===
 ! function installuserfont(name) bind(C)
 ! import
 ! integer(C_INT) :: installuserfont
 ! character(C_CHAR), intent(in) :: name(*)
 ! end function installuserfont
 ! end interface
 interface
 function is_key (k) bind (C)
 import
 integer (C_INT) :: is_key
 integer (C_INT), intent (in), value :: k
 end function is_key
 end interface
 interface
 function ismouseclick (kind) bind (C)
 import
 logical (C_BOOL) :: ismouseclick

f03bgi.f90
c:/msys64/home/angelo/programming/WinBGIm−fortran/

9/13
14/06/2015

 integer (C_INT), intent (in), value :: kind
 end function ismouseclick
 end interface
 interface
 function kbhit () bind (C)
 import
 integer (C_INT) :: kbhit
 end function kbhit
 end interface
 interface
 subroutine line (x1,y1,x2,y2) bind (C)
 import
 integer (C_INT), intent (in), value :: x1,y1,x2,y2
 end subroutine line
 end interface
 interface
 subroutine linerel (dx,dy) bind (C)
 import
 integer (C_INT), intent (in), value :: dx,dy
 end subroutine linerel
 end interface
 interface
 subroutine lineto (x,y) bind (C)
 import
 integer (C_INT), intent (in), value :: x,y
 end subroutine lineto
 end interface
 interface
 function mousex() bind (C)
 import
 integer (C_INT) :: mousex
 end function mousex
 end interface
 interface
 function mousey() bind (C)
 import
 integer (C_INT) :: mousey
 end function mousey
 end interface
 interface
 subroutine moverel (dx,dy) bind (C)
 import
 integer (C_INT), intent (in), value :: dx,dy
 end subroutine moverel
 end interface
 interface
 subroutine moveto (x,y) bind (C)
 import
 integer (C_INT), intent (in), value :: x,y
 end subroutine moveto
 end interface
 interface
 subroutine outtext (textstring) bind (C)
 import
 character (C_CHAR), intent (in) :: textstring(*)
 end subroutine outtext
 end interface
 interface
 subroutine outtextxy (x,y,textstring) bind (C)
 import
 integer (C_INT), intent (in), value :: x,y
 character (C_CHAR), intent (in) :: textstring(*)
 end subroutine outtextxy
 end interface
 interface
 subroutine pieslice (x,y,stangle,endangle,radius) bind (C)
 import
 integer (C_INT), intent (in), value :: x,y,stangle,endangle,radius
 end subroutine pieslice
 end interface
 interface
 ! ==
 ! Calling this routine we should pass the address of bitmap:
 ! call putimage(left,top,c_loc(bitmap),op)
 ! ==
 subroutine putimage (left,top,bitmap,op) bind (C)
 import
 integer (C_INT), intent (in), value :: left,top,op

f03bgi.f90
c:/msys64/home/angelo/programming/WinBGIm−fortran/

10/13
14/06/2015

 type (C_PTR) , value :: bitmap
 end subroutine putimage
 end interface
 interface
 subroutine putpixel (x,y,color) bind (C)
 import
 integer (C_INT), intent (in), value :: x,y,color
 end subroutine putpixel
 end interface
 interface
 subroutine rectangle (left,top,right,bottom) bind (C)
 import
 integer (C_INT), intent (in), value :: left,top,right,bottom
 end subroutine rectangle
 end interface
 ! interface
 ! ! ===
 ! ! This routine is not implemented in the C++ version of BGI
 ! ! ’driver’ is a function pointer, see (get/put)image
 ! ! ===
 ! function registerbgidriver(driver) bind(C)
 ! import
 ! integer(C_INT) :: registerbgidriver
 ! integer(C_INT), intent(in), value :: driver
 ! end function registerbgidriver
 ! end interface
 ! interface
 ! ! ===
 ! ! This routine is not implemented in the C++ version of BGI
 ! ! ’font’ is a function pointer, see (get/put)image
 ! ! ===
 ! function registerbgifont(font) bind(C)
 ! import
 ! integer(C_INT) :: registerbgifont
 ! integer(C_INT), intent(in), value :: font
 ! end function registerbgifont
 ! end interface
 interface
 ! ===
 ! ’h’ is a function pointer, see (get/put)image
 ! In C ’h’ is ’void h(int,int)’
 ! ===
 subroutine registermousehandler (kind,h) bind (C)
 import
 integer (C_INT), intent (in), value :: kind
 type (C_FUNPTR) , value :: h
 end subroutine registermousehandler
 end interface
 interface
 ! ==============================
 ! Really it is a dummy routine
 ! ==============================
 subroutine restorecrtmode () bind (C)
 import
 end subroutine restorecrtmode
 end interface
 interface
 subroutine sector (x,y,stangle,endangle,xradius,yradius) bind (C)
 import
 integer (C_INT), intent (in), value :: x,y,stangle,endangle, &
 xradius,yradius
 end subroutine sector
 end interface
 interface
 subroutine setactivepage (page) bind (C)
 import
 integer (C_INT), intent (in), value :: page
 end subroutine setactivepage
 end interface
 interface
 subroutine setallpalette (palette) bind (C)
 import
 type (palettetype) , intent (in) :: palette
 end subroutine setallpalette
 end interface
 interface
 subroutine setaspectratio (xasp,yasp) bind (C)
 import

f03bgi.f90
c:/msys64/home/angelo/programming/WinBGIm−fortran/

11/13
14/06/2015

 integer (C_INT), intent (in), value :: xasp,yasp
 end subroutine setaspectratio
 end interface
 interface
 subroutine setbkcolor (color) bind (C)
 import
 integer (C_INT), intent (in), value :: color
 end subroutine setbkcolor
 end interface
 interface
 subroutine setcolor (color) bind (C)
 import
 integer (C_INT), intent (in), value :: color
 end subroutine setcolor
 end interface
 interface
 subroutine setfillpattern (pattern,color) bind (C)
 import
 character (C_CHAR), intent (in) :: pattern(8)
 integer (C_INT), intent (in), value :: color
 end subroutine setfillpattern
 end interface
 interface
 subroutine setfillstyle (pattern,color) bind (C)
 import
 integer (C_INT), intent (in), value :: pattern,color
 end subroutine setfillstyle
 end interface
 ! interface
 ! ! ===
 ! ! This routine is not implemented in the C++ version of BGI
 ! ! ===
 ! function setgraphbufsize(bufsize) bind(C)
 ! import
 ! integer(C_INT) :: setgraphbufsize
 ! integer(C_INT), intent(in), value :: bufsize
 ! end function setgraphbufsize
 ! end interface
 interface
 ! ==============================
 ! Really it is a dummy routine
 ! ==============================
 subroutine setgraphmode (mode) bind (C)
 import
 integer (C_INT), intent (in), value :: mode
 end subroutine setgraphmode
 end interface
 interface
 subroutine setlinestyle (linestyle,upattern,thickness) bind (C)
 import
 integer (C_INT), intent (in), value :: linestyle,upattern,thickness
 end subroutine setlinestyle
 end interface
 interface
 ! ===
 ! This routine does not work as the original in BGI
 ! ===
 subroutine setpalette (colornum,color) bind (C)
 import
 integer (C_INT), intent (in), value :: colornum,color
 end subroutine setpalette
 end interface
 interface
 ! ===
 ! This routine does not work as the original in BGI
 ! ===
 subroutine setrgbpalette (colornum,red,green,blue) bind (C)
 import
 integer (C_INT), intent (in), value :: colornum,red,green,blue
 end subroutine setrgbpalette
 end interface
 interface
 subroutine settextjustify (horiz,vert) bind (C)
 import
 integer (C_INT), intent (in), value :: horiz,vert
 end subroutine settextjustify
 end interface
 interface

