WinBGIm-—fortran.text
c:/msys64/home/angelo/programming/WinBGIm—fortran/

1/1
14/06/2015

WINBGIM - FORTRAN

by Angelo Graziosi

INTRODUCTION

A basic question for a fortranner is: How to create Fortran

applications with GUI interface? More advanced Fortran GUI programs
could be created with GTK-Fortran library
(https://github.com/jerryd/gtk—fortran), i.e. using the

interoperability between C and Fortran, which comes with the Fortran
2003 standard.

On September 2006 we started writing fortran modules which partially,
if not totally, interface WinBGIm-3.6 library. This is a modern C/C++
re—implementation (using Windows API) of the Borland Graphics
Interface.

Here we present the modules (f03bgi.f90, gks_bgi.f90) and an example
of application (cobra_bgi.f90). As always, details in the comments.

This document has been created using EMACS (and some "friends"
tools like ps2pdf, pdftk etc..).




f03bgi.fo0
c:/msys64/home/angelo/programming/WinBGIm—fortran/

1/13
14/06/2015

!
!
! Fortran Interface to the WinBGIm-3.6 Library

! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi

|

! It is distributed in the hope that it will be useful,

I but WITHOUT ANY WARRANTY; without even the implied warranty of
I MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

1

|

| Created : Sep 15, 2006

! Last change : May 14, 2015

|

I'NOTE 0

I Instead of adding 'use, intrinsic :: iso_c_binding’ in each procedure

! interface, use 'import’ as in the 'f03bgi’ module.

|

INOTE 1

I Attention should be put on array declarations.

In C/C++ the array index starts from 0 while in Fortran it starts from

1, so if an array expects an index variable or a constant from O it
cannot be declared: integer :: v(MAXDIM) but MUST v(0:MAXDIM-1).
For example we could have

do i = BLACK,WHITE ...pal&color(i) ... enddo

!
!
!
!
!
!
!
I so 'color()’ in palettetype must be decalred color(0:15) and NOT
I color(16).

1

NOTE 2
The attribute 'value’ belongs to F2003 standard
For the BOZ (binary, octal, hexadecimal) constants, we need the
conversion with int() function. For example:

RED_VALUE = (iand((v),int(Z'FF’)))

!
!
!
!
!
!
!
I Indeed, F2003 'thinks’ that "Z'FF" is an integer(8) (64 bit, on Win32)

I orinteger(16) (128 bit, on GNU Linux K10.04) and complains about the
I implicit conversion.

I The above happens with GFortran—-4.6 .GE. 20100528.

|

|

I

1

|

1

|

MODULES

fO3bgi_types
fO3bgi

module f03bgi_types
use kind_consts

use, intrinsic > iso_c_binding
implicit none

integer , parameter : MAXBUF = 256
|

i COLORS constants
|

integer , parameter : MAXCOLORS =15
enum, bind (C)
enumerator : BLACK, &

BLUE,GREEN,CYAN,RED,MAGENTA, &
BROWN,LIGHTGRAY,DARKGRAY,LIGHTBLUE,LIGHTGREEN, &
LIGHTCYAN,LIGHTRED,LIGHTMAGENTA,YELLOW,WHITE

end enum

|

| WRITE_MODES constants
|

enum, bind (C)

enumerator 1 COPY_PUT,&
XOR_PUT,OR_PUT,AND_PUT,NOT_PUT
end enum

| LINE_STYLES constants
|
enum, bind (C)
enumerator 1 SOLID _LINE, &
DOTTED_LINE,CENTER_LINE,DASHED_LINE,USERBIT_LINE
end enum




f03bgi.fo0
c:/msys64/home/angelo/programming/WinBGIm—fortran/

2/13
14/06/2015

| FILL_STYLES constants
|

enum, bind (C)

enumerator : EMPTY_FILL, &
SOLID_FILL,LINE_FILL,LTSLASH_FILL,SLASH_FILL, &
BKSLASH_FILL,LTBKSLASH_FILL,HATCH_FILL,XHATCH_FILL, &
INTERLEAVE_FILL,WIDE_DOT_FILL,CLOSE_DOT_FILL,USER_FILL

end enum
|

! TEXT_DIRECTIONS constants
|

enum, bind (C)

enumerator : HORIZ_DIR,VERT_DIR
end enum
|

| FONT_TYPES constants
|

enum, bind (C)
enumerator :: DEFAULT_FONT,&
TRIPLEX_FONT,SMALL_FONT,SANSSERIF_FONT,GOTHIC_FONT,SCRIPT_FONT, &
SIMPLEX_FONT, TRIPLEXSCRIPT_FONT,COMPLEX_FONT,EUROPEAN_FONT,BOLD_FONT

end enum

|

I Text justify constants
|

enum, bind (C)

enumerator :: LEFT_TEXT, &
CENTER_TEXT,RIGHT_TEXT
enumerator :: BOTTOM_TEXT =0,TOP_TEXT =2

end enum
|

i Line thickness constants
!
enum, bind (C)

enumerator 1 NORM_WIDTH =1, THICK_WIDTH =3
end enum
|

I Others line constants
|

enum, bind (C)

enumerator :: DOTTEDLINE_LENGTH = 2,CENTRELINE_LENGTH =4
enumerator 1 USER_CHAR_SIZE =0

end enum
|

! Viewport clipping constants
I

enum, bind (C)

enumerator :: CLIP_ON =1,CLIP_OFF =0
enumerator :: TOP_ON=1TOP_OFF=0
end enum

Definitions for the key pad extended keys are added here. | have also
modified getch() so that when one of these keys are pressed, getch will
return a zero followed by one of these values. This is the same way
that it works in conio for dos applications.

enum, bind (C)

enumerator : KEY_HOME =71,KEY_UP,KEY_PGUP

enumerator :: KEY_LEFT =75,KEY_CENTER,KEY_RIGHT

enumerator : KEY_END = 79,KEY_DOWN,KEY_PGDN,KEY_INSERT,KEY_DELETE
enumerator : KEY_F1=59KEY_F2KEY_F3,KEY_F4,KEY_F5KEY_F6,KEY_F7, &
KEY_F8,KEY_F9

end enum
|

| GRAPHICS_ERRORS constants
|

enum, bind (C)
enumerator : grOk=0, &

grNolnitGraph = -1, &
grNotDetected = -2, &
grFileNotFound = -3, &
grinvalidDriver = -4, &
grNoLoadMem = -5, &
grNoScanMem = -6, &
grNoFloodMem = -7, &
grFontNotFound = -8, &

grNoFontMem = -9, &




f03bgi.fo0
c:/msys64/home/angelo/programming/WinBGIm—fortran/

3/13
14/06/2015

grinvalidMode = -10, &
grError = -11, &
grlOerror = -12, &
grinvalidFont = =13, &
grinvalidFontNum = -14, &
grinvalidDeviceNum = -15, &
grinvalidVersion = -18

end enum

|

I Graphics drivers constants, includes X11 which is particular to XBGI.
|
enum, bind (C)
enumerator :: DETECT, &
CGA,MCGA,EGA,EGA64,EGAMONO, &
IBM8514,HERCMONO,ATT400,VGA,PC3270
end enum
|

I Graphics modes constants
I

enum, bind (C)

enumerator 1 CGACO = 0,CGAC1,CGAC2,CGAC3,CGAHI

enumerator . MCGACO = 0,MCGAC1,MCGAC2,MCGAC3,MCGAMED,MCGAHI
enumerator 1 EGALO=0,EGAHI=1

enumerator i EGA64LO = 0,EGA64HI = 1, EGAMONOHI =3

enumerator @ HERCMONOHI =0

enumerator 1 ATT400CO0 = 0,ATT400C1,ATT400C2,ATT400C3,ATT400MED,ATT400HI
enumerator :: VGALO =0,VGAMED,VGAHI,VGAMAX

enumerator 1 PC3270HI=0

enumerator :: |I1BM8514LO = 0,IBM8514HI

end enum
|

I Kind parameters for mouse functions

I From /usr/include/w32api/winuser.h

|

enum, bind (C)

enumerator : WM_MOUSEMOVE = 512&

WM_LBUTTONDBLCLK =515, &
WM_LBUTTONDOWN =513, &
WM_LBUTTONUP =514, &
WM_MBUTTONDBLCLK =521, &
WM_MBUTTONDOWN =519, &
WM_MBUTTONUP = 520, &
WM_RBUTTONDOWN =516, &
WM_RBUTTONUP = 517, &
WM_RBUTTONDBLCLK =518

end enum

!

