Win32-Fortran.text
c:/msys64/home/angelo/programming/win32—fortran/

1/1
07/06/2015

WIN32 - FORTRAN

by Angelo Graziosi

INTRODUCTION

A basic question for a fortranner is: How to create Fortran

applications with GUI interface? More advanced Fortran GUI programs
could be created with GTK-Fortran library
(https://github.com/jerryd/gtk—fortran), i.e. using the

interoperability between C and Fortran, which comes with the Fortran
2003 standard.

Following that example, we have created modules which partially
interface BGI (Borland Graphics Interface). They have been described
elsewhere on this WEB site.

On Windows we can have Fortran GUI programs using an interface to
Windows itself. This is what we present in the following: partial
interface to Windows which allow for creating simple Windows
applications in Fortran.

Rudimentary modules which implement this are contained in win32.f90,
win32boxes.f90 and win32app.f90 source files. The first contains the
interface itself, the second tries to recover an old idea we

implemented creating a dialog C++ library with the old Borland C++ 2.0
compiler (around 1991). The third, tries to do things in World
Coordinate System.

A few examples of these applications are attached below. As always,
details in the comments.

A special thanks goes to T. Burnus, F-X. Coudert and J. Blomgvist for
their valuable suggestions.

This document has been created using EMACS (and some "friends"
tools like ps2pdf, pdftk etc..).

win32.f90
c:/msys64/home/angelo/programming/win32—fortran/

1/15
07/06/2015

!

! (Partial) Fortran Interface to the Windows API Library
! by Angelo Graziosi (firstname.lastnameATalice.it)

! Copyright Angelo Graziosi

!

It is distributed in the hope that it will be useful,

! but WITHOUT ANY WARRANTY; without even the implied warranty of
I MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

!

!

| DESCRIPTION

I This is the 'win32’ module.

Just to start with Windows Fortran Applications...

!
!
I An idea from: http://home.comcast.net/~kmbtib/Fortran_stuff/HelloWin2.f90
1

NOTE
For Microsoft, the type "long" is always (in Windows 32 and 64 systems)
a 32 bit integer.
For GNU/Linux it is a 32/64 bit integer for systems 32/64 rispectively.
So we have to adopt: C_LONG ——> C_INT, being C_INT a 32 bit integer
in any case.

See the thread: http://gcc.gnu.org/mli/fortran/2013-07/msg00087.html
See also: http://cygwin.com/cygwin—ug—net/programming.html#gcc-64
The usage of iany() (Fortran 2008) need of GCC >=4.7

Notice that:

int(Q,UINT_T) ——> O_UINT_T

int(0, WPARAM_T) ——> 0_WPARAM_T

!

|

!

!

!

!

!

!

!

!

| BTW
!

|

!

!

!

!

! int(O,LPARAM T) ——> 0_LPARAM_T
[

!

module win32

use, intrinsic :» iso_c_binding , only : C _CHARc_f_pointer, C_FUNPTR C_INT, &

C_INT8_ T, C_INTPTR_T, C_LONG C_NEW LINE C_NULL CHAR C_NULL PTR &
C_PTR C_SHORT

implicit none

private

I Common useful constants

integer , parameter , public : MAX_LEN =256
integer , parameter , public @ MAX_FMT =12

I WIN32 ALIASES
!

! Using directly C_INT to define DWORD_T and LONG_T maybe misleading,
! so we adopt the Tobias tips

I (http://gcc.gnu.org/mli/fortran/2013-07/msg00090.html).

|

integer , parameter : C_MS_LONG = C_INT

integer , parameter , public @ BYTE T=C_INT8 T

integer , parameter , public : DWORD_T=C_MS LONG
integer , parameter , public : HANDLE T=C_INTPTR_T
integer , parameter , public : INT_T=C_INT

integer , parameter , public : INT_PTR_T=C_INTPTR_T
integer , parameter , public : LONG_T=C_MS LONG
integer , parameter , public @ LONG_PTR_T=C_INTPTR_T
integer , parameter , public : SHORT_T=C_SHORT
integer , parameter , public @ UINT_PTR_T=C_INTPTR_T
integer , parameter , public @ WORD_T =C_SHORT
integer , parameter , public @ ATOM_T=WORD_T

integer , parameter , public @ BOOL_T=INT_T

integer , parameter , public : COLORREF_T=DWORD_T
integer , parameter , public : HBITMAP_T =HANDLE_T
integer , parameter , public : HBRUSH_T =HANDLE_T
integer , parameter , public : HCURSOR_T=HANDLE_T
integer , parameter , public : HDC_T =HANDLE_T

integer , parameter , public : HGDIOBJ T=HANDLE_ T

integer parameter public :: HICON_T=HANDLE T

win32.f90
c:/msys64/home/angelo/programming/win32—fortran/

2/15
07/06/2015

integer , parameter , public : HINSTANCE T =HANDLE T
integer , parameter , public @ HMENU_T =HANDLE_T
integer , parameter , public : HMODULE_T = HINSTANCE_T
integer , parameter , public : HMONITOR_T =HANDLE_T
integer , parameter , public : HPEN_T=HANDLE_T
integer , parameter , public : HWND_T=HANDLE_ T
integer , parameter , public : LPARAM_T=LONG_PTR_ T
integer , parameter , public : LRESULT_T=LONG_PTR_T
integer , parameter , public @ UINT_T=INT_T
integer , parameter , public @ WPARAM_T=UINT_PTR_T
!
I WIN32 TYPES
!
type , public , bind (C):: WNDCLASSEX_T

integer (UINT_T) :: cbSize

integer (UINT_T) :: style

type(C_FUNPTR) : IpfnWndProc ! WNDPROC

integer (INT_T) = cbClsExtra

integer (INT_T) :: cbWndExtra

integer (HINSTANCE_T):: hiInstance
integer (HICON_T):: hlcon
integer (HCURSOR_T) :: hCursor
integer (HBRUSH_T) :: hbrBackground
type(C_PTR) : IpszMenuName !'LPCTSTR
type(C_PTR) : IpszClassName !LPCTSTR
integer (HICON_T): hlconSm

end type WNDCLASSEX_T

type , public , bind (C):: POINT_T
integer (LONG_T): X
integer (LONG_T): vy

endtype POINT_T

type , public , bind (C):: MSG_T
integer (HWND_T): hwnd
integer (UINT_T) :: message
integer (WPARAM_T) :: wParam
integer (LPARAM_T): IParam
integer (DWORD_T) :: time
type(POINT_T) : pt

endtype MSG_T

type , public , bind (C):: RECT_T
integer (LONG_T): left
integer (LONG_T):: top
integer (LONG_T):: right
integer (LONG_T) :: bottom
endtype RECT_T

type , public , bind (C):: PAINTSTRUCT_T
integer (HDC_T): hdc
integer (BOOL_T):: fErase
type(RECT_T) : rcPaint
integer (BOOL_T):: fRestore
integer (BOOL_T):: fIncUpdate
integer (BYTE_T): rgbReserved(32)
end type PAINTSTRUCT_T

type , public , bind (C):: MONITORINFO_T
integer (DWORD_T) :: chSize
type(RECT_T) : rcMonitor
type(RECT_T) : rcWork
integer (DWORD_T):: dwFlags

end type MONITORINFO_T

I WIN32 CONSTANTS AND VARIABLES
!