f03bgi.f90
c:/msys64/home/angelo/programming/WinBGIm−fortran/

12/13
14/06/2015

 subroutine settextstyle (font,direction,charsize) bind (C)
 import
 integer (C_INT), intent (in), value :: font,direction,charsize
 end subroutine settextstyle
 end interface
 interface
 subroutine setusercharsize (multx,divx,multy,divy) bind (C)
 import
 integer (C_INT), intent (in), value :: multx,divx,multy,divy
 end subroutine setusercharsize
 end interface
 interface
 subroutine setviewport (left,top,right,bottom,clip) bind (C)
 import
 integer (C_INT), intent (in), value :: left,top,right,bottom,clip
 end subroutine setviewport
 end interface
 interface
 subroutine setvisualpage (page) bind (C)
 import
 integer (C_INT), intent (in), value :: page
 end subroutine setvisualpage
 end interface
 interface
 subroutine setwritemode (mode) bind (C)
 import
 integer (C_INT), intent (in), value :: mode
 end subroutine setwritemode
 end interface
 interface strlen
 ! ===
 ! From Tobias Burnus,
 ! http://gcc.gnu.org/ml/fortran/2010−02/msg00029.html
 !
 ! Note: as both strlen and strlen2 have the same
 ! binding name, you can only use one of them at a
 ! time.
 ! ===
 ! function strlen(str) bind(C)
 ! import
 ! character(kind=C_CHAR) :: str(*)
 ! integer(C_SIZE_T) :: strlen
 ! end function strlen
 function strlen2 (str) bind (C,name= "strlen")
 import
 type (C_PTR) , value :: str
 integer (C_SIZE_T) :: strlen2
 end function strlen2
 end interface strlen
 interface
 function textheight (textstring) bind (C)
 import
 integer (C_INT) :: textheight
 character (C_CHAR), intent (in) :: textstring(*)
 end function textheight
 end interface
 interface
 function textwidth (textstring) bind (C)
 import
 integer (C_INT) :: textwidth
 character (C_CHAR), intent (in) :: textstring(*)
 end function textwidth
 end interface
contains
 function RGB(r,g,b)
 integer :: RGB
 integer , intent (in) :: r,g,b
 RGB = (ior (ior ((r), ishft ((g),8)), ishft ((b),16)))
 end function RGB
 function IS_BGI_COLOR(c)
 use f03bgi_types
 logical :: IS_BGI_COLOR
 integer , intent (in) :: c
 IS_BGI_COLOR = (((c) >= 0) .and. ((c) <= MAXCOLORS))
 end function IS_BGI_COLOR
 function IS_RGB_COLOR(c)
 logical :: IS_RGB_COLOR
 integer , intent (in) :: c

f03bgi.f90
c:/msys64/home/angelo/programming/WinBGIm−fortran/

13/13
14/06/2015

 IS_RGB_COLOR = .false.
 ! ==
 ! In C a variable is false if its numeric value is NULL, i.e. 0 (ZERO)
 ! It is true if its numeric value is NON−NULL, i.e. < 0 or > 0
 ! ==
 if ((iand ((c),Z ’04000000’)) /= 0) IS_RGB_COLOR = .true.
 end function IS_RGB_COLOR
 function RED_VALUE(v)
 integer :: RED_VALUE
 integer , intent (in) :: v
 RED_VALUE = (iand ((v), int (Z ’FF’)))
 end function RED_VALUE
 function GREEN_VALUE(v)
 integer :: GREEN_VALUE
 integer , intent (in) :: v
 ! we need to shift right
 GREEN_VALUE = (iand (ishft ((v),−8), int (Z ’FF’)))
 end function GREEN_VALUE
 function BLUE_VALUE(v)
 integer :: BLUE_VALUE
 integer , intent (in) :: v
 ! we need shift right
 BLUE_VALUE = (iand (ishft ((v),−16), int (Z ’FF’)))
 end function BLUE_VALUE
 function COLOR(r,g,b)
 integer :: COLOR
 integer , intent (in) :: r,g,b
 COLOR = (ior (int (Z ’04000000’),RGB(r,g,b)))
 end function COLOR
 function RGB_COLOR(c)
 integer :: RGB_COLOR
 integer , intent (in) :: c
 RGB_COLOR = iand (c, int (Z ’FFFFFF’))
 end function RGB_COLOR
 function CString (string) result (array)
 character (len=*) :: string
 character (kind= C_CHAR), dimension (len (string)+1) :: array
 integer :: i
 do i=1, len (string)
 array(i)=string(i:i)
 end do
 array(len (string)+1)= C_NULL_CHAR
 end function CString
 function quit ()
 use general_routines
 logical :: quit
 quit = .false.
 if (kbhit() /= 0) then
 quit = (upcase(char (getch())) == ’Q’)
 end if
 end function quit
 subroutine initwindow2 (width,height)
 integer (C_INT), intent (in), value :: width,height
 call initwindow (width,height,CString(’Windows BGI’),0,0)
 end subroutine initwindow2
 subroutine initwindow3 (width,height,title)
 integer (C_INT), intent (in), value :: width,height
 character (C_CHAR), intent (in) :: title(*)
 call initwindow (width,height,title,0,0)
 end subroutine initwindow3
 subroutine initwindow4 (width,height,title,left)
 integer (C_INT), intent (in), value :: width,height
 character (C_CHAR), intent (in) :: title(*)
 integer (C_INT), intent (in), value :: left
 call initwindow (width,height,title,left,0)
 end subroutine initwindow4
 subroutine initwindow5 (width,height,title,left,top)
 integer (C_INT), intent (in), value :: width,height
 character (C_CHAR), intent (in) :: title(*)
 integer (C_INT), intent (in), value :: left,top
 call initwindow (width,height,title,left,top)
 end subroutine initwindow5
end module f03bgi

gks_bgi.f90
c:/msys64/home/angelo/programming/WinBGIm−fortran/

1/7
14/06/2015

!
! Fortran Interface to the WinBGIm−3.6 Library
! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi
!
! It is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
!
!
! Created : Sep 16, 2010
! Last change : May 14, 2015
!