! Virtual-Key Codes

I From:

I http://msdn.microsoft.com/en-us/library/dd375731%28v=VS.85%29.aspx
|

enum, bind (C)

enumerator 1 VK _LBUTTON =Z'01"VK_RBUTTON = Z'02’, &
VK_CANCEL =Z 03 , &
VK_MBUTTON =2Z 04, &
VK_XBUTTON1 =Z ‘05" \VK_XBUTTON2=Z'06" , &
VK_BACK =Z 08 , &
VK_TAB=Z 09 , &
VK_CLEAR =Z oC L, &
VK_RETURN =2Z oD, &
VK_SHIFT =2 10", &
VK_CONTROL =Z 11, &
VK_MENU =Z 12", &
VK_PAUSE =Z 13, &
VK_CAPITAL=Z 14 &
VK_KANA =Z 15, &
VK_HANGUEL =Z 15, &
VK_HANGUL =Z 15, &
VK_JUNJA=2Z 17 L&
VK_FINAL=2Z 18" , &
VK_HANJA=2Z 19, &
VK_KANJI =Z 19, &
VK_ESCAPE =Z 1B, &
VK_CONVERT =Z '1C L&
VK_NONCONVERT =Z 1D, &
VK_ACCEPT =Z 1E L, &
VK_MODECHANGE =Z 1F &

VK_SPACE =Z 200, &




f03bgi.fo0

c:/msys64/home/angelo/programming/WinBGIm—fortran/

4/13
14/06/2015

VK_PRIOR =2Z 21 &
VK_NEXT =Z 22 &
VK_END =2Z 23 ,&
VK_HOME =Z 24 &
VK_LEFT=2Z 25 &
VK_UP=2Z 26", &
VK_RIGHT =Z 27 &
VK_DOWN =2Z 28 , &
VK_SELECT=2Z 29 &
VK_PRINT =Z 2A" , &
VK_EXECUTE =Z 2B, &
VK_SNAPSHOT =Z 2C &
VK_INSERT =Z 2D, &
VK_DELETE=2Z 2E L, &
VK_HELP =2Z 2F

end enum

type , bind (C) : arccoordstype

integer (C_INT)::  xy,xstart,ystart,xend,yend

end type  arccoordstype

type , bind (C) : fillsettingstype
integer (C_INT):: pattern,color

end type fillsettingstype

type , bind (C) : linesettingstype

integer (C_INT):: linestyle,upattern,thickness

end type  linesettingstype
type , bind (C) : palettetype

integer (C_SIGNED_CHAR::  size,colors(0:15)

end type  palettetype
type , bind (C) : textsettingstype

integer (C_INT):: font,direction,charsize,horiz,vert

end type  textsettingstype
type , bind (C) : viewporttype
integer (C_INT):: left,top,right,bottom,clip
end type  viewporttype
end module  fO3bgi_types

module fO3bgi
use, intrinsic 1 iso_c_binding
use f03bgi_types
implicit none
interface
subroutine arc (x,y,stangle,endangle,radius)
import
integer (C_INT), intent (in), value
end subroutine arc
end interface
interface
subroutine bar (left,top,right,bottom)
import
integer (C_INT), intent (in), value
end subroutine bar
end interface
interface

subroutine bar3d (left,top,right,bottom,depth,topflag)

import
integer (C_INT), intent (in), value
end subroutine bar3d
end interface
interface
subroutine circle  (x,y,radius) bind (C)
import
integer (C_INT), intent (in), value
end subroutine circle
end interface
interface
subroutine cleardevice () bind (C)
import
end subroutine cleardevice
end interface
interface
subroutine clearviewport () bind (C)
import
end subroutine clearviewport
end interface
interface

bind (C)

X,y,stangle,endangle,radius

bind (C)

left,top,right,bottom

left,top,right,bottom,depth,topflag

X,y,radius

subroutine clearmouseclick (kind)  bind (C)

import
integer (C_INT), intent (in), value

kind

bind (C)




f03bgi.fo0
c:/msys64/home/angelo/programming/WinBGIm—fortran/

5/13
14/06/2015

end subroutine clearmouseclick
end interface
interface
subroutine closegraph () bind (C)
import
end subroutine closegraph
end interface
interface
subroutine delay (millisec) bind (C)
import
integer (C_INT), intent (in), value : millisec
end subroutine delay
end interface
interface
subroutine detectgraph  (graphdriver,graphmode) bind (C)
import
integer (C_INT), intent (out):: graphdriver,graphmode
end subroutine detectgraph
end interface
interface
subroutine drawpoly (numpoints,polypoints) bind (C)
import
integer (C_INT), intent (in), value : numpoints
! polypoints should be an array of 2*numpoints elements
integer (C_INT), intent (in):: polypoints(*)
end subroutine drawpoly
end interface
interface
subroutine ellipse  (x,y,stangle,endangle,xradius,yradius)
import
integer (C_INT), intent (in), value : x,y,stangle,endangle,
xradius,yradius
end subroutine ellipse
end interface
interface
subroutine fillellipse (x,y,xradius,yradius) bind (C)
import
integer (C_INT), intent (in), value : x,y,xradius,yradius
end subroutine fillellipse
end interface
interface
subroutine fillpoly (numpoints,polypoints) bind (C)
import
integer (C_INT), intent (in), value : numpoints
! polypoints should be an array of 2*numpoints elements
integer (C_INT), intent (in):: polypoints(*)
end subroutine fillpoly
end interface
interface
subroutine floodfill (x,y,border) bind (C)
import
integer (C_INT), intent (in), value : x,y,border
end subroutine floodfill
end interface
interface
function getactivepage () hind (C)
import
integer (C_INT): getactivepage
end function getactivepage
end interface
interface
subroutine getarccoords  (arccoords) bind (C)
import
type (arccoordstype) , intent (out) : arccoords
end subroutine getarccoords
end interface
interface
subroutine getaspectratio (xasp,yasp) bind (C)
import
integer (C_INT), intent (out):: xasp,yasp
end subroutine getaspectratio
end interface
interface
function getbkcolor () bind (C)
import
integer (C_INT)::  getbkcolor
end function getbkcolor

end interface

bind (C)
&




f03bgi.fo0
c:/msys64/home/angelo/programming/WinBGIm—fortran/

6/13
14/06/2015

interface
|
I' This function WORKS only in 'graphics mode’!
I See handle_input() C++ source
I
function getch () bind (C)
import
integer (C_INT): getch
end function getch
end interface
interface
function getcolor () bind (C)
import
integer (C_INT):  getcolor
end function getcolor
end interface
interface
function getdefaultpalette () bind (C)
import
type (C_PTR) :: getdefaultpalette
end function getdefaultpalette
end interface
interface
function getdrivername () bind (C)
import
type (C_PTR) :  getdrivername
end function getdrivername
end interface
interface
subroutine getfillpattern (pattern) bind (C)
import
character (C_CHAR, intent (out): pattern(8)
end subroutine getfillpattern
end interface
interface
subroutine getfillsettings (fillinfo) bind (C)
import
type (fillsettingstype) , Intent (out) : fillinfo
end subroutine getfillsettings
end interface
interface
function getgraphmode () bind (C)
import
integer (C_INT): getgraphmode
end function getgraphmode
end interface

interface
|

! Calling this routine we should pass the address of bitmap:
I call getimage(left,top,right,bottom,c_loc(bitmap))

subroutine getimage (left,top,right,bottom,bitmap) bind (C)
import
integer (C_INT), intent (in), value : lefttop,right,bottom
type (C_PTR) , value :  bitmap
end subroutine getimage
end interface
interface
subroutine getlinesettings (lineinfo) bind (C)
import
type (linesettingstype) , intent (out) : lineinfo
end subroutine getlinesettings
end interface
interface
function getmaxcolor () hbind (C)
import
integer (C_INT):  getmaxcolor
end function getmaxcolor
end interface
interface
function getmaxmode () bind (C)
import
integer (C_INT): getmaxmode
end function getmaxmode
end interface
interface

function getmaxx () bind (C)
import




f03bgi.f90 7113
c:/msys64/home/angelo/programming/WinBGIm—fortran/ 14/06/2015

integer (C_INT): getmaxx

end function getmaxx
end interface
interface
function getmaxy () bind (C)
import
integer (C_INT): getmaxy
end function getmaxy
end interface
interface
function getmodename (mode_number) bind (C)
import
type (C_PTR) : getmodename
integer (C_INT), intent (in), value : mode_number
end function getmodename
end interface
interface
subroutine getmoderange (graphdriver,lomode,himode) bind (C)
import
integer (C_INT), intent (in), value : graphdriver
integer (C_INT), intent (out):: lomode,himode
end subroutine getmoderange
end interface
interface
subroutine getmouseclick  (kind,x,y) bind (C)
import
integer (C_INT), intent (in), value : kind
integer (C_INT), intent (out):: X,y
end subroutine getmouseclick
end interface
interface
subroutine getpalette  (palette) bind (C)
import
type (palettetype) , intent (out) : palette
end subroutine getpalette
end interface
interface
function getpalettesize () bind (C)
import
integer (C_INT):: getpalettesize
end function getpalettesize
end interface
interface
function getpixel (x,y) bind (C)
import
integer (C_INT)::  getpixel
integer (C_INT), intent (in), value @ Xy
end function getpixel
end interface
interface
subroutine gettextsettings (texttypeinfo) bind (C)
import
type (textsettingstype) , intent (out) : texttypeinfo
end subroutine gettextsettings
end interface
interface
subroutine getviewsettings (v) bind (C)
import
type (viewporttype) , intent (out) : Y
end subroutine getviewsettings
end interface
interface
function getvisualpage () hind (C)
import
integer (C_INT):: getvisualpage
end function getvisualpage
end interface
interface
function getx () bind (C)
import
integer (C_INT): getx
end function getx
end interface
interface
function gety () bind (C)
import