I An alternative to the function null_p()

character (C_CHAR, pointer , public : NULL_LPSTR(:) => null()
type(RECT_T) , pointer , public : NULL RECT_T =>null()
integer (HANDLE_T), parameter , public : NULL T=0

integer (BOOL_T), parameter , public : FALSE_T=0

win32.f90
c:/msys64/home/angelo/programming/win32—fortran/

3/15
07/06/2015

integer (BOOL_T), parameter , public : TRUE T=1
type(C_PTR) , parameter , public : NULL_PTR_T=C_NULL_PTR
I C string constants alaises using the ASCII name.

character (C_CHAR, parameter , public : NUL=C_NULL_CHAR
character (C_CHAR, parameter , public : NL=C_NEW_LINE

I COLORREF (Z’00BBGGRR’) constants

integer (COLORREF_T), parameter , public : BLACK_COLOR =0 1 2’00000000’
integer (COLORREF_T), parameter , public : CYAN_COLOR =16776960 !Z'00FFFFO0O’
integer (COLORREF_T), parameter , public : YELLOW_ COLOR =65535 1 Z’0000FFFF
integer (COLORREF_T), parameter , public : WHITE_COLOR = 16777215 ! Z’'00FFFFFF’

I Device-specific information index (/usr/include/w32api/wingdi.h)

integer (INT_T), parameter , public : ASPECTX =40
integer (INT_T), parameter , public : ASPECTY =42
integer (INT_T), parameter , public : ASPECTXY =44

' Window default position and/or dimension.

I The C/C++ definition is ((int)0x80000000), i.e. (int)2147483648.

I Given the range of int (4 bytes) is [-2147483648,2147483647], 2147483648

I means —2147483648. The right way to obtain this is as follows:

I One cannot use CW_USEDEFAULT = -2147483648, because it would use an
! 'unary minus operator on the integer constant (+)2147483648, which

I does not exist! (the maximum is 2147483647!)

I See also this explanation

I http://gcc.gnu.org/ml/fortran/2013-12/msg00083.html,

I and the relative thread, for a similar question.

integer (INT_T), parameter , public : CW_USEDEFAULT =-2147483647-1

I Class styles (/usr/include/w32api/winuser.h)

integer (UINT_T), parameter , public : CS_VREDRAW =1 1 2’000000071"
integer (UINT_T), parameter , public : CS_HREDRAW =2 1 Z'00000002’
integer (UINT_T), parameter , public : CS_SAVEBITS =2048 !Z'00000800’
! DrawText formats (/usr/include/w32api/winuser.h)

integer (UINT_T), parameter , public : DT_CENTER=1

integer (UINT_T), parameter , public : DT_VCENTER=4

integer (UINT_T), parameter , public : DT_SINGLELINE =32

I Hatch style of the brush (/usr/include/w32api/wingdi.h)
integer (INT_T), parameter , public : HS_DIAGCROSS =5

' IDC_* definitions for make_int_resource() (/usr/include/w32api/winuser.h)

integer (WORD_T), parameter , public : IDC_ARROW = 32512
integer (WORD_T), parameter , public : IDC_CROSS =32515
integer (WORD_T), parameter , public : IDC_HAND = 32649
integer (WORD_T), parameter , public : [IDC_WAIT =32514

I'IDI_* definitions for make_int_resource() (/usrllnclude/w32ap|/W|nuser h)

integer (WORD_T), parameter public :: IDI_APPLICATION = 32512
integer (WORD_T), parameter public : IDI_ASTERISK = 32516
integer (WORD_T), parameter public : IDI_ERROR = 32513
integer (WORD_T), parameter public :: IDI_EXCLAMATION = 32515

integer (WORD_T), parameter public :: IDI_HAND =32513

integer (WORD_T), parameter public :: IDI_INFORMATION = 32516
integer (WORD_T), parameter public :: IDI_QUESTION = 32514
integer (WORD_T), parameter public :: IDI_WARNING = 32515
integer (WORD_T), parameter public :: IDI_WINLOGO = 32517

I MessageBox() buttons and return values (/usrllnclude/w32ap|/W|nuser h)

integer (UINT_T), parameter , public : MB_ICONASTERISK =64 12°00000040’
integer (UINT_T), parameter , public :: MB_ICONHAND = 16 12'00000010
integer (UINT_T), parameter , public : MB_ICONERROR = MB_ICONHAND

integer (UINT_T), parameter , public : MB_ICONEXCLAMATION =48 !Z'00000030’
integer (UINT_T), parameter , public : MB_ICONINFORMATION = MB_ICONASTERISK
integer (UINT_T), parameter , public : MB_ICONQUESTION =32 12°00000020°
integer (UINT_T), parameter , public @ MB_OK=0 1 Z’00000000
integer (UINT_T), parameter , public : MB_YESNO =4 12’00000004"
integer (UINT_T), parameter , public : MB_YESNOCANCEL =3 12’00000003
I

integer (INT_T), parameter , public : IDCANCEL =2

integer (INT_T), parameter , public : IDOK=1

integer (INT_T), parameter , public : IDYES=6

I Specifies how messages are to be handled (/usr/include/w32api/winuser.h)
integer (UINT_T), parameter , public : PM_NOREMOVE =0 !Z'00000000’

win32.f90
c:/msys64/home/angelo/programming/win32—fortran/

4/15
07/06/2015

integer (UINT_T), parameter , public : PM_REMOVE =1 1 Z’00000001"
integer (UINT_T), parameter , public : PM_NOYIELD =2 1 Z’00000002’

I Pen styles (/usr/include/w32api/wingdi.h)

integer (INT_T), parameter , public : PS_SOLID=0

integer (INT_T), parameter , public : PS_DASH=1

integer (INT_T), parameter , public : PS_DOT=2

integer (INT_T), parameter , public : PS_DASHDOT =3
integer (INT_T), parameter , public : PS_DASHDOTDOT =4
integer (INT_T), parameter , public : PS_NULL=5

integer (INT_T), parameter , public : PS_INSIDEFRAME =6
integer (INT_T), parameter , public : PS_USERSTYLE=7
integer (INT_T), parameter , public : PS_ALTERNATE =8

! Background modes (/usr/include/w32api/wingdi.h)
integer (INT_T), parameter , public : OPAQUE=1
integer (INT_T), parameter , public :: TRANSPARENT=1

I Foreground mix modes (/usr/nnclude/w32ap|IW|ngd| h)

integer (INT_T), parameter , public : R2 BLACK=1

integer (INT_T), parameter , public :: R2 NOTMERGEPEN =2
integer (INT_T), parameter , public : R2_MASKNOTPEN =3
integer (INT_T), parameter , public : R2 NOTCOPYPEN =4
integer (INT_T), parameter , public : R2_MASKPENNOT =5
integer (INT_T), parameter , public : R2 NOT=6

integer (INT_T), parameter , public : R2_XORPEN=7

integer (INT_T), parameter , public : R2 _NOTMASKPEN =8
integer (INT_T), parameter , public : R2_MASKPEN =9

integer (INT_T), parameter , public : R2_NOTXORPEN =10
integer (INT_T), parameter , public : R2_NOP=11

integer (INT_T), parameter , public : R2_MERGENOTPEN =12
integer (INT_T), parameter , public : R2_COPYPEN =13
integer (INT_T), parameter , public : R2_MERGEPENNOT= 14
integer (INT_T), parameter , public : R2 MERGEPEN =15
integer (INT_T), parameter , public : R2_WHITE =16

integer (INT_T), parameter , public : R2 LAST=16

I Raster—operation codes (/usr/include/w32api/wingdi.h)

integer (DWORD_T), parameter , public : BLACKNESS =66 1 2'00000042’
integer (DWORD_T), parameter , public : SRCCOPY = 13369376 1Z'00CC0020’
integer (DWORD_T), parameter , public : WHITENESS =16711778 !Z'00FF0062’
I Flags for playing the sound (/usr/include/w32api/mmsystem.h)

integer (DWORD_T), parameter , public : SND_ALIAS =65536 !Z'00010000’