module gks_bgi
 use f03bgi
 implicit none
 integer , parameter , private :: MAX_NT = 10
 integer , private :: key,clipping = CLIP_ON,ivp_image(0:MAX_NT,4)
 logical , private :: graphics_on = .false.
 type (viewporttype) , private :: display
 real (DP), private :: wn(0:MAX_NT,4) = 0.0_DP,vp(0:MAX_NT,4) = 0.0_DP, &
 coeff(0:MAX_NT,4) ! sx,sy,tx,ty
 real (DP), private :: wk_wn(4) = 0.0_DP,wk_vp(4) = 0.0_DP,wkvp_eff(4) = 0.0_DP
 real (DP), private :: xmax,ymax,xxmax,yymax, &
 sx,sy,tx,ty
 private :: true_wkvp,get_transformation,transform,get_intersection, &
 setup_transformation,build_transformations,setup, &
 drawpoly2,drawpoly3,fillpoly2,fillpoly3, &
 initgraphics0,initgraphics1,initgraphics1b,initgraphics2, &
 initgraphics2b,initgraphics3,initgraphics4,initgraphics5, &
 outtext1,outtext3, &
 s2x,s2y,x2s,y2s
 interface gks_init
 module procedure initgraphics0,initgraphics1,initgraphics1b, &
 initgraphics2,initgraphics2b,initgraphics3,initgraphics4, &
 initgraphics5
 end interface gks_init
 interface gks_polyline
 module procedure drawpoly2,drawpoly3
 end interface gks_polyline
 interface gks_fillpoly
 module procedure fillpoly2,fillpoly3
 end interface gks_fillpoly
 interface gks_text
 module procedure outtext1,outtext3
 end interface gks_text
contains
 ! NT or WKT c(:) = (Sx,Sy,Tx,Ty)
 subroutine get_transformation (w,v,c)
 real (DP), intent (in) :: w(:),v(:)
 real (DP), intent (out) :: c(:)
 c(1) = (v(2)−v(1))/(w(2)−w(1))
 c(2) = (v(4)−v(3))/(w(4)−w(3))
 c(3) = v(1)−c(1)*w(1)
 c(4) = v(3)−c(2)*w(3)
 end subroutine get_transformation
 ! NT or WKT c(:) = (Sx,Sy,Tx,Ty)
 subroutine transform (u,c,v)
 real (DP), intent (in) :: u(:),c(:)
 real (DP), intent (out) :: v(:)
 v(1) = c(3)+c(1)*u(1)
 v(2) = c(3)+c(1)*u(2)
 v(3) = c(4)+c(2)*u(3)
 v(4) = c(4)+c(2)*u(4)
 end subroutine transform
 subroutine get_intersection (p,q)
 real (DP), intent (in) :: p(:)
 real (DP), intent (inout) :: q(:)
 integer , parameter :: L = 1,R = 2,B = 3,T = 4
 real (DP) :: m(4) ! aux
 ! Default to the effective wk vp
 m = p
 ! Verifying the intersection
 if ((q(L) <= p(R)) .and. (q(R) >= p(L)) &
 .and. (q(B) <= p(T)) .and. (q(T) >= p(B))) then
 m(L) = max(p(L),q(L))
 m(R) = min (p(R),q(R))

gks_bgi.f90
c:/msys64/home/angelo/programming/WinBGIm−fortran/

2/7
14/06/2015

 m(B) = max(p(B),q(B))
 m(T) = min (p(T),q(T))
 end if
 q = m
 end subroutine get_intersection
 ! Computing sx,sy,tx,ty for k−th WC to Screen transformation
 subroutine setup_transformation (k)
 integer , intent (in) :: k
 real (DP) :: vp_image(4),vpis(4),a(4),c(4) ! c(:) = (sxx,txx,syy,tyy)
 if (k < 0 .and. MAX_NT < k) then
 write (*,*) ’Error from setup_transformation():’
 write (*,*) ’K =’ ,k, ’ out of range!’
 call closegraph ()
 stop
 end if
 ! Computing the coefficients of WKT (s_xi,s_eta,t_xi,t_eta)
 call get_transformation (wk_wn,wkvp_eff,c)
 ! Now computing the ’image’ of vp
 call transform (vp(k,:),c,vp_image)
 call get_intersection (wkvp_eff,vp_image)
 ! Now we have to transform vp_image to real screen coordinates, ivp_image
 a(4) = ymax−1.0_DP
 a(1) = (xmax−1.0_DP)/xxmax
 a(2) = −a(4)/yymax ! Ys increases toward bottom
 a(3) = 0.0_DP
 call transform (vp_image,a,vpis)
 ! ivp_image(:) = (left,right,bottom,top)
 ivp_image(k,:) = nint (vpis)
 ! Finally, we can start to compute our WC to Screen transformation
 ! coefficients after resetting the viewport (stored as fp values)
 vpis(2) = ivp_image(k,2)−ivp_image(k,1)
 vpis(3) = ivp_image(k,3)−ivp_image(k,4)
 vpis(1) = 0
 vpis(4) = 0
 ! First : Computing the NT coefficients (su,sv,tu,tv)...
 call get_transformation (wn(k,:),vp(k,:),a)
 !
 ! ...then the WC to DC transornation coefficients:
 !
 ! a(3) = T_xi = t_xi+s_xi*tu
 ! a(4) = T_eta = t_eta+s_eta*tv
 ! a(1) = S_xi = s_xi*su
 ! a(2) = S_eta = s_eta*sv
 !
 a(3) = c(3)+c(1)*a(3)
 a(4) = c(4)+c(2)*a(4)
 a(1) = c(1)*a(1)
 a(2) = c(2)*a(2)
 ! Now the DC to Screen coefficients (Sx,Sy,Tx,Ty)...
 call get_transformation (vp_image,vpis,c)
 !
 ! ...then the WC to Screen transformation coefficients:
 !
 ! coeff(k,1) = sx = Sx*S_xi
 ! coeff(k,2) = sy = Sy*S_eta
 ! coeff(k,3) = tx = Tx+Sx*T_xi
 ! coeff(k,4) = ty = Ty+Sy*T_eta
 !
 coeff(k,1) = c(1)*a(1)
 coeff(k,2) = c(2)*a(2)
 coeff(k,3) = c(3)+c(1)*a(3)
 coeff(k,4) = c(4)+c(2)*a(4)
 end subroutine setup_transformation
 ! Computes the effective wk viewport, vp_eff, so that it has the same
 ! aspect ratio as wk window
 subroutine true_wkvp (w,v,v_eff)
 real (DP), intent (in) :: w(:),v(:)
 real (DP), intent (out) :: v_eff(:)
 real (DP) :: alpha,beta,xx,yy
 v_eff = v
 ! Computing aspect ratios Y/X
 xx = w(2)−w(1)
 yy = w(4)−w(3)
 alpha = yy/xx
 xx = v(2)−v(1)
 yy = v(4)−v(3)
 beta = yy/xx
 if (beta < alpha) then