integer (C_INT): gety
end function gety




f03bgi.fo0
c:/msys64/home/angelo/programming/WinBGIm—fortran/

8/13
14/06/2015

end interface

interface
subroutine graphdefaults () bind (C)
import
end subroutine graphdefaults
end interface
interface
function grapherrormsg  (errorcode) bind (C)
import
type (C_PTR) :: grapherrormsg
integer (C_INT), intent (in), value : errorcode
end function grapherrormsg
end interface
interface
function graphresult () bind (C)
import
integer (C_INT):: graphresult
end function graphresult
end interface
interface
function imagesize (left,top,right,bottom) bind (C)
import
integer (C_INT): imagesize
integer (C_INT), intent (in), value : left,top,right,bottom
end function imagesize
end interface
interface
subroutine initgraph  (graphdriver,graphmode,pathtodriver) bind (C)
import
integer (C_INT), intent (inout): graphdriver,graphmode
Icharacter(C_CHAR), dimension(*), intent(in) :: pathtodriver
character (C_CHAR intent (in):: pathtodriver(*)
end subroutine initgraph
end interface
interface
subroutine initwindow  (width,height,title,left,top) bind (C)
import
integer (C_INT), intent (in), value :  width,height
character (C_CHAR, intent (in):: title(*)
integer (C_INT), intent (in), value : lefttop
end subroutine initwindow
end interface
interface init_window
module procedure initwindow?2,initwindow3,initwindow4,initwindow5
end interface init_window
linterface

1ol
I 1 This routine is not implemented in the C++ version of BGI
I 1 'detect’ is a function pointer, see (get/put)image

1ol
I function installuserdriver(name,detect) bind(C)
I import

I integer(C_INT) :: installuserdriver

I character(C_CHAR), intent(in) :: name(*)
I integer(C_INT), intent(in), value :: detect
I end function installuserdriver
|

I

|

I

I

|

I

I

|

end interface
interface
I

! This routine is not implemented in the C++ version of BGI

function installuserfont(name) bind(C)
import
integer(C_INT) :: installuserfont
character(C_CHAR), intent(in) :: name(*)
I end function installuserfont
I 'end interface

interface
function is_key (k) bind (C)
import
integer (C_INT): is_key
integer (C_INT), intent (in), value : k
end function is_key
end interface
interface
function ismouseclick  (kind)  bind (C)
import

logical (C_BOOl:: ismouseclick




f03bgi.fo0
c:/msys64/home/angelo/programming/WinBGIm—fortran/

9/13
14/06/2015

integer (C_INT), intent (in), value : kind
end function ismouseclick
end interface
interface
function kbhit () bind (C)
import

integer (C_INT)::  kbhit
end function kbhit
end interface
interface
subroutine line (x1,y1,x2,y2) bind (C)
import
integer (C_INT), intent (in), value 1  x1,ylx2y2
end subroutine line
end interface
interface
subroutine linerel  (dx,dy) bind (C)
import
integer (C_INT), intent (in), value : dxdy
end subroutine linerel
end interface
interface
subroutine lineto (x,y) bind (C)
import
integer (C_INT), intent (in), value @ Xy
end subroutine lineto
end interface
interface
function mousex() bind (C)
import
integer (C_INT):  mousex
end function mousex
end interface
interface
function mousey() bind (C)
import
integer (C_INT): mousey
end function mousey
end interface
interface
subroutine moverel (dx,dy)  bind (C)
import
integer (C_INT), intent (in), value : dxdy
end subroutine moverel
end interface
interface
subroutine moveto (x,y)  bind (C)
import
integer (C_INT), intent (in), value @ Xy
end subroutine moveto
end interface
interface
subroutine outtext  (textstring) bind (C)
import
character (C_CHAR, intent (in):: textstring(*)
end subroutine outtext
end interface
interface
subroutine outtextxy  (x,y,textstring) bind (C)
import
integer (C_INT), intent (in), value @ Xy
character (C_CHAR intent (in):: textstring(*)
end subroutine outtextxy
end interface
interface
subroutine pieslice  (x,y,stangle,endangle,radius) bind (C)
import
integer (C_INT), intent (in), value : Xx)y,stangle,endangle,radius
end subroutine pieslice
end interface
interface
I

! Calling this routine we should pass the address of bitmap:
I call putimage(left,top,c_loc(bitmap),op)

subroutine putimage (left,top,bitmap,op) bind (C)
import
integer (C_INT), intent (in), value : left,top,op




f03bgi.f90 10/13

c:/msys64/home/angelo/programming/WinBGIm—fortran/ 14/06/2015
type (C_PTR) , value : bitmap
end subroutine putimage
end interface
interface
subroutine putpixel  (x,y,color) bind (C)
import
integer (C_INT), intent (in), value : xy,color
end subroutine putpixel
end interface
interface
subroutine rectangle (left,top,right,bottom) bind (C)
import
integer (C_INT), intent (in), value : left,top,right,bottom
end subroutine rectangle
end interface
linterface

|
I 1 This routine is not implemented in the C++ version of BGI
I 1 'driver’ is a function pointer, see (get/put)image

|
I function registerbgidriver(driver) bind(C)

I import

I integer(C_INT) :: registerbgidriver

I integer(C_INT), intent(in), value :: driver
I end function registerbgidriver

I 'end interface
I

I

|

I

I

|

I

I

|

interface
|

| This routine is not implemented in the C++ version of BGI
! ’font’ is a function pointer, see (get/put)image

!
function registerbgifont(font) bind(C)

import
integer(C_INT) :: registerbgifont
integer(C_INT), intent(in), value :: font

I end function registerbgifont

I 'end interface

interface
I

| *h'is a function pointer, see (get/put)image
I'In C’h’is 'void h(int,int)’
I

subroutine registermousehandler (kind,h) bind (C)
import
integer (C_INT), intent (in), value : kind
type (C_FUNPTR) , value : h
end subroutine registermousehandler
end interface

interface
|

I Really it is a dummy routine
I
subroutine restorecrtmode () bind (C)
import
end subroutine restorecrtmode
end interface
interface
subroutine sector (x,y,stangle,endangle,xradius,yradius) bind (C)
import
integer (C_INT), intent (in), value : x,y,stangle,endangle, &
xradius,yradius
end subroutine sector
end interface
interface
subroutine setactivepage  (page) bind (C)
import
integer (C_INT), intent (in), value : page
end subroutine setactivepage
end interface
interface
subroutine setallpalette (palette) bind (C)
import
type (palettetype) , intent (in):: palette
end subroutine setallpalette
end interface
interface
subroutine setaspectratio (xasp,yasp) bind (C)
import




f03bgi.fo0
c:/msys64/home/angelo/programming/WinBGIm—fortran/

11/13
14/06/2015

integer (C_INT), intent (in), value : xasp,yasp
end subroutine setaspectratio
end interface
interface
subroutine setbkcolor  (color) bind (C)
import
integer (C_INT), intent (in), value : color
end subroutine setbkcolor
end interface
interface
subroutine setcolor  (color) bind (C)
import
integer (C_INT), intent (in), value : color
end subroutine setcolor
end interface
interface
subroutine setfillpattern (pattern,color) bind (C)
import
character (C_CHAR intent (in):: pattern(8)
integer (C_INT), intent (in), value : color
end subroutine setfillpattern
end interface
interface
subroutine setfillstyle (pattern,color) bind (C)
import
integer (C_INT), intent (in), value : pattern,color
end subroutine setfillstyle
end interface
linterface

! This routine is not implemented in the C++ version of BGI

import
integer(C_INT) :: setgraphbufsize
integer(C_INT), intent(in), value :: bufsize
I end function setgraphbufsize
I 'end interface
interface
|

!

ol

I function setgraphbufsize(bufsize) bind(C)
!

!

!