I Show window constants (/usr/include/w32api/winuser.h)

integer (INT_T), parameter , public : SW_SHOWDEFAULT =10

integer (INT_T), parameter , public : SW_SHOW =5

I Text alignments (/usr/include/w32api/wingdi. h)

integer (INT_T), parameter public :: TA NOUPDATECP =0
integer (INT_T), parameter public 1 TA_UPDATECP =1
integer (INT_T), parameter public :: TA LEFT=0

integer (INT_T), parameter public : TA RIGHT =2

integer (INT_T), parameter public :: TA_CENTER =6

integer (INT_T), parameter public : TA TOP=0

integer (INT_T), parameter public : TA_BOTTOM =8
integer (INT_T), parameter public :: TA_BASELINE =24
integer (INT_T), parameter public :: TA_RTLREADING = 256
integer (INT_T), parameter public TA_MASK = &

(TA_BASELINE+TA_CENTER+TA_| UPDATECP+TA _RTLREADING)

integer (INT_T), parameter , public VTA_BASELINE = TA BASELINE
integer (INT_T), parameter , public :: VTA_LEFT = TA_BOTTOM
integer (INT_T), parameter , public : VTA RIGHT =TA TOP

integer (INT_T), parameter , public : VTA_CENTER =TA_CENTER
integer (INT_T), parameter , public : VTA_BOTTOM=TA RIGHT
integer (INT_T), parameter , public : VTA_TOP=TA_LEFT

| Stock objects brushes (/usrllncIude/wBZapllwmgdl h)

integer (INT_T), parameter , public BLACK_BRUSH =4
integer (INT_T), parameter , public :: DC_BRUSH =18
integer (INT_T), parameter , public : DKGRAY_BRUSH=3
integer (INT_T), parameter , public :: GRAY_BRUSH=2
integer (INT_T), parameter , public : HOLLOW_BRUSH=5
integer (INT_T), parameter , public : LTGRAY_BRUSH=1
integer (INT_T), parameter , public : NULL_BRUSH=5
integer (INT_T), parameter , public : OBJ BRUSH=2
integer (INT_T), parameter , public : WHITE_LBRUSH=0

win32.f90
c:/msys64/home/angelo/programming/win32—fortran/

5/15
07/06/2015

I'Virtual key codes (/usr/include/w32api/winuser.h)
parameter

integer

I Windows messages (/usrllnclude/w32ap|/wmuser h)

integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer

(INT_T),

(UINT_T),
(UINT_T),
(UINT_T),
(UINT_T),
(UINT_T),
(UINT_T),
(UINT_T),
(UINT_T),
(UINT_T),
(UINT_T),
(UINT_T),
(UINT_T),
(UINT_T),

parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter

public

' Windows styles (/usr/include/w32api/winuser.h)
(DWORD_T), parameter ,

integer
integer

(DWORD_T),

parameter

WS_CLIPCHILDREN = 33554432

integer

(DWORD_T),

parameter

WS_CLIPSIBLINGS = 67108864

integer
integer
integer
integer
integer
integer

(DWORD_T),
(DWORD_T),
(DWORD_T),
(DWORD_T),
(DWORD_T),
(DWORD_T),

parameter
parameter
parameter
parameter
parameter
parameter

VK_ESCAPE = 27

1 Z’0000001B’

public WM_LBUTTONDOWN = 513! 200000201’
public WM_CHAR = 258 1 200000102’
public WM_CLOSE =16 1 200000010’
public WM_COMMAND = 273 1 Z2’00000111’
public WM_CREATE =1 1'Z’000000071”
public WM_DESTROY =2 1 200000002’
public WM_ERASEBKGND =20 ! Z'00000014’
public WM_INITDIALOG = 272 1200000110’
public WM_PAINT =15 1 Z’0000000F’
public WM_PRINTCLIENT =792 1 Z'00000318’
public WM_QUIT =18 1 200000012’
public WM_SIZE =5 1 Z’00000005’
public WM_TIMER = 275 12’00000113’

public WS_CAPTION = 12582912 1'Z2’00C00000’

public @ &

1 202000000’
public @ &
1z 04000000’

public WS_MAXIMIZEBOX = 65536 1200010000’

public WS_MINIMIZEBOX 131072 1 Z’00020000

public WS_SYSMENU = 524288 1 200080000

public WS_THICKFRAME = 262144 | Z’00040000’

public WS_OVERLAPPED =0 1 200000000

public WS_OVERLAPPEDWINDOW &

iany ([WS_OVERLAPPED, WS_ CAPTION WS_SYSMENU, WS_THICKFRAME, &
WS_MINIMIZEBOX, WS_MAXIMIZEBOX 1)

| 13565952

I Windows styles extended (/usr/include/w32api/winuser.h)

public

(hwnd,IpPaint)
:HDC_T, HWND_T, PAINTSTRUCT_T

hwnd

bind (C, name= 'BeginPaint’

WS_EX_CLIENTEDGE =512

integer (DWORD_T), parameter
!
I WIN32 INTERFACE
!
interface
function BeginPaint
import
IGCC$ ATTRIBUTES STDCALL :: BeginPaint
integer (HDC_T):: BeginPaint
integer (HWND_T), value

type(PAINTSTRUCT _T) ,

end function

function

BitBIt

BeginPaint

intent

(out) ::

IpPaint

(hdcDest,nXDest,nYDest,nWidth,nHeight,hdcSrc,
nXSrc,nYSrc,dwRop)

bind (C, name=

hdcDest
nXDest
nYDest
nWidth
nHeight
hdcSrc
nXSrc
nYSrc
dwRop

import B
IGCC$ ATTRIBUTES STDCALL :: BitBlt
integer (BOOL_T) :: BltBIt
integer (HDC_T), value
integer (INT_T), value
integer (INT_T), value
integer (INT_T), value
integer (INT_T), value
integer (HDC_T), value
integer (INT_T), value
integer (INT_T), value
integer (DWORD_T), value

end function BitBIt

function CheckRadioButton

nIDCheckButton)

import

‘BitBIt’

' BOOL_T, DWORD_T, HDC_T, INT_T

(hDlg,nIDFirstButton,nIDLastButton,
bind (C, name= 'CheckRadioButton’)

= BOOL_T, HWND_T, INT_T

IGCC$ ATTRIBUTES STDCALL :: CheckRadioButton

)