gks_bgi.f90
c:/msys64/home/angelo/programming/WinBGIm−fortran/

3/7
14/06/2015

 xx = yy/alpha
 v_eff(2) = v_eff(1)+xx
 else
 yy = xx*alpha
 v_eff(4) = v_eff(3)+yy
 end if
 end subroutine true_wkvp
 subroutine build_transformations ()
 integer :: k
 ! Getting the true wk vp, wkvp_eff
 call true_wkvp (wk_wn,wk_vp,wkvp_eff)
 do k = 0,MAX_NT
 call setup_transformation (k)
 end do
 end subroutine build_transformations
 subroutine setup ()
 integer :: i
 if (.not. graphics_on) then
 graphics_on = .true.
 call getviewsettings (display)
 clipping = CLIP_ON
 ! Screen dimensions in pixels
 xmax = display%right−display%left+1.0_DP
 ymax = display%bottom−display%top+1.0_DP
 ! Normalization (in [0,1]) of screen dimensions
 yymax = max(xmax,ymax)
 xxmax = xmax/yymax
 yymax = ymax/yymax
 ! Default NT (0): cannot be modified!
 wn(0,:) = (/ 0.0_DP,1.0_DP,0.0_DP,1.0_DP /)
 vp(0,:) = (/ 0.0_DP,1.0_DP,0.0_DP,1.0_DP /)
 ! Now the other NT
 do i = 1,MAX_NT
 wn(i,:) = wn(0,:)
 vp(i,:) = vp(0,:)
 end do
 ! Default WKT: the vp is defaulted to the full display (normalized!)
 wk_wn = (/ 0.0_DP,1.0_DP,0.0_DP,1.0_DP /)
 wk_vp = (/ 0.0_DP,xxmax,0.0_DP,yymax /)
 call build_transformations ()
 ! Init to default: sx,sy,tx,ty
 call gks_selnt (0)
 else
 write (*,*) ’Error from setup():’
 write (*,*) ’The graphics is already enabled!’
 call closegraph ()
 stop
 end if
 end subroutine setup
 subroutine drawpoly2 (numpoints,points)
 integer , intent (in) :: numpoints
 real (DP), intent (in) :: points(2*numpoints)
 integer :: k,ke,ko,ipoints(2*numpoints)
 do k = 1,numpoints
 ke = k+k
 ko = ke−1
 ipoints(ko) = x2s(points(ko))
 ipoints(ke) = y2s(points(ke))
 enddo
 call drawpoly (numpoints,ipoints)
 end subroutine drawpoly2
 subroutine drawpoly3 (n,x,y)
 integer , intent (in) :: n
 real (DP), intent (in) :: x(:),y(:)
 integer :: k,ke,ko,ipoints(2*n)
 do k = 1,n
 ke = k+k
 ko = ke−1
 ipoints(ko) = x2s(x(k))
 ipoints(ke) = y2s(y(k))
 enddo
 call drawpoly (n,ipoints)
 end subroutine drawpoly3
 subroutine fillpoly2 (numpoints,points)
 integer , intent (in) :: numpoints
 real (DP), intent (in) :: points(2*numpoints)
 integer :: k,ke,ko,ipoints(2*numpoints)
 do k = 1,numpoints

gks_bgi.f90
c:/msys64/home/angelo/programming/WinBGIm−fortran/

4/7
14/06/2015

 ke = k+k
 ko = ke−1
 ipoints(ko) = x2s(points(ko))
 ipoints(ke) = y2s(points(ke))
 enddo
 call fillpoly (numpoints,ipoints)
 end subroutine fillpoly2
 subroutine fillpoly3 (n,x,y)
 integer , intent (in) :: n
 real (DP), intent (in) :: x(:),y(:)
 integer :: k,ke,ko,ipoints(2*n)
 do k = 1,n
 ke = k+k
 ko = ke−1
 ipoints(ko) = x2s(x(k))
 ipoints(ke) = y2s(y(k))
 enddo
 call fillpoly (n,ipoints)
 end subroutine fillpoly3
 subroutine initgraphics0 ()
 integer :: gdriver = DETECT,gmode,errorcode
 call initgraph (gdriver,gmode,CString(’’))
 ! ===============================
 ! Read result of initialization
 ! ===============================
 errorcode = graphresult()
 ! ===================
 ! An error occurred
 ! ===================
 if (errorcode /= grOk) then
 write (*,*) ’Graphics error: ’ ,grapherrormsg(errorcode)
 write (*, ’(A)’ ,advance= ’NO’) ’Press any key to halt:’
 key = getch()
 write (*,*) key
 ! ===========
 ! Terminate
 ! ===========
 stop
 endif
 call setup ()
 end subroutine initgraphics0
 subroutine initgraphics1 (window_size)
 integer , intent (in) :: window_size
 call init_window (window_size,window_size)
 call setup ()
 end subroutine initgraphics1
 subroutine initgraphics1b (title)
 character (len=*), intent (in) :: title
 integer , parameter :: WINDOW_SIZE = 600
 call init_window (WINDOW_SIZE,WINDOW_SIZE,CString(title))
 call setup ()
 end subroutine initgraphics1b
 subroutine initgraphics2 (window_xsize,window_ysize)
 integer , intent (in) :: window_xsize,window_ysize
 call init_window (window_xsize,window_ysize)
 call setup ()
 end subroutine initgraphics2
 subroutine initgraphics2b (window_size,title)
 integer , intent (in) :: window_size
 character (len=*), intent (in) :: title
 call init_window (window_size,window_size,CString(title))
 call setup ()
 end subroutine initgraphics2b
 subroutine initgraphics3 (window_xsize,window_ysize,title)
 integer , intent (in) :: window_xsize,window_ysize
 character (len=*), intent (in) :: title
 call init_window (window_xsize,window_ysize,CString(title))
 call setup ()
 end subroutine initgraphics3
 subroutine initgraphics4 (window_xsize,window_ysize,title,left)
 integer , intent (in) :: window_xsize,window_ysize,left
 character (len=*), intent (in) :: title
 call init_window (window_xsize,window_ysize,CString(title),left)
 call setup ()
 end subroutine initgraphics4
 subroutine initgraphics5 (window_xsize,window_ysize,title,left,top)
 integer , intent (in) :: window_xsize,window_ysize,left,top
 character (len=*), intent (in) :: title