! Really it is a dummy routine
|

subroutine setgraphmode (mode) bind (C)

import
integer (C_INT), intent (in), value : mode
end subroutine setgraphmode
end interface
interface
subroutine setlinestyle (linestyle,upattern,thickness) bind (C)
import
integer (C_INT), intent (in), value : linestyle,upattern,thickness
end subroutine setlinestyle
end interface
interface

| This routine does not work as the original in BGI
|

subroutine setpalette  (colornum,color) bind (C)
import
integer (C_INT), intent (in), value : colornum,color
end subroutine setpalette
end interface

interface
|

! This routine does not work as the original in BGI
I

subroutine setrgbpalette (colornum,red,green,blue) bind (C)
import
integer (C_INT), intent (in), value : colornum,red,green,blue
end subroutine setrgbpalette
end interface
interface
subroutine settextjustify (horiz,vert) bind (C)
import
integer (C_INT), intent (in), value : horiz,vert
end subroutine settextjustify

end interface
interface




f03bgi.fo0
c:/msys64/home/angelo/programming/WinBGIm—fortran/

12/13
14/06/2015

subroutine settextstyle (font,direction,charsize) bind (C)
import
integer (C_INT), intent (in), value : font,direction,charsize
end subroutine settextstyle
end interface
interface
subroutine setusercharsize (multx,divx,multy,divy) bind (C)
import
integer (C_INT), intent (in), value :  multx,divx,multy,divy
end subroutine setusercharsize
end interface
interface
subroutine setviewport  (left,top,right,bottom,clip) bind (C)
import
integer (C_INT), intent (in), value : left,top,right,bottom,clip
end subroutine setviewport
end interface
interface
subroutine setvisualpage  (page) bind (C)
import
integer (C_INT), intent (in), value : page
end subroutine setvisualpage
end interface
interface
subroutine setwritemode (mode) bind (C)
import
integer (C_INT), intent (in), value : mode
end subroutine setwritemode

end interface
interface strlen

From Tobias Burnus,
http://gcc.gnu.org/mli/fortran/2010-02/msg00029.html

Note: as both strlen and strlen2 have the same
binding name, you can only use one of them at a
time.

I function strlen(str) bind(C)

' import

I character(kind=C_CHAR) :: str(*)

I integer(C_SIZE_T) :: strlen

I'end function strlen

function strlen2  (str) bind (C,name= "strlen" )

import
type (C_PTR) , value :  str
integer (C_SIZE_ T) :: strlen2
end function strlen2
end interface strlen
interface
function textheight  (textstring) bind (C)
import
integer (C_INT): textheight
character (C_CHAR, intent (in):: textstring(*)
end function textheight
end interface
interface
function textwidth  (textstring) bind (C)
import
integer (C_INT): textwidth
character (C_CHAR, intent (in):: textstring(*)
end function textwidth
end interface
contains
function RGEHr,g,b)
integer : RGB

integer , intent (in) r,g,b
RGB =( ior (ior ((r), ishft ((g).8)), ishft  ((b),16)))
end function RGB
function IS_BGI_COLOR(c)

use fO3bgi_types

logical :: IS_BGI_COLOR
integer , intent (in):: c
IS_BGI_COLOR = (((c) >=0) .and. ((c) <= MAXCOLORS))

end function IS_BGI_COLOR

function IS_RGB_COLOR)
logical 1 IS_RGB_COLOR
integer , intent (in) c




f03bgi.f90 13/13
c:/msys64/home/angelo/programming/WinBGIm—fortran/ 14/06/2015

IS RGB_COLOR = .false.
|
I In C a variable is false if its numeric value is NULL, i.e. 0 (ZERO)
! Itis true if its numeric value is NON-NULL, i.e.<0or>0
|
if (( iand ((c),Z °'04000000" ))/=0)IS_RGB_COLOR = true.
end function IS_RGB_COLOR
function RED_VALUR)
integer :: RED_VALUE
integer , intent (in):: %
RED_VALUE =( iand ((v), int (Z'FF )))
end function RED_VALUE
function GREEN_VALU®)
integer :: GREEN_VALUE
integer , intent (in):: %
I we need to shift right
GREEN_VALUE = ( iand (ishft ((v),-8), int (Z'FF )))
end function GREEN_VALUE
function BLUE_VALUHRv)
integer 1 BLUE_VALUE
integer , intent (in):: %
' we need shift right
BLUE_VALUE =(  iand (ishft ((v),-16), int (Z'FF )))
end function BLUE_VALUE
function COLOR,g,b)
integer 1 COLOR
integer , intent (in) : r,g,b
COLOR =( ior (int (Z'04000000" ),RGB(r,qg,b)))
end function COLOR
function RGB_COLOR)
integer : RGB_COLOR
integer , intent (in):: c
RGB_COLOR = iand (c, int (Z'FFFFFF ))
end function RGB_COLOR
function CString (string) result (array)

character (len=*) : string
character (kind= C_CHAR, dimension (len (string)+1) : array
integer & i

do i=1, len (string)

array(i)=string(i:i)

end do
array( len (string)+1)= C_NULL_CHAR
end function CsString
function quit ()

use general_routines

logical 1 quit
quit = false.
if  (kbhit() /= 0) then
quit = (upcase( char (getch())) == Q)
end if
end function quit
subroutine initwindow2  (width,height)
integer (C_INT), intent (in), value : width,height
call  initwindow  (width,height,CString( 'Windows BGI" ),0,0)
end subroutine initwindow?2
subroutine initwindow3  (width,height,title)
integer (C_INT), intent (in), value : width,height
character (C_CHAR, intent (in):: title(*)
call  initwindow (width,height,title,0,0)
end subroutine initwindow3
subroutine initwindow4  (width,height,title,left)
integer (C_INT), intent (in), value : width,height
character (C_CHAR, intent (in):: title(*)
integer (C_INT), intent (in), value : left
call initwindow  (width,height,title,left,0)
end subroutine initwindow4
subroutine initwindow5  (width,height,title,left,top)
integer (C_INT), intent (in), value : width,height
character (C_CHAR, intent (in):: title(*)
integer (C_INT), intent (in), value : lefttop
call initwindow (width,height,title,left,top)
end subroutine initwindow5

end module  fO3bgi



gks_bgi.fo0

c:/msys64/home/angelo/programming/WinBGIm—fortran/

1/7
14/06/2015

!

! Fortran Interface to the WinBGIm—-3.6 Library

! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi

|

!Itis distributed in the hope that it will be useful,

I but WITHOUT ANY WARRANTY; without even the implied warranty of
I MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

!

!

| Created :Sep 16, 2010

! Last change : May 14, 2015

!

module gks_bgi

use fO3bgi

implicit none

integer , parameter , private 1 MAX _NT =10

integer , private 1 key,clipping = CLIP_ON,ivp_image(0:MAX_NT,4)

logical , private : graphics_on = .false.

type (viewporttype) , private :: display

real (DP), private : wn(0:MAX_NT,4)=0.0_DP,vp(0:MAX_NT,4) = 0.0_DP,
coeff(0:MAX_NT,4) I sx,sy,tx,ty

real (DP), private : wk_wn(4)=0.0_DP,wk_vp(4) =0.0_DP,wkvp_eff(4) = 0.0_DP

real (DP), private : xmax,ymax,xxmax,yymax, &
SX,SY,tx,ty

private  :: true_wkvp,get_transformation,transform,get_intersection,
setup_transformation,build_transformations,setup, &
drawpoly2,drawpoly3fillpoly2 fillpoly3, &

initgraphicsO0,initgraphicsi,initgraphics1b,initgraphics2,
initgraphics2b,initgraphics3,initgraphics4,initgraphics5,
outtextl,outtext3, &
S2X,S2Y,X2S,y2s
interface gks_init
module procedure initgraphicsO0,initgraphicsi,initgraphics1b,
initgraphics2,initgraphics2b,initgraphics3,initgraphics4,
initgraphics5
end interface gks_init
interface gks_polyline
module procedure drawpoly2,drawpoly3
end interface gks_polyline
interface gks_fillpoly
module procedure fillpoly2,fillpoly3
end interface gks_fillpoly
interface gks_text
module procedure outtextl,outtext3

end interface gks_text
contains
I'NT or WKT c(:) = (Sx,Sy, Tx, Ty)
subroutine get_transformation (w,v,c)
real (DP), intent (in):: w(:),v(:)
real (DP), intent (out):: c(:)

(1) = (v(2)-v(1))/(w(2)-w(1))
¢(2) = (v(4)-v(3))(w(4)-w(3))
¢(3) = v(1)-c(1)*w(1)
c(4) = v(3)-c(2)*w(3)
end subroutine get_transformation
I'NT or WKT c(:) = (Sx,Sy, Tx,Ty)
subroutine transform  (u,c,v)
real (DP), intent (in):: u(),c
real (DP), intent (out):: V()
v(1) = c(3)+c(1)*u(1)
V(2) = c(3)+c(1)*u(2)
v(3) = c(4)+c(2)*u(3)
v(4) = c(4)+c(2)*u(4)