1 2’00000200’

integer (BOOL_T): CheckRadioButton

integer (HWND_T), value hDIg

integer (INT_T), value nIDFirstButton

integer (INT_T), value niDLastButton

integer (INT_T), value nIDCheckButton
end function CheckRadioButton

win32.f90
c:/msys64/home/angelo/programming/win32—fortran/

6/15
07/06/2015

function CreateCompatibleBitmap (hdc,nWidth,nHeight) &
bind (C, name= ’'CreateCompatibleBitmap’)
import :: HBITMAP_T, HDC_T, INT_T
IGCC$ ATTRIBUTES STDCALL :: CreateCompatibleBitmap
integer (HBITMAP_T) :: CreateCompatibleBitmap
integer (HDC_T), value : hdc

integer (INT_T), wvalue : nWidth
integer (INT_T), value : nHeight
end function CreateCompatibleBitmap

function CreateCompatibleDC (hdc) bind (C, name= ’'CreateCompatibleDC’)
import ::HDC_T
IGCC$ ATTRIBUTES STDCALL :: CreateCompatibleDC
integer (HDC_T):: CreateCompatibleDC
integer (HDC_T), value : hdc
end function CreateCompatibleDC

function CreatePen (fnPenStyle,nWidth,crColor) bind (C, name= 'CreatePen’
import :: COLORREF_T, HPEN_T, INT_T
IGCC$ ATTRIBUTES STDCALL :: CreatePen
integer (HPEN_T): CreatePen
integer (INT_T), value : fnPenStyle
integer (INT_T), value : nWidth
integer (COLORREF_T), value :: crColor
end function CreatePen

function CreateSolidBrush (crColor) bind (C, name= 'CreateSolidBrush’)
import :: COLORREF_T, HBRUSH_T
IGCC$ ATTRIBUTES STDCALL :: CreateSolidBrush
integer (HBRUSH_T):: CreateSolidBrush
integer (COLORREF_T), value : crColor
end function CreateSolidBrush

function CreateHatchBrush (fnStyle,clrref) bind (C, name= ’'CreateHatchBrush’
import :: COLORREF_T, HBRUSH_T, INT_T
IGCC$ ATTRIBUTES STDCALL :: CreateHatchBrush
integer (HBRUSH_T):: CreateHatchBrush
integer (INT_T), value : fnStyle
integer (COLORREF_T), value : clrref
end function CreateHatchBrush

function CreateWindowEx (dwExStyle,IpClassName,lpwWindowName,dwStyle, &

X,y,nWidth,nHeight, &

hwWndParent,hMenu,hinstance,lpParam) bind (C, name= 'CreateWindowEXxA’
import :: C_CHAR C_PTR DWORD_T, HINSTANCE_T, HMENU_T, HWND_T, INT_T
IGCC$ ATTRIBUTES STDCALL :: CreateWindowEx
integer (HWND_T) :: CreateWindowEx

integer (DWORD_T), value : dwExStyle

character (C_CHAR intent (in):: IpClassName(*) I LPCTSTR
character (C_CHAR, intent (in):: IpWindowName(*) I LPCTSTR
integer (DWORD_T), value : dwsStyle

integer (INT_T), value : X

integer (INT_T), value : vy

integer (INT_T), value : nWidth

integer (INT_T), value : nHeight
integer (HWND_T), value : hWndParent
integer (HMENU_T), value : hMenu
integer (HINSTANCE_T), value : hinstance
type(C_PTR) , value : IpParam

end function CreateWindowEx

function DeleteDC (hdc) bind (C, name= 'DeleteDC’)
import :: BOOL_T,HDC_T
IGCC$ ATTRIBUTES STDCALL :: DeleteDC
integer (BOOL_T):: DeleteDC
integer (HDC_T), value : hdc
end function DeleteDC

function DeleteObject (hObject) bind (C, name= ’'DeleteObject’)
import :: BOOL_T, HGDIOBJ_T
IGCC$ ATTRIBUTES STDCALL :: DeleteObject
integer (BOOL_T):: DeleteObject
integer (HGDIOBJ_T), value : hObject
end function DeleteObject

function DestroyWindow (hWnd) bind (C, name= ’DestroyWindow’)
import :: BOOL_T, HWND_T
IGCC$ ATTRIBUTES STDCALL :: DestroyWindow

)

)

)

win32.f90

c:/msys64/home/angelo/programming/win32—fortran/

7/15
07/06/2015

integer
integer

end function

function

(BOOL_T):: DestroyWindow
(HWND_T), value : hwnd
DestroyWindow

DefWindowProc (hWnd,Msg,wParam,IParam) &

bind (C, name= 'DefWindowProcA’
:: HWND_T, LPARAM_T, LRESULT_T, UINT_T, WPARAM_T
IGCC$ ATTRIBUTES STDCALL :: DefWindowProc

import

integer
integer
integer
integer
integer

end function

function

)

(LRESULT_T):: DefWindowProc
(HWND_T), value : hwnd
(UINT_T), value : Msg
(WPARAM_T), value wParam
(LPARAM_T), value IParam
DefWindowProc

DialogBoxParam (hinstance,lpTemplate,hWndParent,IpDialogFunc,

dwinitParam)

import

C CHAR C_FUNPTRHINSTANCE_T, HWND_T, INT_PTR_T, LPARAM_T

bind (C, name= ’'DialogBoxParamA’

IGCC$ ATTRIBUTES STDCALL :: DialogBoxParam
DialogBoxParam

value : hinstance
IpTemplate(*) I'LPCTSTR
ltype(C_PTR), value :: IpTemplate ! LPCTSTR

integer
integer

character

integer

(INT_PTR_T) ::

(HINSTANCE_T),
(C_CHAR

(HWND_T), value

type(C_FUNPTR) ,
integer (LPARAM_T), value : dwin

end function

function
import

integer

type(MSG_T) ,
end function

function
import

integer
integer

character

integer

type(RECT_T) ,

integer

DispatchMessage (IpMsg)

value

intent (in) ::

IpDialog

DialogBoxParam

© LRESULT_T, MSG_T
IGCC$ ATTRIBUTES STDCALL :: DispatchMessage
(LRESULT_T) ::

intent (i
DispatchMessage

DispatchMes

hWndParent

Func I DLGPROC
itParam

sage

n): IpMsg

DrawText (hdc,lpString,nCount,IpRect,uFormat) &
bind (C, name= 'DrawTextA’
i C_CHARHDC_T, INT_T,RECT_T, UINT_T
IGCC$ ATTRIBUTES STDCALL :: DrawText

DrawText

(INT_T) ::
(HDC_T),

(INT_T),
(UINT_T),

end function DrawT

function

(C_CHAR,

value

value

intent

valu
ext

hdc

intent (inout) ::

nCount
(inout) ::

IpString(*) I LPCTSTR

IpRect

e : uFormat

Ellipse (hdc,nLeftRect,nTopRect,nRightRect,nBottomRect)
bind (C, name= 'Ellipse’

import :: BOOL_T,HDC T, INT_T
IGCC$ ATTRIBUTES STDCALL :: Ellipse
integer (BOOL_T): Ellipse
integer (HDC_T), value : hdc
integer (INT_T), value nLeftRect
integer (INT_T), value nTopRect
integer (INT_T), value nRightRect
integer (INT_T), value nBottomRect
end function Ellipse
function EndDialog (hWnd,nResult) bind (C, name= 'EndDialog’
import :: BOOL_T, HWND_T, INT_PTR_T
IGCC$ ATTRIBUTES STDCALL :: EndDialog
integer (BOOL_T): EndDialog
integer (HWND_T), value : hWnd
integer (INT_PTR_T), value : nResult
end function EndDialog

function
import

integer
integer

end function

subroutine
import

EndPaint (hWnd,IpPaint) b
1 BOOL_T, HWND_T, PAINTSTRUCT_T
IGCC$ ATTRIBUTES STDCALL :: EndPaint
- EndPaint
(HWND_T), value : hwnd
type(PAINTSTRUCT_T) ,