gks_bgi.f90
c:/msys64/home/angelo/programming/WinBGIm−fortran/

5/7
14/06/2015

 call init_window (window_xsize,window_ysize,CString(title),left,top)
 call setup ()
 end subroutine initgraphics5
 subroutine outtext1 (text)
 character (len=*), intent (in) :: text
 call outtext (CString(text))
 end subroutine outtext1
 subroutine outtext3 (x,y,text)
 real (DP), intent (in) :: x,y
 character (len=*), intent (in) :: text
 call outtextxy (x2s(x),y2s(y),CString(text))
 end subroutine outtext3
 function s2x (pixel_x) ! The inverse
 real (DP) :: s2x
 integer , intent (in) :: pixel_x
 s2x = (pixel_x−tx)/sx
 end function s2x
 function s2y (pixel_y) ! The inverse
 real (DP) :: s2y
 integer , intent (in) :: pixel_y
 s2y = (pixel_y−ty)/sy
 end function s2y
 function x2s (x)
 integer :: x2s
 real (DP), intent (in) :: x
 x2s = nint (tx+sx*x)
 end function x2s
 function y2s (y)
 integer :: y2s
 real (DP), intent (in) :: y
 y2s = nint (ty+sy*y)
 end function y2s
 subroutine gks_arc (x,y,stangle,endangle,r)
 real (DP), intent (in) :: x,y,stangle,endangle,r
 call ellipse (x2s(x),y2s(y), nint (stangle), nint (endangle), &
 abs (x2s(r)−x2s(0.0_DP)), abs (y2s(r)−y2s(0.0_DP)))
 end subroutine gks_arc
 subroutine gks_bar (x1,x2,y1,y2)
 real (DP), intent (in) :: x1,x2,y1,y2
 call bar (x2s(x1),y2s(y1),x2s(x2),y2s(y2))
 end subroutine gks_bar
 subroutine gks_bar3d (x1,x2,y1,y2,depth,itop_flag)
 real (DP), intent (in) :: x1,x2,y1,y2,depth
 integer , intent (in) :: itop_flag
 call bar3d (x2s(x1),y2s(y1),x2s(x2),y2s(y2), &
 abs (x2s(depth)−x2s(0.0_DP)),itop_flag)
 end subroutine gks_bar3d
 subroutine gks_box (x1,x2,y1,y2)
 real (DP), intent (in) :: x1,x2,y1,y2
 call rectangle (x2s(x1),y2s(y1),x2s(x2),y2s(y2))
 end subroutine gks_box
 subroutine gks_circle (x,y,r)
 real (DP), intent (in) :: x,y,r
 call ellipse (x2s(x),y2s(y),0,360, &
 abs (x2s(r)−x2s(0.0_DP)), abs (y2s(r)−y2s(0.0_DP)))
 end subroutine gks_circle
 subroutine gks_close ()
 key = getch()
 call closegraph ()
 end subroutine gks_close
 subroutine gks_dot (x,y,color)
 real (DP), intent (in) :: x,y
 integer , intent (in) :: color
 call putpixel (x2s(x),y2s(y),color)
 end subroutine gks_dot
 subroutine gks_ellipse (x,y,stangle,endangle,a,b)
 real (DP), intent (in) :: x,y,stangle,endangle,a,b
 call ellipse (x2s(x),y2s(y), nint (stangle), nint (endangle), &
 abs (x2s(a)−x2s(0.0_DP)), abs (y2s(b)−y2s(0.0_DP)))
 end subroutine gks_ellipse
 subroutine gks_fillellipse (x,y,a,b)
 real (DP), intent (in) :: x,y,a,b
 call fillellipse (x2s(x),y2s(y), &
 abs (x2s(a)−x2s(0.0_DP)), abs (y2s(b)−y2s(0.0_DP)))
 end subroutine gks_fillellipse
 subroutine gks_fillarea (x,y,border_color)
 real (DP), intent (in) :: x,y
 integer , intent (in) :: border_color

gks_bgi.f90
c:/msys64/home/angelo/programming/WinBGIm−fortran/

6/7
14/06/2015

 call floodfill (x2s(x),y2s(y),border_color)
 end subroutine gks_fillarea
 subroutine gks_getimage (x1,x2,y1,y2,bitmap)
 real (DP), intent (in) :: x1,x2,y1,y2
 type (C_PTR) , value :: bitmap
 call getimage (x2s(x1),y2s(y2),x2s(x2),y2s(y1),bitmap)
 end subroutine gks_getimage
 subroutine gks_getmouseclick (kind,x,y)
 integer , intent (in) :: kind
 real (DP), intent (out) :: x,y
 integer :: pixel_x,pixel_y ! Location of the mouse click
 call getmouseclick (kind,pixel_x,pixel_y)
 x = s2x(pixel_x)
 y = s2y(pixel_y)
 end subroutine gks_getmouseclick
 function gks_getpixel (x,y) result (color)
 real (DP), intent (in) :: x,y
 integer :: color
 color = getpixel(x2s(x),y2s(y))
 end function gks_getpixel
 function gks_getx () result (x)
 real (DP) :: x
 x = s2x(getx())
 end function gks_getx
 function gks_gety () result (y)
 real (DP) :: y
 y = s2y(gety())
 end function gks_gety
 function gks_imagesize (x1,x2,y1,y2) result (sz)
 real (DP), intent (in) :: x1,x2,y1,y2
 integer :: sz
 sz = imagesize(x2s(x1),y2s(y2),x2s(x2),y2s(y1))
 end function gks_imagesize
 subroutine gks_line (x1,y1,x2,y2)
 real (DP), intent (in) :: x1,y1,x2,y2
 call line (x2s(x1),y2s(y1),x2s(x2),y2s(y2))
 end subroutine gks_line
 subroutine gks_linerel (dx,dy)
 real (DP), intent (in) :: dx,dy
 call linerel (x2s(dx)−x2s(0.0_DP),y2s(dy)−y2s(0.0_DP))
 end subroutine gks_linerel
 subroutine gks_lineto (x,y)
 real (DP), intent (in) :: x,y
 call lineto (x2s(x),y2s(y))
 end subroutine gks_lineto
 subroutine gks_moverel (dx,dy)
 real (DP), intent (in) :: dx,dy
 call moverel (x2s(dx)−x2s(0.0_DP),y2s(dy)−y2s(0.0_DP))
 end subroutine gks_moverel
 subroutine gks_moveto (x,y)
 real (DP), intent (in) :: x,y
 call moveto (x2s(x),y2s(y))
 end subroutine gks_moveto
 subroutine gks_pieslice (x,y,stangle,endangle,r)
 real (DP), intent (in) :: x,y,stangle,endangle,r
 call sector (x2s(x),y2s(y), nint (stangle), nint (endangle), &
 abs (x2s(r)−x2s(0.0_DP)), abs (y2s(r)−y2s(0.0_DP)))
 end subroutine gks_pieslice
 subroutine gks_putimage (x,y,bitmap,op)
 real (DP), intent (in) :: x,y
 type (C_PTR) , value :: bitmap
 integer , intent (in) :: op
 call putimage (x2s(x),y2s(y),bitmap,op)
 end subroutine gks_putimage
 subroutine gks_sector (x,y,stangle,endangle,a,b)
 real (DP), intent (in) :: x,y,stangle,endangle,a,b
 call sector (x2s(x),y2s(y), nint (stangle), nint (endangle), &
 abs (x2s(a)−x2s(0.0_DP)), abs (y2s(b)−y2s(0.0_DP)))
 end subroutine gks_sector
 subroutine gks_selnt (k)
 integer , intent (in) :: k
 ! In absolute coordinate, so we don’t need to open the full window
 ! viewport :−)
 call setviewport (ivp_image(k,1),ivp_image(k,4), &
 ivp_image(k,2),ivp_image(k,3),clipping)
 ! coeff(k,:) is computed elsewhere
 sx = coeff(k,1)
 sy = coeff(k,2)