©)

end subroutine transform
subroutine get_intersection (p,q)
real (DP), intent (in):: p()
real (DP), intent (inout) : q()
integer , parameter : L=1R=2B=3T=4

real (DP): m(4) aux
! Default to the effective wk vp

" :!\F/)erifying the intersection
it ((a(L) <= p(R)) and. (qR)>=p(L)) &
and. (q(B)<=p(T))  .and. (q(T)>=p(B)) then
m(L) = max(p(L),a(L))

m(R) = min (p(R),a(R))




gks_bgi.fo0 217

c:/msys64/home/angelo/programming/WinBGIm—fortran/ 14/06/2015
m(B) = max(p(B),q(B))
m(T) = min (p(T),q(T))
end if
qg=m
end subroutine get_intersection
I Computing sx,sy,tx,ty for k—=th WC to Screen transformation
subroutine setup_transformation (k)
integer , intent (in) : k
real (DP):: vp_image(4),vpis(4),a(4),c(4) 1c(t) = (sxx,txx,syy,tyy)

if (k<0 .and. MAX_NT <Kk) then
write  (*,*) ‘Error from setup_transformation():’

write  (*,) ‘K=" |k, ’outofrange!

call  closegraph ()

stop
end if
I Computing the coefficients of WKT (s_xi,s_eta,t_xi,t_eta)
call  get_transformation (wk_wn,wkvp_eff,c)

I Now computing the 'image’ of vp
call  transform  (vp(k,:),c,vp_image)
call  get_intersection (wkvp_eff,vp_image)
I Now we have to transform vp_image to real screen coordinates, ivp_image
a(4) = ymax-1.0_DP
a(1) = (xmax—1.0_DP)/xxmax
a(2) = —a(4)lyymax I'Ys increases toward bottom
a(3)=0.0_DP
call  transform (vp_image,a,vpis)
livp_image(:) = (left,right,bottom,top)
ivp_image(k,:) = nint (vpis)
! Finally, we can start to compute our WC to Screen transformation
| coefficients after resetting the viewport (stored as fp values)
vpis(2) = ivp_image(k,2)-ivp_image(k,1)
vpis(3) = ivp_image(k,3)-ivp_image(k,4)

vpis(1) =0

vpis(4) =0
! First : Computing the NT coefficients (su,sv,tu,tv)...
call  get_transformation (wn(k,:),vp(k,:),a)

...then the WC to DC transornation coefficients:

T Xi =t xi+s_xi*tu
T_eta = t_eta+s_eta*tv
S Xi =s_xi*su

S eta=s_eta*sv

|
|
!
I a(
I a(
I a(
I a(
I

a(3) = c(3)+c(1)*a(3)

a(4) = c(4)+c(2)*a(4)

a(1) = c(1)*a(1)

a(2) = c(2)*a(2)
! Now the DC to Screen coefficients (Sx,Sy,Tx,Ty)...
call  get_transformation (vp_image,vpis,c)

...then the WC to Screen transformation coefficients:

|

I

!

I coeff(k,1) = sx = SX*S_xi

I coeff(k,2) = sy = Sy*S_eta

I coeff(k,3) = tx = Tx+Sx*T_xi

I coeff(k,4) =ty = Ty+Sy*T_eta

!
coeff(k,1) = c(1)*a(1)

coeff(k,2) = c(2)*a(2)

coeff(k,3) = c(3)+c(1)*a(3)

coeff(k,4) = c(4)+c(2)*a(4)

end subroutine setup_transformation

I Computes the effective wk viewport, vp_eff, so that it has the same
I aspect ratio as wk window

subroutine true_wkvp (w,v,v_eff)

real (DP), intent (in):: w(:),v(:)

real (DP), intent (out):: v_eff(:)

real (DP): alpha,beta,xx,yy
v_eff=v

I Computing aspect ratios Y/X
xx = w(2)-w(1)
yy = w(4)-w(3)
alpha = yy/xx
XX = Vv(2)-v(1)
yy =v(4)-v(3)
beta = yy/xx
if (beta < alpha) then




gks_bgi.fo0
c:/msys64/home/angelo/programming/WinBGIm—fortran/

3/7
14/06/2015

xx = yylalpha
v_eff(2) = v_eff(1)+xx
else
yy = xx*alpha
v_eff(4) = v_eff(3)+yy
end if
end subroutine true_wkvp
subroutine build_transformations 0
integer 1k

! Getting the true wk vp, wkvp_eff
call  true_wkvp (wk_wn,wk_vp,wkvp_eff)
do k =0,MAX_NT
call  setup_transformation (k)
end do
end subroutine build_transformations
subroutine setup ()
integer i
if ( .not. graphics_on) then
graphics_on = true.
call  getviewsettings (display)
clipping = CLIP_ON
! Screen dimensions in pixels
xmax = display%right—display%left+1.0_DP
ymax = display%bottom-display%top+1.0_DP
! Normalization (in [0,1]) of screen dimensions
yymax = max(xmax,ymax)
XXmax = xmax/yymax
yymax = ymax/yymax
! Default NT (0): cannot be modified!
wn(0,:) = (/ 0.0_DP,1.0_DP,0.0_DP,1.0_DP /)
vp(0,:) = (/ 0.0_DP,1.0_DP,0.0_DP,1.0_DP /)
I Now the other NT
do i=1,MAX_NT
wn(i,:) =wn(0,:)
vp(i.)) = vp(0.))
end do
| Default WKT: the vp is defaulted to the full display (normalized!)
wk_wn =(/0.0_DP,1.0_DP,0.0_DP,1.0_DP /)
wk_vp = (/ 0.0_DP,xxmax,0.0_DP,yymax /)
call  build_transformations 0
I Init to default: sx,sy,tx,ty
call gks_selnt (0)
else
write  (*,*) ‘Error from setup():’
write  (*,%) 'The graphics is already enabled!
call  closegraph ()

stop
end if
end subroutine setup
subroutine drawpoly2 (numpoints,points)
integer , intent (in) numpoints
real (DP), intent (in):: points(2*numpoints)
integer ::  kkeko,ipoints(2*numpoints)
do k = 1,numpoints
ke = k+k
ko = ke-1

ipoints(ko) = x2s(points(ko))
ipoints(ke) = y2s(points(ke))

enddo
call  drawpoly (numpoints,ipoints)
end subroutine drawpoly2
subroutine drawpoly3 (n,x,y)
integer , intent (in) : n
real (DP), intent (in):: x(2),y()
integer :: Kkkeko,ipoints(2*n)
do k=1,n
ke = k+k
ko = ke-1

ipoints(ko) = x2s(x(k))
ipoints(ke) = y2s(y(k))

enddo
call  drawpoly (n,ipoints)
end subroutine drawpoly3
subroutine fillpoly2 (numpoints,points)
integer , intent (in) numpoints
real (DP), intent (in):: points(2*numpoints)
integer :  kkeko,ipoints(2*numpoints)

do k = 1,numpoints




gks_bgi.fo0
c:/msys64/home/angelo/programming/WinBGIm—fortran/

417
14/06/2015

ke = k+k

ko = ke-1

ipoints(ko) = x2s(points(ko))
ipoints(ke) = y2s(points(ke))

enddo
call  fillpoly (numpoints,ipoints)
end subroutine fillpoly2
subroutine fillpoly3 (n,xy)
integer , intent (in) n
real (DP), intent (in):: x(2),y()
integer 1 k,keko,ipoints(2*n)
dok=1,n
ke = k+k
ko = ke-1

ipoints(ko) = x2s(x(k))
ipoints(ke) = y2s(y(k))
enddo
call  fillpoly (n,ipoints)
end subroutine fillpoly3
subroutine initgraphics0 0
integer :: gdriver = DETECT,gmode,errorcode
call initgraph  (gdriver,gmode,CString( ")
|

i Read result of initialization
]

errorcode = graphresult()
|

I An error occurred
|
if (errorcode /= grOKk) then
write  (*,%) 'Graphics error:’ ,grapherrormsg(errorcode)
write  (*, '(A)’ ,advance= 'NO’ ) ’'Press any key to halt:’
key = getch()
write  (*,*) key
| ===========