(BOOL_T) ::

EndPaint

ExitProcess

SUINT.T

intent (in) ::

(uExitCode)

ind (C, name= 'EndPaint’)

IpPaint

bind (C, name= ’'ExitProcess’

IGCC$ ATTRIBUTES STDCALL :: ExitProcess

bind (C, name= ’'DispatchMessageA’

)

win32.f90
c:/msys64/home/angelo/programming/win32—fortran/

8/15
07/06/2015

integer (UINT_T), value :: uExitCode
end subroutine ExitProcess
function FillRect (hdc,lprc,hbr) bind (C, name= 'FillRect’)

import :: HBRUSH_T, HDC_T, INT_T, RECT_T
IGCC$ ATTRIBUTES STDCALL :: FillRect

integer (INT_T) :: FillRect

integer (HDC_T), value : hdc

type(RECT_T) , intent (in):: Iprc

integer (HBRUSH_T), value :: hbr
end function FillRect

function GetBkColor (hdc) bind (C, name= 'GetBkColor)
import :: COLORREF_T,HDC_T
IGCC$ ATTRIBUTES STDCALL :: GetBkColor
integer (COLORREF_T):: GetBkColor
integer (HDC_T), value : hdc
end function GetBkColor

function GetClientRect (hwnd,IpRect) bind (C, name= ’'GetClientRect’

import :: BOOL_T, HWND_T, RECT_T

IGCC$ ATTRIBUTES STDCALL :: GetClientRect

integer (BOOL_T): GetClientRect

integer (HWND_T), value : hwnd

type(RECT_T) , intent (out) : IpRect
end function GetClientRect

function GetCommandLine () bind (C, name= 'GetCommandLineA’)

import :: C_PTR

IGCC$ ATTRIBUTES STDCALL :: GetCommandLine

type(C_PTR) : GetCommandLine !'LPCTSTR
end function GetCommandLine

function GetDC(hWnd) bind (C, name= 'GetDC’)
import :: HDC_T, HWND_T
IGCC$ ATTRIBUTES STDCALL :: GetDC
integer (HDC_T): GetDC
integer (HWND_T), value : hWnd
end function GetDC

function GetDCBrushColor (hdc) bind (C, name= 'GetDCBrushColor’

import :: COLORREF_T,HDC_T
IGCC$ ATTRIBUTES STDCALL :: GetDCBrushColor
integer (COLORREF_T):: GetDCBrushColor
integer (HDC_T), value : hdc

end function GetDCBrushColor

function GetDeviceCaps (hdc,nindex) bind (C, name= 'GetDeviceCaps’

import ::HDC_T, INT_T
IGCC$ ATTRIBUTES STDCALL :: GetDeviceCaps

integer (INT_T) :: GetDeviceCaps

integer (HDC_T), value : hdc

integer (INT_T), value : nindex
end function GetDeviceCaps

function GetDlgltemText (hDlg,nIDDlgltem,IpString,nMaxCount)
bind (C, name= ’'GetDIgltemTextA’
import :: C_CHARHWND_T, INT_T, UINT_T
IGCC$ ATTRIBUTES STDCALL :: GetDIgltemText
integer (UINT_T) = GetDlgltemText
integer (HWND_T), value : hDlg
integer (INT_T), value : nIDDIgltem
character (C_CHAR, intent (out):: IpString(*) I'LPTSTR
! This works too... but it is more complicated :—(
! Notice that the C string pointer is of type value:
l'it is the content to which it points that is an 'output’
|
Itype(C_PTR), value :: IpString
integer (INT_T), value : nMaxCount
end function GetDlgltemText

function GetKeyState (nVirtKey) bind (C, name= ’'GetKeyState’
import I INT_T, SHORT_T
IGCC$ ATTRIBUTES STDCALL :: GetKeyState
integer (SHORT_T):: GetKeyState
integer (INT_T), value : nVirtKey
end function GetKeyState

win32.f90 9/15
c:/msys64/home/angelo/programming/win32—fortran/ 07/06/2015

function GetLastError () bind (C, name= ’'GetLastError’)
import :: DWORD_T
IGCC$ ATTRIBUTES STDCALL :: GetLastError
integer (DWORD_T) :: GetlLastError

end function GetLastError

function GetMessage (IpMsg,hWnd,wMsgFilterMin,wMsgFilterMax) &
bind (C, name= ’'GetMessageA’)
import :: BOOL_T, HWND_T, MSG_T, UINT_T
IGCC$ ATTRIBUTES STDCALL :: GetMessage
integer (BOOL_T): GetMessage

type(MSG_T) , intent (out) : IpMsg

integer (HWND_T), value : hwnd

integer (UINT_T), value : wMsgFilterMin

integer (UINT_T), value : wMsgFilterMax
end function GetMessage

function GetModuleHandle (IpModuleName) bind (C, name= 'GetModuleHandleA”)
import :: C_CHARHMODULE_T
IGCC$ ATTRIBUTES STDCALL :: GetModuleHandle
integer (HMODULE_T) :: GetModuleHandle

character (C_CHAR, intent (in):: IpModuleName(*) I LPCTSTR
end function GetModuleHandle
function GetMonitorinfo (hMonitor,Ipmi) bind (C, name= 'GetMonitorInfoA’)

import :: BOOL_T, HMONITOR_T, MONITORINFO_T
IGCC$ ATTRIBUTES STDCALL :: GetMonitorinfo
integer (BOOL_T): GetMonitorinfo

integer (HMONITOR_T), value : hMonitor
type(MONITORINFO_T) , intent (out):: Ipmi
end function GetMonitorinfo

function GetStockObject (fnObject) bind (C, name= 'GetStockObject’)
import :: HGDIOBJ_T, INT_T
IGCC$ ATTRIBUTES STDCALL :: GetStockObject
integer (HGDIOBJ_T):: GetStockObject
integer (INT_T), value : fnObject
end function GetStockObject

function GetTextColor (hdc) bind (C, name= 'GetTextColor’)
import :: COLORREF_T,HDC_T
IGCC$ ATTRIBUTES STDCALL :: GetTextColor
integer (COLORREF_T):: GetTextColor
integer (HDC_T), value : hdc
end function GetTextColor

function InvalidateRect (hwnd,|pRect,bErase) bind (C, name= ’InvalidateRect’)
import :: BOOL_T, HWND_T, RECT_T
IGCC$ ATTRIBUTES STDCALL :: InvalidateRect
integer (BOOL_T): InvalidateRect

integer (HWND_T), value : hwnd

type(RECT_T) , intent (in):: IpRect

integer (BOOL_T), value : bErase
end function InvalidateRect

function KillTimer (hWnd,ulDEvent) bind (C, name= ’KillTimer)
import :: BOOL_T, HWND_T, UINT_PTR_T
IGCC$ ATTRIBUTES STDCALL :: KillTimer
integer (BOOL_T): KillTimer
integer (HWND_T), value : hWnd
integer (UINT_PTR_T), value : ulDEvent
end function KillTimer

function LineTo (hdc,nXEnd,nYEnNd) bind (C, name= ’LineTo’)
import ::BOOL_T, HDC_T, INT_T
IGCC$ ATTRIBUTES STDCALL :: LineTo
integer (BOOL_T): LineTo
integer (HDC_T), value : hdc
integer (INT_T), value : nXEnd

integer (INT_T), value : nYEnd

end function LineTo

function LoadCursor (hinstance,lpCursorName) bind (C, name= 'LoadCursorA’)
import 1 C_CHARHCURSOR_T, HINSTANCE_T