gks_bgi.f90
c:/msys64/home/angelo/programming/WinBGIm−fortran/

7/7
14/06/2015

 tx = coeff(k,3)
 ty = coeff(k,4)
 end subroutine gks_selnt
 subroutine gks_swn (k,x1,x2,y1,y2)
 integer , intent (in) :: k
 real (DP), intent (in) :: x1,x2,y1,y2
 if (k < 1 .and. MAX_NT < k) then
 write (*,*) ’Error from gks_swn():’
 write (*,*) ’K =’ ,k, ’ out of range!’
 call closegraph ()
 stop
 end if
 wn(k,:) = (/ x1,x2,y1,y2 /)
 call setup_transformation (k)
 end subroutine gks_swn
 subroutine gks_svp (k,x1,x2,y1,y2)
 integer , intent (in) :: k
 real (DP), intent (in) :: x1,x2,y1,y2
 if (k < 1 .and. MAX_NT < k) then
 write (*,*) ’Error from gks_svp():’
 write (*,*) ’K =’ ,k, ’ out of range!’
 call closegraph ()
 stop
 end if
 vp(k,:) = (/ x1,x2,y1,y2 /)
 call setup_transformation (k)
 end subroutine gks_svp
 subroutine gks_swkwn (x1,x2,y1,y2)
 real (DP), intent (in) :: x1,x2,y1,y2
 wk_wn = (/ x1,x2,y1,y2 /)
 call build_transformations ()
 end subroutine gks_swkwn
 subroutine gks_swkvp (x1,x2,y1,y2)
 real (DP), intent (in) :: x1,x2,y1,y2
 wk_vp = (/ x1,x2,y1,y2 /)
 call build_transformations ()
 end subroutine gks_swkvp
 subroutine gks_sclip (clip)
 integer , intent (in) :: clip
 clipping = clip
 end subroutine gks_sclip
 subroutine gks_schrsz (x,y)
 real (DP), intent (in) :: x,y
 type (textsettingstype) :: textinfo
 integer mul_x,mul_y,div_x,div_y
 call gettextsettings (textinfo)
 call settextstyle (textinfo%font,textinfo%direction,1)
 ! Getting the current pixel dimensions
 div_x = textwidth(CString(’H’))
 div_y = textheight(CString(’H’))
 ! New pixel dimensions
 mul_x = nint (x* abs (x2s(1.0_DP)−x2s(0.0_DP)))
 mul_y = nint (y* abs (y2s(1.0_DP)−y2s(0.0_DP)))
 call setusercharsize (mul_x,div_x,mul_y,div_y)
 end subroutine gks_schrsz
end module gks_bgi

cobra_bgi.f90
c:/msys64/home/angelo/programming/WinBGIm−fortran/apps/

1/6
14/06/2015

!
! Fortran Interface to the WinBGIm−3.6 Library
! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi
!
! It is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
!
!
! HOW TO BUILD (MSYS2/MINGW64 shells)
!
! cd ~/work/WinBGIm−3.6p
! g++ −c −O3 winbgim.cxx
! ar rcs libWinBGIm.a winbgim.o
!
! mkdir −p ~/programming/lib/msys2
! mv libWinBGIm.a ~/programming/lib/msys2
! rm winbgim.o
!
! cd demo
! g++ −mwindows −I.. ball_cursor.cpp ../winbgim.cxx −o ball_cursor.out
!
! cd ~/programming/WinBGIm−fortran/apps
!
! rm −rf {*.mod,~/programming/modules/*} && \
! gfortran −O3 −Wall −mwindows \
! −J ~/programming/modules \
! ~/programming/basic−modules/basic_mods.f90 \
! ../{f03bgi.f90,gks_bgi.f90} cernlib_mods.f90 cobra_bgi.f90 \
! −L ~/programming/lib/msys2 −lWinBGIm −lstdc++ \
! −o cobra_bgi.out
!
! ./cobra_bgi.out (or: ./cobra_bgi.out < cobra_bgi.dat)
!
! In MINGW64, add ’−static’ and:
!
! msys2 ==> mingw64
! cobra_bgi.out ==> cobra_bgi
!
!
! DESCRIPTION
! Motion in the magnetic field of COBRA spectrometer.
!
! REFERENCES
! Press Numerical Recipes C.U.P
! Karlen D., Computational Physics (WEB notes)
! Karlen D.,Computers in Science (WEB notes)
! G95 Manual and web page
! GSL Manual
!

module cobra_field
 use kind_consts , only : DP
 use math_consts
 use io_consts
 use elliptic_k_e
 implicit none
 integer :: nCoils
 integer :: ierr
 character (len=*), parameter :: FCOILS = ’ashield.coils’
 real (DP), parameter :: BF0 = 12.6_DP ! BF0 in KG
 real (DP), dimension (:), allocatable :: zco,rco,ico
 real (DP) :: field_qradius = −1.0_DP
contains
 subroutine magnet_on ()
 ! ===
 ! The routine reads the coils data (RCO, ZCO, ICO, being the currents
 ! ICO not normalized), computes the normalization factor CF and
 ! normalizes the currents so to have a field with value BF0 at origin
 ! ===
 real (DP) :: r,z,curr,a2,az2,cf,fac
 integer :: k
 write (STDERR,*) ’...now reading ’ , trim (FCOILS)
 open (20,file=FCOILS,status= ’OLD’ ,action= ’READ’)
 read (20,*) nCoils
 allocate (zco(nCoils),STAT=ierr)
 if (ierr /= 0) call error (’ZCO: Allocation request denied’)