I Terminate
| ===========
stop
endif
call  setup ()
end subroutine initgraphics0
subroutine initgraphics1 (window_size)
integer , intent (in):: window_size

call  init_window (window_size,window_size)
call  setup ()

end subroutine initgraphics1

subroutine initgraphics1b (title)
character  (len=*), intent  (in) title
integer , parameter : WINDOW_SIZE = 600

call  init_window (WINDOW_SIZE,WINDOW_SIZE,CString(title))
call  setup ()

end subroutine initgraphics1b
subroutine initgraphics2 (window_xsize,window_ysize)
integer , intent (in):: window_xsize,window_ysize

call init_window (window_xsize,window_ysize)
call  setup ()

end subroutine initgraphics2

subroutine initgraphics2b (window_size,title)
integer , intent (in) window_size
character  (len=*), intent  (in) : title

call init_window (window_size,window_size,CString(title))
call  setup ()

end subroutine initgraphics2b

subroutine initgraphics3 (window_xsize,window_ysize,title)
integer , intent (in):: window_xsize,window_ysize
character  (len=*), intent  (in) title

call init_window (window_xsize,window_ysize,CString(title))
call  setup ()

end subroutine initgraphics3

subroutine initgraphics4 (window_xsize,window_ysizetitle,left)
integer , intent (in):: window_xsize,window_ysize,left
character  (len=*), intent  (in) title

call  init_window (window_xsize,window_ysize,CString(title),left)
call  setup ()

end subroutine initgraphics4
subroutine initgraphics5 (window_xsize,window_ysize title,left,top)
integer , intent (in):: window_xsize,window_ysize,left,top

character  (len=*), intent  (in) title




gks_bgi.fo0

c:/msys64/home/angelo/programming/WinBGIm—fortran/

5/7
14/06/2015

call  init_window (window_xsize,window_ysize,CString(title),left,top)

call  setup ()
end subroutine initgraphics5
subroutine outtextl  (text)
character  (len=*), intent  (in) : text
call outtext (CString(text))
end subroutine outtextl
subroutine outtext3  (x,y,text)
real (DP), intent (in):: X,y
character  (len=%), intent  (in) :: text
call  outtextxy  (x2s(x),y2s(y),CString(text))
end subroutine outtext3
function s2x (pixel_x) I The inverse
real (DP):  s2x
integer , intent (in) pixel_x
s2X = (pixel_x—tx)/sx
end function S2X
function s2y (pixel_y) I The inverse
real (DP):  s2y
integer , intent (in) pixel_y
s2y = (pixel_y-ty)/sy
end function s2y
function x2s (X)
integer 1 x2s
real (DP), intent (in):: X
X2s = nint  (tx+sx*x)
end function X2s
function y2s (y)
integer I y2s
real (DP), intent (in): y
y2s = nint  (ty+sy*y)
end function y2s
subroutine gks_arc (x,y,stangle,endangle,r)
real (DP), intent (in):: X,y,stangle,endangle,r

call  ellipse  (x2s(x),y2s(y), nint (stangle), nint (endangle),
abs (x2s(r)-x2s(0.0_DP)), abs (y2s(r)-y2s(0.0_DP)))

end subroutine gks_arc
subroutine gks_bar (x1,x2,y1,y2)
real (DP), intent (in):: x1,x2,y1,y2
call  bar (x2s(x1),y2s(y1),x2s(x2),y2s(y2))
end subroutine gks_bar
subroutine gks_bar3d (x1,x2,yl,y2,depth,itop_flag)
real (DP), intent (in):: x1,x2,y1,y2,depth
integer , intent (in) : itop_flag
call  bar3d (x2s(x1),y2s(yl),x2s(x2),y2s(y2),
abs (x2s(depth)—x2s(0.0_DP)),itop_flag)
end subroutine gks_bar3d
subroutine gks_box (x1,x2,y1,y2)
real (DP), intent (in):: x1,x2,y1,y2
call rectangle (x2s(x1),y2s(yl),x2s(x2),y2s(y2))
end subroutine gks_box
subroutine gks_circle  (x,y,r)
real (DP), intent (in):: X,Y,r
call  ellipse (x2s(x),y2s(y),0,360, &

abs (x2s(r)-x2s(0.0_DP)), abs (y2s(r)-y2s(0.0_DP)))

end subroutine gks_circle
subroutine gks_close ()
key = getch()
call  closegraph ()
end subroutine gks_close
subroutine gks_dot (x,y,color)
real (DP), intent (in):: X,y
integer , intent (in) : color
call  putpixel (x2s(x),y2s(y),color)
end subroutine gks_dot
subroutine gks_ellipse  (x,y,stangle,endangle,a,b)
real (DP), intent (in):: X,y,stangle,endangle,a,b

call  ellipse  (x2s(x),y2s(y), nint (stangle), nint (endangle),
abs (x2s(a)-x2s(0.0_DP)), abs (y2s(b)-y2s(0.0_DP)))

end subroutine gks_ellipse

subroutine gks_fillellipse (x,y,a,b)
real (DP), intent (in):: X,y,a,b
call fillellipse (x2s(x),y2s(y), &

abs (x2s(a)—x2s(0.0_DP)), abs (y2s(b)-y2s(0.0_DP)))

end subroutine gks_fillellipse

subroutine gks_fillarea (x,y,border_color)
real (DP), intent (in):: X,y
integer , intent (in) border_color

&

&




gks_bgi.fo0

c:/msys64/home/angelo/programming/WinBGIm—fortran/

6/7
14/06/2015

call  floodfill (x2s(x),y2s(y),border_color)
end subroutine gks_fillarea
subroutine gks_getimage (x1,x2,y1,y2,bitmap)
real (DP), intent (in):: x1,x2,y1,y2
type (C_PTR) , value : bitmap
call getimage (x2s(x1),y2s(y2),x2s(x2),y2s(y1),bitmap)
end subroutine gks_getimage
subroutine gks_ getmousechck (kind,x,y)
integer , intent (in) kind
real (DP), intent (out) " X,y
integer 1 pixel_x,pixel_y ! Location of the mouse click
call getmouseclick  (kind,pixel_x,pixel_y)
X = s2x(pixel_x)
y = s2y(pixel_y)

end subroutine gks_getmouseclick

function gks_getpixel  (x,y) result (color)
real (DP), intent (in):: X,y
integer 1 color

color = getpixel(x2s(x),y2s(y))

end function gks_getpixel

function gks_getx () result (x)
real (DP): X
x = s2x(getx())
end function gks_getx
function gks_gety () result (y)
real (DP):: vy
y = s2y(gety())
end function gks_gety
function gks_imagesize  (x1,x2,y1,y2) result  (sz)
real (DP), intent (in):: x1,x2,y1,y2
integer 1 sz
sz = imagesize(x2s(x1),y2s(y2),x2s(x2),y2s(y1))
end function gks_imagesize
subroutine gks_line (x1y1x2,y2)
real (DP), intent (in):: x1,y1,x2,y2
call  line (x2s(x1),y2s(y1),x2s(x2),y2s(y2))
end subroutine gks_line
subroutine gks_linerel (dx,dy)
real (DP), intent (in):: dx,dy
call  linerel  (x2s(dx)- XZS(OO DP) y2s(dy)-y2s(0.0_DP))
end subroutine gks_linerel
subroutine gks_lineto  (x,y)
real (DP), intent (in):: X,y
call lineto (x2s(x),y2s(y))
end subroutine gks_lineto
subroutine gks_moverel (dx,dy)
real (DP), intent (in):: dx,dy
call  moverel (x2s(dx)-x2s(0.0_DP),y2s(dy)-y2s(0.0_DP))
end subroutine gks_moverel
subroutine gks_moveto (x,y)
real (DP), intent (in):: X,y
call  moveto (x2s(x),y2s(y))
end subroutine gks_moveto
subroutine gks_pieslice  (x,y,stangle,endangle,r)
real (DP), intent (in):: X,y,stangle,endangle,r

call  sector (x2s(x),y2s(y), nint (stangle), nint (endangle),

abs (x2s(r)-x2s(0.0_DP)), abs (y2s(r)-y2s(0.0_DP)))

end subroutine gks_pieslice
subroutine gks_putimage (x,y,bitmap,op)

real (DP), intent (in):: X,y

type (C_PTR) , value : bitmap

integer , intent (in) op

call  putimage (x2s(x),y2s(y),bitmap,op)
end subroutine gks_putimage
subroutine gks_sector  (x,y,stangle,endangle,a,b)

real (DP), intent (in):: X,y,stangle,endangle,a,b

call  sector (x2s(x),y2s(y), nint (stangle), nint (endangle),

abs (x2s(a)—x2s(0.0_DP)), abs (y2s(b)-y2s(0.0_DP)))
end subroutine gks_sector
subroutine gks_selnt (k)
integer , intent (in):: k
! In absolute coordinate, so we don't need to open the full window
! viewport :-)
call  setviewport  (ivp_image(k,1),ivp_image(k,4), &
ivp_image(k,2),ivp_image(k,3),clipping)
I coeff(k,:) is computed elsewhere
sx = coeff(k,1)
sy = coeff(k,2)