IGCC$ ATTRIBUTES STDCALL :: LoadCursor

integer (HCURSOR_T):: LoadCursor

integer (HINSTANCE_T), value : hinstance

character (C_CHAR intent (in):: IpCursorName(*) I LPCTSTR

win32.f90
c:/msys64/home/angelo/programming/win32—fortran/

10/15
07/06/2015

end function LoadCursor
function Loadlcon (hinstance,lplconName) bind (C, name= ’'LoadlconA’)
import :: C_CHARHICON_T, HINSTANCE_T

IGCC$ ATTRIBUTES STDCALL :: Loadlcon
integer (HICON_T):: Loadlcon

integer (HINSTANCE_T), value : hinstance
character (C_CHAR, intent (in):: IplconName(*) I'LPCTSTR
end function Loadlcon

function MessageBeep (uType) bind (C, name= 'MessageBeep’)
import :: BOOL_T, UINT_T
IGCC$ ATTRIBUTES STDCALL :: MessageBeep
integer (BOOL_T): MessageBeep
integer (UINT_T), wvalue : uType
end function MessageBeep

function MessageBox (hwWnd,IpText,IpCaption,uType) &
bind (C, name= 'MessageBoxA’
import ' C_CHARHWND_T, INT_T, UINT_T
IGCC$ ATTRIBUTES STDCALL :: MessageBox
integer (INT_T) : MessageBox
integer (HWND_T), value : hWnd
character (C_CHAR, intent (in):: IpText(*) I LPCTSTR
character (C_CHAR, intent (in):: IpCaption(*) I'LPCTSTR
integer (UINT_T), value : uType
end function MessageBox

function MonitorFromPoint (pt,dwFlags) bind (C, name= 'MonitorFromPoint’)
import :: DWORD_T, HMONITOR_T, POINT_T
IGCC$ ATTRIBUTES STDCALL :: MonitorFromPoint
integer (HMONITOR_T) :: MonitorFromPoint
type(POINT_T) , value : pt
integer (DWORD_T), value : dwFlags
end function MonitorFromPoint

function MoveToEx(hdc,X,Y,IpPoint) bind (C, name= 'MoveToEX")
import :: BOOL_T, HDC_T, INT_T, POINT_T
IGCC$ ATTRIBUTES STDCALL :: MoveToEx
integer (BOOL_T): MoveToEx
integer (HDC_T), value : hdc

integer (INT_T), value : X

integer (INT_T), value : Y

type(POINT_T) , intent (out): IpPoint
end function MoveToEXx

function PlaySound (pszSound,hmod,fdwSound) bind (C, name= 'PlaySoundA’)
import ::BOOL_T, C_CHARDWORD_T, HMODULE_T
IGCC$ ATTRIBUTES STDCALL :: PlaySound
integer (BOOL_T): PlaySound
character (C_CHAR intent (in):: pszSound(*) I LPCTSTR
integer (HMODULE_T), value : hmod
integer (DWORD_T), value : fdwSound
end function PlaySound

function PeekMessage (IpMsg,hWnd,wMsgFilterMin,wMsgFilterMax,wRemoveMsg)
bind (C, name= 'PeekMessageA’)
import :: BOOL_T, HWND_T, MSG_T, UINT_T
IGCC$ ATTRIBUTES STDCALL :: PeekMessage
integer (BOOL_T): PeekMessage

type(MSG_T) , intent (out) : IpMsg
integer (HWND_T), value : hwnd
integer (UINT_T), value : wMsgFilterMin
integer (UINT_T), value : wMsgFilterMax
integer (UINT_T), value : wRemoveMsg
end function PeekMessage
function Polygon (hdc,lpPoints,nCount) bind (C, name= 'Polygon’)

import :: BOOL_T, HDC_T, INT_T, POINT_T
IGCC$ ATTRIBUTES STDCALL :: Polygon
integer (BOOL_T): Polygon

integer (HDC_T), value : hdc

type(POINT_T) , intent (in):: IpPoints(*)
integer (INT_T), value : nCount
end function Polygon

function PostMessage (hwWnd,Msg,wParam,IParam) bind (C, name= ’'PostMessageA’

import : BOOL_T, HWND_T, LPARAM_T, UINT_T, WPARAM_T

win32.f90
c:/msys64/home/angelo/programming/win32—fortran/

11/15
07/06/2015

IGCC$ ATTRIBUTES STDCALL :: PostMessage

integer (BOOL_T):: PostMessage

integer (HWND_T), value : hWnd

integer (UINT_T), value : Msg

integer (WPARAM_T), value : wParam

integer (LPARAM_T), value : IParam
end function PostMessage

subroutine PostQuitMessage (nExitCode) bind (C, name= 'PostQuitMessage’
import I INT_T
IGCC$ ATTRIBUTES STDCALL :: PostQuitMessage
integer (INT_T), value : nExitCode

end subroutine PostQuitMessage

function Rectangle (hdc,nLeftRect,nTopRect,nRightRect,nBottomRect)
bind (C, name= ’'Rectangle’)
import :: BOOL_T,HDC T, INT_T
IGCC$ ATTRIBUTES STDCALL :: Rectangle
integer (BOOL_T): Rectangle
integer (HDC_T), value : hdc

integer (INT_T), value : nLeftRect

integer (INT_T), value : nTopRect

integer (INT_T), value : nRightRect

integer (INT_T), value : nBottomRect
end function Rectangle

function RegisterClassex (WndClass) bind (C, name= 'RegisterClassExA’
import :: ATOM_T, WNDCLASSEX_T
IGCC$ ATTRIBUTES STDCALL :: RegisterClassEx
integer (ATOM_T): RegisterClassEx
type(WNDCLASSEX_T), intent (in) :: WndClass
end function RegisterClassEx

function ReleaseDC (hWnd,hdc) bind (C, name= 'ReleaseDC’")
import :: HDC_T, HWND_T, INT_T
IGCC$ ATTRIBUTES STDCALL :: ReleaseDC
integer (INT_T) :: ReleaseDC
integer (HWND_T), value : hWnd
integer (HDC_T), value : hdc
end function ReleaseDC

function SelectObject (hdc,hgdiobj) bind (C, name= ’'SelectObject’)
import :: HDC_T, HGDIOBJ_T
IGCC$ ATTRIBUTES STDCALL :: SelectObject
integer (HGDIOBJ_T) :: SelectObject
integer (HDC_T), value : hdc
integer (HGDIOBJ_T), value : hgdiobj
end function SelectObject

function SendMessage (hWnd,Msg,wParam,|lParam) bind (C, name= 'SendMessageA’