cobra_bgi.f90
c:/msys64/home/angelo/programming/WinBGIm−fortran/apps/

2/6
14/06/2015

 allocate (rco(nCoils),STAT=ierr)
 if (ierr /= 0) call error (’RCO: Allocation request denied’)
 allocate (ico(nCoils),STAT=ierr)
 if (ierr /= 0) call error (’ICO: Allocation request denied’)
 ! =====================
 ! Now computing B0...
 ! =====================
 cf = 0.0_DP
 do k = 1,nCoils
 read (20,*) r,z,curr
 field_qradius = max(field_qradius,r)
 rco(k) = r
 zco(k) = z
 ico(k) = curr
 a2 = r**2
 az2 = a2+z**2
 cf = cf+curr*a2/(az2* sqrt (az2))
 enddo
 close (20)
 cf = BF0/(PI*cf)
 fac = 5.D3*cf
 write (STDERR,*) ’Magnetic field computed... B−FIELD’
 write (STDERR,*)
 write (STDERR,*) ’Requested field at (0,0), BF0 : ’ ,BF0, ’ KG’
 write (STDERR,*) ’Nominal field with I, Bz(0,0) : ’ ,BF0/fac, ’ KG’
 write (STDERR,*) ’BF0 is obtained with C*I, C : ’ ,fac
 write (STDERR,*) ’Field radial region, R : ’ ,field_qradius, ’ cm’
 write (STDERR,*)
 ! ==
 ! Normalization of currents. Note...vec = vec*scalar
 ! ==
 ico = ico*cf
 ! Now, we need only the sqaure
 field_qradius = field_qradius**2
 end subroutine magnet_on
 subroutine magnet_off ()
 if (allocated (ico)) deallocate (ico,stat=ierr)
 if (ierr /= 0) call error (’ICO: Deallocation request denied’)
 if (allocated (rco)) deallocate (rco,stat=ierr)
 if (ierr /= 0) call error (’RCO: Deallocation request denied’)
 if (allocated (zco)) deallocate (zco,stat=ierr)
 if (ierr /= 0) call error (’ZCO: Deallocation request denied’)
 end subroutine magnet_off
 subroutine bcalc (r,z,br,bz)
 real (DP), intent (in) :: r,z
 real (DP), intent (out) :: br,bz
 ! ===
 ! The routine computes the components BR and BZ of field at point
 ! (R,Z) (remember the field symmetry).
 ! DELIEC(), DELIKC() are new user entry name; old: DELLIE(), DELLIK
 ! ===
 real (DP) :: zz,a2,cq,ck,ce,p,q
 integer :: k
 br = 0.0_DP
 bz = 0.0_DP
 do k = 1,nCoils
 ! ===
 ! If the point is near a coil, less then 1 mm,...
 ! ===
 if (abs (rco(k)−r) < 0.1_DP .and.abs (zco(k)−z) < 0.1_DP) then
 br = 0.0_DP
 bz = 0.0_DP
 return
 endif
 zz = z−zco(k)
 p = zz**2
 cq = (r+rco(k))**2+p
 ck = sqrt (4.0_DP*r*rco(k)/cq)
 cq = ico(k)/ sqrt (cq)
 ce = (rco(k)−r)**2+p
 ce = deliec(ck)/ce
 ck = delikc(ck)
 p = p+r**2
 a2 = rco(k)**2
 q = a2−p
 p = p+a2
 bz = bz+cq*(ck+q*ce)
 if (r > 0.0_DP) br = br+cq*zz*(−ck+p*ce)

cobra_bgi.f90
c:/msys64/home/angelo/programming/WinBGIm−fortran/apps/

3/6
14/06/2015

 enddo
 if (r > 0.0_DP) br = br/r
 end subroutine bcalc
 ! ==
 ! Computing the Magnetic Field: at X,Y,Z
 ! ==
 subroutine get_field (x,b)
 real (DP), intent (in) :: x(:)
 real (DP), intent (out) :: b(:)
 real (DP) :: r,z,br
 r = hypot (x(1),x(2))
 z = x(3)
 call bcalc (r,z,br,b(3))
 if (r > 0.0_DP) then
 br = br/r
 b(1) = br*x(1)
 b(2) = br*x(2)
 else
 b(1) = 0.0_DP
 b(2) = 0.0_DP
 endif
 end subroutine get_field
end module cobra_field

module solution
 use cobra_field
 use randoms
 use gks_bgi
 implicit none
 integer :: num_eve = 10
 real (DP) :: s0 = 0.0_DP,s1 = 200.0_DP, stp = 0.5_DP ! s0,s1,stp in cm
 real (DP) :: c_x = 0.0_DP,c_y = 0.0_DP,delta_x = 50.0_DP,delta_y = 50.0_DP
 real (DP) :: x_min = 0.0_DP,x_max = 0.0_DP,y_min = 0.0_DP,y_max = 0.0_DP, &
 s_min = 0.0_DP,s_max = 0.0_DP
contains
 subroutine init_data ()
 use get_data
 call get (’Number of events, NUM_EVE = ’ ,num_eve)
 call get (’Track length, S0 = ’ ,s0)
 call get (’Track length, S1 = ’ ,s1)
 call get (’Track step, STP = ’ ,stp)
 call get (’Center X, C_X = ’ ,c_x)
 call get (’Center Y, C_Y = ’ ,c_y)
 call get (’Width X, DELTA_X = ’ ,delta_x)
 call get (’Width Y, DELTA_Y = ’ ,delta_y)
 call init_rand ()
 end subroutine init_data
 subroutine solve ()
 use io_consts
 integer , parameter :: NEQ = 6, &
 WINDOWS_HEIGHT = 612,WINDOWS_WIDTH = 1200
 integer :: i,col = 1,max_colors
 real (DP) :: x1,x2,y1,y2,y0(NEQ) = 0.0_DP
 call gks_init (WINDOWS_WIDTH,WINDOWS_HEIGHT,’COBRA with BGI!’)
 ! 0.51 = 612/1200
 call gks_swkwn (0.0_DP,1.0_DP,0.0_DP,0.51_DP)
 call gks_swkvp (0.0_DP,1.0_DP,0.0_DP,0.51_DP)
 ! We really need half...
 delta_x = delta_x/2
 delta_y = delta_y/2
 ! First view
 x1 = c_x−delta_x
 x2 = c_x+delta_x
 y1 = c_y−delta_y
 y2 = c_y+delta_y
 call gks_swn (1,x1,x2,y1,y2)
 call gks_svp (1,0.02_DP,0.49_DP,0.02_DP,0.49_DP)
 call gks_selnt (1)
 call setcolor (RED)
 call gks_box (x1,x2,y1,y2)
 ! Second view
 x1 = −180.0_DP
 x2 = −x1
 y1 = 30.0_DP
 y2 = 40.0_DP
 call gks_swn (2,x1,x2,y1,y2)
 call gks_svp (2,0.51_DP,0.98_DP,0.02_DP,0.49_DP)
 call gks_selnt (2)