&

&




gks_bgi.fo0 717
c:/msys64/home/angelo/programming/WinBGIm—fortran/ 14/06/2015

tx = coeff(k,3)
ty = coeff(k,4)

end subroutine gks_selnt

subroutine gks_swn (k,x1,x2,y1,y2)
integer , intent (in):: k
real (DP), intent (in):: x1,x2,y1,y2

if (k<1 .and. MAX_NT <Kk) then
write  (*,*) ‘Error from gks_swn():’

write  (*,%) ‘K=" |k, ’outofrange!
call  closegraph ()
stop
end if
wn(k,:) = (/ x1,x2,y1,y2 /)
call  setup_transformation (k)
end subroutine gks_swn
subroutine gks_svp (k,x1,x2,y1,y2)
integer , intent (in) k
real (DP), intent (in):: x1,x2,y1,y2

if (k<1 .and. MAX_NT <k) then
write  (*,%) "Error from gks_svp():’

write  (*,%) 'K=" )k, ’outofrange!
call  closegraph ()
stop
end if
vp(k,:) = (/ x1,x2,y1,y2 /)
call  setup_transformation (k)
end subroutine gks_svp
subroutine gks_swkwn (x1,x2,y1,y2)
real (DP), intent (in):: x1,x2,y1,y2
wk_wn = (/ x1,x2,y1,y2 /)
call  build_transformations 0
end subroutine gks_swkwn
subroutine gks_swkvp (x1,x2,y1,y2)
real (DP), intent (in):: x1,x2,y1,y2
wk_vp = (/ x1,x2,y1,y2 /)
call  build_transformations 0
end subroutine gks_swkvp
subroutine gks_sclip  (clip)
integer , intent (in) clip
clipping = clip
end subroutine gks_sclip
subroutine gks_schrsz  (x,y)
real (DP), intent (in):: X,y
type (textsettingstype) i textinfo
integer  mul_x,mul_y,div_x,div_y
call  gettextsettings (textinfo)
call  settextstyle (textinfo%font,textinfo%direction, 1)
| Getting the current pixel dimensions
div_x = textwidth(CString( 'H )
div_y = textheight(CString( 'H )
I New pixel dimensions
mul_x = nint (x* abs (x2s(1.0_DP)-x2s(0.0_DP)))
mul_y = nint (y* abs (y2s(1.0_DP)-y2s(0.0_DP)))
call  setusercharsize (mul_x,div_x,mul_y,div_y)
end subroutine gks_schrsz

end module  gks_bgi



cobra bgi.f90
c:/msys64/home/angelo/programming/WinBGIm—fortran/apps/

1/6
14/06/2015

i Fortran Interface to the WinBGIm—3.6 Library

! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi

!

!Itis distributed in the hope that it will be useful,

I but WITHOUT ANY WARRANTY; without even the implied warranty of
I MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

|

!
I HOW TO BUILD (MSYS2/MINGW64 shells)
!

cd ~/work/WinBGIm-3.6p

g++ —c —03 winbgim.cxx

ar rcs libwinBGlIm.a winbgim.o

mkdir —p ~/programming/lib/msys2
mv libWinBGIm.a ~/programming/lib/msys2
rm winbgim.o

cd demo
g++ —mwindows —I.. ball_cursor.cpp ../winbgim.cxx —o ball_cursor.out

rm —rf {*.mod,~/programming/modules/*} && \

gfortran —~O3 -Wall -mwindows \
—-J ~/programming/modules \
~/programming/basic-modules/basic_mods.f90 \
..{f03bgi.f90,gks_bgi.f90} cernlib_mods.f90 cobra_bgi.fo0 \
-L ~/programming/lib/msys2 -IWinBGIm —Istdc++ \
-0 cobra_bgi.out

!

!

!

!

!

!

!

!

!

!

!

I cd ~/programming/WinBGIm-fortran/apps
!

!

!

!

!

!

!

!

!

I .Jcobra_bgi.out (or:./cobra_bgi.out < cobra_bgi.dat)
|

In MINGW64, add '-static’ and:

msys2 ==> mingw64
cobra_bgi.out ==> cobra_bgi

DESCRIPTION
Motion in the magnetic field of COBRA spectrometer.
REFERENCES
Press Numerical Recipes C.U.P
Karlen D., Computational Physics (WEB notes)
Karlen D.,Computers in Science (WEB notes)
G95 Manual and web page

|
!
!
!
!
1
|
|
I
!
!
!
!
!
I GSL Manual
|

module cobra_field
use kind_consts , only : DP
use math_consts

use io_consts
use elliptic_k_e

implicit none
integer :: nCoils
integer 1 err
character  (len=*), parameter : FCOILS = "ashield.coils’
real (DP), parameter : BF0=12.6 DP 1 BFO in KG
real (DP), dimension (), allocatable I zco,rco,ico
real (DP): field_gradius =-1.0_DP

contains

subroutine magnet_on ()

!
I The routine reads the coils data (RCO, ZCO, ICO, being the currents
I ICO not normalized), computes the normalization factor CF and

I normalizes the currents so to have a field with value BFO at origin

real (DP):  r,z.ccurr,a2,az2,cf,fac

integer

write (STDERR,*) '...now reading’ , trim (FCOILS)
open (20,file=FCOILS,status= 'OLD’ ,action= 'READ’)

read (20,*) nCoils
allocate  (zco(nCoils),STAT=ierr)
if (ierr/=0) call error ('ZCO: Allocation request denied’ )




cobra bgi.f90
c:/msys64/home/angelo/programming/WinBGIm—fortran/apps/

2/6
14/06/2015

allocate  (rco(nCoils),STAT=ierr)

if (ierr/=0) call error (’RCO: Allocation request denied’ )
allocate  (ico(nCoils),STAT=ierr)

if (ierr/=0) call error (’ICO: Allocation request denied’ )
!

I Now computing BO...
|
cf=0.0_DP
do k = 1,nCoils
read (20,%) r,z,curr
field_gradius = max(field_gradius,r)
rco(k) =r
zco(k) =z
ico(k) = curr
a2 =r+2
az2 = a2+z**2
cf = cf+curr*a2/(az2* sgrt (az2))
enddo
close (20)
cf = BFO/(PI*cf)
fac = 5.D3*cf
write  (STDERR,*) ’'Magnetic field computed... B-FIELD’
write  (STDERR,*)

write (STDERR,*) ’'Requested field at (0,0), BFO :’ ,BFO, 'KG’

write  (STDERR,*) ’'Nominal field with I, Bz(0,0) :’ ,BFO/fac, 'KG’

write (STDERR,*) 'BFO is obtained with C*I, C:’ fac

write  (STDERR,*) ’'Field radial region, R:’ Jfield_gradius, cm’

write  (STDERR,*)
|

I Normalization of currents. Note...vec = vec*scalar
|
ico = ico*cf
I Now, we need only the sqaure
field_gradius = field_gradius**2
end subroutine magnet_on
subroutine magnet_off
if ( allocated (ico)) deallocate  (ico,stat=ierr)

if (ierr/=0) call error (’ICO: Deallocation request denied’ )
if ( allocated (rco)) deallocate  (rco,stat=ierr)
if (ierr /= 0) call error ('RCO: Deallocation request denied’ )
if ( allocated (zco)) deallocate (zco,stat=ierr)
if (ierr/=0) call error ('ZCO: Deallocation request denied’ )
end subroutine magnet_off
subroutine bcalc (r,z,br,bz)
real (DP), intent (in):: rz

real (DP), intent (out):: br,bz
!

I The routine computes the components BR and BZ of field at point
I (R,Z) (remember the field symmetry).
I DELIEC(), DELIKC() are new user entry name; old: DELLIE(), DELLIK
|
real (DP):  zz,a2,cq,ck,ce,p,q
integer
br=0.0_DP
bz =0.0_DP
do k = 1,nCoils
|

! If the point is near a coll, less then 1 mm,...
|

if ( abs(rco(k)-r)<0.1_DP .and.abs (zco(k)-z) <0.1_DP) then
br=0.0_DP
bz =0.0_DP
return
endif
zz = z—zco(K)
p =zz**2
cq = (r+rco(k))**2+p
ck = sqrt (4.0_DP*r*rco(k)/cq)
cq =ico(k)/ sqrt (cq)

ce = (rco(k)-r)**2+p
ce = deliec(ck)/ce
ck = delikc(ck)

p = p+re2

a2 = rco(k)**2
q=az-p

p =p+a2

bz = bz+cqg*(ck+g*ce)
if (r>0.0_DP) br = br+cg*zz*(-ck+p*ce)




cobra bgi.f90

c:/msys64/home/angelo/programming/WinBGIm—fortran/apps/

3/6
14/06/2015

enddo
if (r>0.0_DP) br=br/r
end subroutine bcalc

!
I Computing the Magnetic Field: at X,Y,Z
|

subroutine get_field  (x,b)

real (DP), intent (in): x(2)
real (DP), intent (out):: b(:)
real (DP): rzbr

r= hypot (x(1),x(2))

z =x(3)

call  bcalc (r,z,br,b(3))
if (r>0.0_DP) then
br = br/r
b(1) = br*x(1)
b(2) = br*x(2)
else
b(1) = 0.0_DP
b(2) =0.0_DP
endif
end subroutine get_field
end module  cobra_field