import :: HWND_T, LPARAM_T, LRESULT_T, UINT_T, WPARAM_T
IGCC$ ATTRIBUTES STDCALL :: SendMessage
integer (LRESULT_T): SendMessage
integer (HWND_T), value : hwnd
integer (UINT_T), value : Msg
integer (WPARAM_T), value : wParam
integer (LPARAM_T), value : [Param
end function SendMessage

function SendNotifyMessage (hWnd,Msg,wParam,|Param) &

bind (C, name= ’'SendNotifyMessageA’

import : HWND_T, LPARAM T, LRESULT T, UINT_T, WPARAM T

IGCC$ ATTRIBUTES STDCALL :: SendNotifyMessage

integer (LRESULT_T):: SendNotifyMessage

integer (HWND_T), value : hwnd

integer (UINT_T), value : Msg

integer (WPARAM_T), value : wParam

integer (LPARAM_T), value : [Param
end function SendNotifyMessage
function SetBkColor (hdc,crColor) bind (C, name= ’'SetBkColor’)

import :: COLORREF_T,HDC_T

IGCC$ ATTRIBUTES STDCALL :: SetBkColor

integer (COLORREF_T):: SetBkColor

integer (HDC_T), value : hdc

integer (COLORREF_T), value :: crColor
end function SetBkColor

)

win32.f90
c:/msys64/home/angelo/programming/win32—fortran/

12/15
07/06/2015

function SetBkMode (hdc,iBkMode) bind (C, name= ’'SetBkMode’)
import ::HDC_T, INT_T
IGCC$ ATTRIBUTES STDCALL :: SetBkMode

integer (INT_T) :: SetBkMode
integer (HDC_T), value : hdc
integer (INT_T), value : iBkMode

end function SetBkMode

function SetCursor (hCursor) bind (C, name= ’'SetCursor’)
import :: HCURSOR_T
IGCC$ ATTRIBUTES STDCALL :: SetCursor
integer (HCURSOR_T) :: SetCursor
integer (HCURSOR_T), value : hCursor
end function SetCursor

function SetDCBrushColor (hdc,crColor) bind (C, name= 'SetDCBrushColor’
import :: COLORREF_T,HDC_T
IGCC$ ATTRIBUTES STDCALL :: SetDCBrushColor
integer (COLORREF_T):: SetDCBrushColor
integer (HDC_T), value : hdc
integer (COLORREF_T), value :: crColor
end function SetDCBrushColor

function SetDlgltemText (hDlg,nIDDIgltem,lpString) &
bind (C, name= ’'SetDIgltemTextA’
import :: BOOL_T, C_CHARHWND_T, INT_T
IGCC$ ATTRIBUTES STDCALL :: SetDIgltemText
integer (BOOL_T): SetDlgltemText

integer (HWND_T), value : hDlg

integer (INT_T), value : nlIDDIgltem

character (C_CHAR, intent (in):: IpString(*) I LPCTSTR
end function SetDlgltemText
function SetPixel (hdc,X,Y,crColor) bind (C, name= ’'SetPixel’)

import :: COLORREF_T, HDC_T, INT_T

IGCC$ ATTRIBUTES STDCALL :: SetPixel

integer (COLORREF_T):: SetPixel

integer (HDC_T), value : hdc

integer (INT_T), value : X

integer (INT_T), wvalue = Y

integer (COLORREF_T), value : crColor
end function SetPixel

function SetROP2(hdc,fnDrawMode) bind (C, name= 'SetROP2’)
import ::HDC_T,INT_T
IGCC$ ATTRIBUTES STDCALL :: SetROP2

integer (INT_T) :: SetROP2
integer (HDC_T), value : hdc
integer (INT_T), value : fnDrawMode

end function SetROP2

function SetTextAlign (hdc,fMode) bind (C, name= ’'SetTextAlign’)
import :: HDC_T, UINT_T
IGCC$ ATTRIBUTES STDCALL :: SetTextAlign
integer (UINT_T) = SetTextAlign
integer (HDC_T), value : hdc
integer (UINT_T), value : fMode
end function SetTextAlign

function SetTextColor (hdc,crColor) bind (C, name= ’'SetTextColor’)
import :: COLORREF_T,HDC_T
IGCC$ ATTRIBUTES STDCALL :: SetTextColor
integer (COLORREF_T):: SetTextColor
integer (HDC_T), value : hdc
integer (COLORREF_T), value :: crColor
end function SetTextColor

function SetTimer (hWnd,nIDEvent,uElapse,lpTimerFunc) &
bind (C,name= 'SetTimer’
import : C_FUNPTRHWND_T, UINT_T, UINT PTR_T
IGCC$ ATTRIBUTES STDCALL :: SetTimer
integer (UINT_PTR_T): SetTimer

integer (HWND_T), value : hwnd

integer (UINT_PTR_T), value : nlIDEvent

integer (UINT_T), value : uElapse

type(C_FUNPTR) , value : IpTimerFunc ! TIMERPROC

end function SetTimer

)

win32.f90 13/15
c:/msys64/home/angelo/programming/win32—fortran/ 07/06/2015

function ShowWindow(hWnd,nCmdShow) bind (C, name= 'ShowWindow’)
import 1 BOOL_T, HWND_T, INT_T
IGCC$ ATTRIBUTES STDCALL :: ShowWindow
integer (BOOL_T): ShowWindow

integer (HWND_T), value : hWnd
integer (INT_T), value : nCmdShow
end function ShowWindow
function TextOut (hdc,nXStart,nY Start,IpString,cchString) &

bind (C, name= 'TextOutA’
import :: BOOL_T, C_CHARHDC_T, INT_T
IGCC$ ATTRIBUTES STDCALL :: TextOut
integer (BOOL_T): TextOut
integer (HDC_T), value : hdc

integer (INT_T), value : nXStart
integer (INT_T), value : nYStart
character (C_CHAR, intent (in):: IpString(*) I'LPCTSTR
integer (INT_T), value : cchString
end function TextOut
function TranslateMessage (IpMsg) bind (C, name= 'TranslateMessage’)

import :: BOOL_T,MSG_T
IGCC$ ATTRIBUTES STDCALL :: TranslateMessage
integer (BOOL_T): TranslateMessage
type(MSG_T) , intent (in):: IpMsg

end function TranslateMessage

function UpdateWindow (hWnd) bind (C, name= 'UpdateWindow’)
import :: BOOL_T, HWND_T
IGCC$ ATTRIBUTES STDCALL :: UpdateWindow
integer (BOOL_T): UpdateWindow
integer (HWND_T), value : hWnd
end function UpdateWindow
end interface