cobra_bgi.f90
c:/msys64/home/angelo/programming/WinBGIm−fortran/apps/

4/6
14/06/2015

 call setcolor (CYAN)
 call gks_box (x1,x2,y1,y2)
 max_colors = getmaxcolor()+1
 call magnet_on ()
 ! Boundaries initialization
 x_min = 1E6_DP
 x_max = −x_min
 y_min = 1E6_DP
 y_max = −y_min
 s_min = s0
 s_max = s0
 write (STDERR,*)
 write (STDERR,’(A)’ ,advance= ’NO’) ’Processing...’
 do i = 1,num_eve
 col = mod(col+1,max_colors)
 if (col == 0) col = col+1
 call get_event_kinematics (y0)
 call event_tracking (col,s0,s1,y0)
 if (quit()) exit
 end do
 write (STDERR,’(A)’) ’done!’
 call magnet_off ()
 call gks_close ()
 end subroutine solve
 subroutine get_event_kinematics (y0)
 real (DP), intent (out) :: y0(:)
 real (DP), parameter :: PHI1 = −60.0_DP*DEG2RAD,PHI2 = 60.0_DP*DEG2RAD, &
 CTHE1 = −0.35_DP,CTHE2 = 0.0_DP, &
 P = 52.8_DP
 real (DP) :: phi,cos_the,sin_the
 ! =======================================
 ! r = r1+(r2−r1)*rnd() ==> r in [r1,r2)
 ! =======================================
 phi = PHI1+(PHI2−PHI1)*get_rand()
 cos_the = CTHE1+(CTHE2−CTHE1)*get_rand()
 sin_the = sqrt (1.0_DP−cos_the**2)
 y0(1:3) = 0.0_DP
 y0(4:6) = P*(/ cos (phi)*sin_the, sin (phi)*sin_the,cos_the /)
 end subroutine get_event_kinematics
 subroutine event_tracking (col,s0,s1,y0)
 use runge_kutta
 integer , intent (in) :: col
 real (DP), intent (in) :: s0,s1,y0(:)
 integer :: num_equ
 real (DP) :: phi_max,rq,r_max,p(2),s,x(size(y0)),w(3*size(y0))
 num_equ = size (y0)
 ! ====================
 ! Initial conditions
 ! ====================
 x = y0
 s = s0
 p = x(1:2)
 rq = dot_product (p,p)
 ! Now, r_max is the square...
 r_max = rq
 call gks_selnt (1)
 call gks_dot (x(1),x(2),col)
 ! ===================
 ! Updating position
 ! ===================
 do while ((kbhit() == 0) .and. (s < s1))
 call drkstp (num_equ,stp,s,x,derivs,w)
 rq = dot_product (x(1:2),x(1:2))
 if (rq > r_max) then
 r_max = rq
 p = x(1:2)
 end if
 x_min = min (x(1),x_min)
 x_max = max(x(1),x_max)
 y_min = min (x(2),y_min)
 y_max = max(x(2),y_max)
 s_min = min (s,s_min)
 s_max = max(s,s_max)
 call gks_dot (x(1),x(2),col)
 if (rq > field_qradius) exit
 enddo
 ! phi in degrees
 phi_max = atan2 (p(2),p(1))/DEG2RAD

cobra_bgi.f90
c:/msys64/home/angelo/programming/WinBGIm−fortran/apps/

5/6
14/06/2015

 r_max = sqrt (r_max)
 call gks_selnt (2)
 call gks_dot (phi_max,r_max,WHITE)
 end subroutine event_tracking
 subroutine derivs (s,y,f)
 real (DP), intent (in) :: s,y(*)
 real (DP), intent (out) :: f(*)
 ! ===
 ! Compute the derivatives of the equations to be integrated (with
 ! Runge−Kutta method).
 ! The equations of motion are
 !
 ! dR/dS = P/|P|
 ! dP/dS = C00*(P/|P|) X B
 !
 ! with
 !
 ! R(1:3) the vector radius, in cm;
 ! P(1:3) the momentum, in MeV/c;
 ! S = |V|*dt trajectory arc length, in cm;
 ! |P| the momentum magnitude, in MeV/c;
 ! B(1:3) the field, in KG;
 ! C00 = 0.299792458, positron charge in ((MeV/c)/cm)/KG;
 ! X the cross product.
 !
 ! Y(1:3) = R(1:3) is the position of particle.
 ! Y(4:6) = P(1:3) is the momentum of particle.
 ! ===
 real (DP), parameter :: C00 = 0.299792458_DP
 real (DP), save :: b(3),p
 ! =============================
 ! Momentum magnitude in MeV/c
 ! =============================
 p = sqrt (y(4)**2+y(5)**2+y(6)**2)
 call get_field (y(1:3),b)
 f(1:3) = y(4:6)/p
 f(4) = C00*(f(2)*b(3)−f(3)*b(2))
 f(5) = C00*(f(3)*b(1)−f(1)*b(3))
 f(6) = C00*(f(1)*b(2)−f(2)*b(1))
 end subroutine derivs
 subroutine print_data ()
 delta_x = x_max−x_min
 delta_y = y_max−y_min
 c_x = x_min+0.5_DP*delta_x
 c_y = y_min+0.5_DP*delta_y
 write (*,*)
 write (*,*) ’EFFECTIVE VALUES:’
 write (*,*) ’ C_X = ’ ,c_x
 write (*,*) ’ C_Y = ’ ,c_y
 write (*,*) ’ DELTA_X = ’ ,delta_x
 write (*,*) ’ DELTA_Y = ’ ,delta_y
 write (*,*)
 write (*,*) ’S_MIN = ’ ,s_min
 write (*,*) ’S_MAX = ’ ,s_max
 end subroutine print_data
end module solution

program cobra_bgi
 use solution
 implicit none
 call init_data ()
 call solve ()
 call print_data ()
end program cobra_bgi

subroutine error (chMsg)
 use io_consts
 implicit none
 character (len=*), intent (in) :: chMsg
 ! ===
 ! Print the message chMsg and stop the program.
 ! This routine MUST be called with an unrecoverable error
 ! ===
 write (STDERR,*)
 write (STDERR,*) ’Run−time error...’
 write (STDERR,*) chMsg
 write (STDERR,*) ’...now exiting to system.’
 write (STDERR,*)

cobra_bgi.f90
c:/msys64/home/angelo/programming/WinBGIm−fortran/apps/

6/6
14/06/2015

 stop
end subroutine error

! function hypot(x,y)
! use kind_consts
! implicit none
! real(DP) :: hypot
! real(DP), intent(in) :: x,y
! real(DP) :: absx,absy
! absx = abs(x)
! absy = abs(y)
! if (absx > absy) then
! hypot = absx*sqrt(1.0_DP+(absy/absx)**2)
! else
! if (absy == 0.0_DP) then
! hypot = 0.0_DP
! else
! hypot = absy*sqrt(1.0_DP+(absx/absy)**2)
! end if
! end if
! end function hypot