module solution
use cobra_field
use randoms

use gks_bgi
implicit none
integer X num_eve =10

real (DP):: s0=0.0_DP,s1=200.0_DP,stp=0.5 DP

1's0,s1,stp in cm

real (DP):: ¢ x=0.0 DP,c_ y=0.0 DP,delta x =50.0_DP,delta_y = 50.0_DP
real (DP):: x_min=0.0_DP,x_max=0.0_DP,y min=0.0_DP,y max =0.0_DP,

s_min=0.0_DP,s_max =0.0_DP

contains

subroutine init_data ()
use get data
call  get ('Number of events, NUM_EVE =" ,num_eve)
call get ('Track length, SO =" ,s0)
call  get ('Track length, S1 =" ,s1)
call get ('Track step, STP =" ,Stp)
call get ('Center X,C_X=" ,C_X)
call get('CenterY,C_Y=" ,.C_Y)
call get ('Width X, DELTA_X =" ,delta_x)
call get ('Width Y, DELTA Y =" ,delta_y)
call init_rand ()

end subroutine init_data

subroutine solve ()
use io_consts
integer , parameter : NEQ=6, &
WINDOWS_HEIGHT = 612,WINDOWS_WIDTH = 1200
integer :: icol = 1,max_colors

real (DP): x1,x2,yl,y2,yO(NEQ)=0.0_DP

call gks_init (WINDOWS_WIDTH,WINDOWS_HEIGHTOBRA with BGI’ )

10.51 =612/1200
call  gks_swkwn (0.0_DP,1.0_DP,0.0_DP,0.51_DP)
call  gks_swkvp (0.0_DP,1.0_DP,0.0_DP,0.51_DP)
I We really need half...
delta_x = delta_x/2
delta_y = delta_y/2
| First view
x1 =c_x-delta_x
X2 = c_x+delta_x
yl =c_y-delta_y
y2 = c_y+delta_y
call  gks_swn (1,x1,x2,y1,y2)
call  gks_svp (1,0.02_DP,0.49_DP,0.02_DP,0.49_DP)
call  gks_selnt (1)
call  setcolor (RED)
call gks_box (x1,x2,y1,y2)
! Second view
x1=-180.0_DP
x2 = —x1
y1l =230.0_DP
y2 = 40.0_DP
call  gks_swn (2,x1,x2,y1,y2)
call  gks_svp (2,0.51_DP,0.98_DP,0.02_DP,0.49_DP)
call gks_selnt (2)




cobra bgi.f90
c:/msys64/home/angelo/programming/WinBGIm—fortran/apps/

4/6
14/06/2015

call  setcolor (CYAN)
call  gks_box (x1,x2,y1,y2)
max_colors = getmaxcolor()+1
call  magnet_on ()
! Boundaries initialization
X_min = 1E6_DP
X_max = =Xx_min
y_min = 1E6_DP
y_max =-y_min
s_min =s0
s_max = s0
write  (STDERR,*)
write (STDERR,’(A) ,advance= 'NO’ ) ’'Processing...’
do i=1,num_eve

col = mod(col+1,max_colors)
if (col ==0) col =col+1
call get_event_kinematics (y0)

call  event_tracking (col,s0,s1,y0)
it (quit()) exit

end do

write (STDERR,’(A)’ ) ’'done!’

call  magnet_off ()

call gks_close ()

end subroutine solve
subroutine get_event_kinematics (y0)
real (DP), intent (out):: yo(:)
real (DP), parameter : PHI1=-60.0_DP*DEG2RAD,PHI2 = 60.0_DP*DEG2RAD,
CTHE1 = -0.35_DP,CTHE2 = 0.0_DP, &
P =52.8 DP

real (DP):  phi,cos_the,sin_the
|

i r=rl+(r2-rl)*rnd() ==>rin [r1,r2)
!
phi = PHI1+(PHI2-PHI1)*get_rand()
cos_the = CTHE1+(CTHE2-CTHE1)*get_rand()

sin_the = sqrt (1.0_DP-cos_the**2)

y0(1:3) =0.0_DP

y0(4:6) = P*(/ cos (phi)*sin_the, sin (phi)*sin_the,cos_the /)
end subroutine get_event_kinematics

subroutine event_tracking (col,s0,s1,y0)
use runge_kutta

integer , intent (in) col

real (DP), intent (in):: s0,s1,y0(:)

integer X num_equ

real (DP):  phi_max,rq,r_max,p(2),s,x(size(y0)),w(3*size(y0))
num_equ = size (y0)

!

I Initial conditions
|

X =Yy0
s=s0
p =x(1:2)
rq = dot_product  (p,p)
I Now, r_max is the square...
r_max =rq

call gks_selnt (1)
call  gks_dot (x(1),x(2),col)
I

! Updating position
|

do while  ((kbhit() == 0) .and. (s<sl))
call drkstp (num_equ,stp,s,x,derivs,w)
rq= dot_product  (x(1:2),x(1:2))
if  (rqg>r_max) then
r_max=rq
p =x(1:2)
end if
X_min = min (x(1),x_min)
X_max = max(x(1),x_max)
y_min = min (x(2),y_min)
y_max = max(x(2),y_max)
Ss_min = min (s,s_min)
S_max = max(s,s_max)
call  gks_dot (x(1),x(2),col)
if (rq > field_gradius) exit
enddo

! phiin degrees
phi_max = atan2 (p(2),p(1))/DEG2RAD




cobra bgi.f90
c:/msys64/home/angelo/programming/WinBGIm—fortran/apps/

5/6
14/06/2015

r_max = sgrt (r_max)
call  gks_selnt (2)
call  gks_dot (phi_max,r_max,WHITE)

end subroutine event_tracking
subroutine derivs (s,y,f)
real (DP), intent (in):: s,y(*)
real (DP), intent (out):: f(*)
I

Compute the derivatives of the equations to be integrated (with
Runge-Kutta method).
The equations of motion are

dR/dS = P/|P|
dP/dS = CO0*(P/|P|) X B

with

P(1:3) the momentum, in MeV/c;
S = |V|*dt trajectory arc length, in cm;

|P| the momentum magnitude, in MeV/c;

B(1:3) the field, in KG;

Co00 =0.299792458, positron charge in ((MeV/c)/cm)/KG;
X the cross product.

Y (1:3) = R(1:3) is the position of particle.

i
!

!

!

!

!

!

!

!

I R(1:3) the vector radius, in cm;
1

|

|

|

|

|

|

|

I Y(4:6) = P(1:3) is the momentum of particle.
I

real (DP), parameter : CO00=0.299792458 DP
real (DP), save : b(3),p
|

I Momentum magnitude in MeV/c
I

p= sqrt (y(4)*2+y(5)**2+y(6)**2)
call get_field (y(1:3),b)

f(1:3) = y(4:6)/p

f(4) = CO0*(f(2)*b(3)—f(3)*b(2))

f(5) = CO0*(f(3)*b(1)-f(1)*b(3))

f(6) = CO0*(f(1)*b(2)-f(2)*b(1))

end subroutine derivs

subroutine print_data ()

delta_x = x_max-x_min

delta_y =y_max-y_min

Cc_x =x_min+0.5_DP*delta_x

c_y=y_min+0.5_DP*delta_y

write  (*,*)
write  (*,*) 'EFFECTIVE VALUES:’
write  (*,*) T C X =7 ,C_ X
write  (*,%) " C.Y =’ C_y
write  (*,¥) " DELTA X=" ,delta_x
write (**) ' DELTA_Y='  ,delta_y
write  (*,*
write  (*,¥) 'S MIN=" ,s_min
write  (*,*) 'S MAX =" ,s_max
end subroutine print_data
end module  solution
program cobra_bgi
use solution
implicit none
call init_data ()
call  solve ()
call print_data ()
end program  cobra_bgi
subroutine error (chMsg)
use io_consts
implicit none
character  (len=*), intent  (in) :: chMsg
|

I Print the message chMsg and stop the program.

I This routine MUST be called with an unrecoverable error
|
write  (STDERR,*)

write (STDERR,*) 'Run-time error...’

write  (STDERR,*) chMsg

write (STDERR,*) '...now exiting to system.’
write  (STDERR,*)




cobra bgi.f90
c:/msys64/home/angelo/programming/WinBGIm—fortran/apps/

6/6
14/06/2015

stop
end subroutine error

! function hypot(x,y)

I use kind_consts

I implicit none

I real(DP) :: hypot

I real(DP), intent(in) :: X,y
I real(DP) :: absx,absy

I absx = abs(x)

I absy = abs(y)

I if (absx > absy) then

I hypot = absx*sqrt(1.0_DP+(absy/absx)**2)
I

|

|

I

|

I

|

|

else
if (@bsy == 0.0_DP) then
hypot = 0.0_DP
else
hypot = absy*sqrt(1.0_DP+(absx/absy)**2)
end if
end if

end function hypot