I Interface routines

public :: BeginPaint, BitBlt, CheckRadioButton, CreateCompatibleBitmap, &
CreateCompatibleDC, CreatePen, CreateSolidBrush, CreateHatchBrush, &
CreateWindowEXx, DeleteDC, DeleteObject, DestroyWindow, DefWindowProc, &
DialogBoxParam, DispatchMessage, DrawText, Ellipse, EndDialog, &
EndPaint, Exit Process , FillRect, GetBkColor, GetClientRect, &
GetCommandLine, GetDC, GetDCBrushColor, GetDeviceCaps, GetDIgltemText, &
GetKeyState, GetLastError, GetMessage, GetModuleHandle, &
GetMonitorinfo, GetStockObject, GetTextColor, InvalidateRect, &
KillTimer, LineTo, LoadCursor, Loadlcon, MessageBeep, MessageBox, &
MonitorFromPoint, MoveToEXx, PlaySound, PeekMessage, Polygon, &
PostMessage, PostQuitMessage, Rectangle, RegisterClassEx, ReleaseDC, &
SelectObject, SendMessage, SendNotifyMessage, SetBkColor, SetBkMode, &
SetCursor, SetDCBrushColor, SetDlgltemText, SetPixel, SetROP2, &
SetTextAlign, SetTextColor, SetTimer, ShowWindow, TextOut, &
TranslateMessage, UpdateWindow

I Auxiliary routines

public ::arrow_cursor, cross_cursor, hand_cursor, wait_cursor, &
application_icon, asterisk_icon, error_icon, exclamation_icon, &
hand_icon, information_icon, question_icon, warning_icon, winlogo_icon, &
ask_confirmation, dialog_box, hi_word, lo_word, make_int_resource, &
make_int_resource_C_PTR, null_p, RGB, error_msg

contains

function arrow_cursor () result (s)

character (C_CHAR, pointer : s()
s => make_int_resource(IDC_ARROW)
end function arrow_cursor

function cross_cursor () result (s)

character (C_CHAR, pointer = s()
s => make_int_resource(IDC_CROSS)
end function Cross_cursor

function hand_cursor () result (s)

character (C_CHAR, pointer : s(:)
s => make_int_resource(IDC_HAND)
end function hand_cursor

function wait_cursor () result (s)
character (C_CHAR, pointer : s()

win32.f90
c:/msys64/home/angelo/programming/win32—fortran/

14/15
07/06/2015

s => make_int_resource(IDC_WAIT)

end function wait_cursor

function application_icon () result (s)
character (C_CHAR, pointer = s()

s => make_int_resource(IDI_APPLICATION)

end function application_icon

function asterisk_icon () result (s)
character (C_CHAR, pointer : s(:)

s => make_int_resource(IDI_ASTERISK)

end function asterisk_icon

function error_icon () result (s)

character (C_CHAR, pointer : s()
s => make_int_resource(IDI_ERROR)
end function error_icon

function exclamation_icon () result (s)

character (C_CHAR, pointer : s()
s => make_int_resource(IDI_EXCLAMATION)
end function exclamation_icon

function hand_icon () result (s)

character (C_CHAR, pointer : s()
s => make_int_resource(IDI_HAND)
end function hand_icon
function information_icon () result (s)
character (C_CHAR, pointer : s()
s => make_int_resource(IDI_INFORMATION)
end function information_icon

function question_icon () result (s)

character (C_CHAR, pointer : s()
s => make_int_resource(IDI_QUESTION)
end function question_icon
function warning_icon () result (s)
character (C_CHAR, pointer : s(:)
s => make_int_resource(IDI_WARNING)
end function warning_icon
function winlogo_icon () result (s)
character (C_CHAR, pointer : s()
s => make_int_resource(IDI_WINLOGO)
end function winlogo_icon
function ask_confirmation (hWnd,IpText,IpCaption)
integer (INT_T) = ask_confirmation
integer (HWND_T), intent (in): hwnd
character (C_CHAR, intent (in):: IpText(*) I LPCTSTR
character (C_CHAR, intent (in):: IpCaption(*) ' LPCTSTR
ask_confirmation = MessageBox(hWnd,IpText,IpCaption, &
ior (MB_YESNO,MB_ICONQUESTION))
end function ask_confirmation

function dialog_box (hinstance,lpTemplate,hWndParent,|pDialogFunc)
integer (INT_PTR_T) :: dialog_box
integer (HINSTANCE_T), intent (in):: hinstance
character (C_CHAR, intent (in):: IpTemplate(*) I LPCTSTR
Iltype(C_PTR), intent(in) :: IpTemplate ! LPCTSTR
integer (HWND_T), intent (in):: hwWndParent
type(C_FUNPTR) , intent (in):: IpDialogFunc I DLGPROC
dialog_box = DialogBoxParam(hInstance,lpTemplate,hWndParent,
IpDialogFunc,NULL_T)
end function dialog_box

function hi_word (dWVaIue)
integer (WORD_T) :: hi_word

integer (DWORD_T), intent (in) : dwValue
! (fusr/include/w32api/windef.h)
hi_word = int (ishft (dwValue,-16),WORD_T)
end function hi_word

function lo_word (dwValue)
integer (WORD_T):: lo_word
integer (DWORD_T), intent (in) :: dwValue

win32.f90
c:/msys64/home/angelo/programming/win32—fortran/

15/15
07/06/2015

! (fusr/include/w32api/windef.h)
lo_word = int (iand (dwValue,65535),WORD_T) liand(dwValue,Z’0000FFFF’)
end function lo_word

function make_int_resource (i) result (s)
integer (WORD_T), intent (in):: i

character (C_CHAR, pointer : s(:) I LPTSTR
call c_f pointer (make_int_resource_C_PTR(i),s,[0])
end function make_int_resource

function make_int_resource_C_PTR (i) result (s)
integer (WORD_T), intent (in):: i

type(C_PTR) = s
s= transfer ~ (int (i,HANDLE_T),NULL_PTR_T)
end function make_int_resource_C_PTR

function null_p () result (s)

character (C_CHAR, pointer : s(:) ILPTSTR
s => make_int_resource(0_WORD_T)
end function null_p

function RGRr,g,b)
integer (COLORREF_T): RGB

integer (INT_T), intent (in):: r,g b
RGB=(ior (ior ((r), ishft ((9).8)), ishft ((b),16)))
end function RGB
subroutine error_msg (IpText)
character (C_CHAR, intent (in):: IpText(*) I LPCTSTR
integer :: dummy
dummy = MessageBox(NULL_T,IpText,NULL_LPSTR, ior (MB_ICONEXCLAMATION,MB_OK))
end subroutine error_msg

end module win32

win32boxes.f90
c:/msys64/home/angelo/programming/win32—fortran/

1/9
07/06/2015

!

! (Partial) Fortran Interface to the Windows API Library
! by Angelo Graziosi (firstname.lastnameATalice.it)

! Copyright Angelo Graziosi

|

It is distributed in the hope that it will be useful,

I but WITHOUT ANY WARRANTY; without even the implied warranty of
I MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

|

| DESCRIPTION
I win32 boxes (aka, dialogues) modules...
Just to start with Windows applications...
From: my C++ Windows Applications and Borland C++ 2.0 examples
Notice that:
int(Q,UINT_T) ——> O _UINT_T

int(0,WPARAM_T) -—> 0_WPARAM_T

!
!
!
|
!
!
!
!
! int(0,LPARAM_ T) ——> 0_LPARAM_T
[

!

module AboutBox_class

use, intrinsic ;> iso_c_binding , only :c_funloc

use win32 , only : BOOL_T, DWORD_T, FALSE_T, HWND_T, IDCANCEL, IDOK, &
INT_PTR_T, LPARAM_T, NULL_LPSTR, TRUE_T, UINT_T, WM_COMMAND, &
WM_INITDIALOG, WORD_T, WPARAM_T, &

dialog_box, EndDialog, GetModuleHandle, lo_word, make_int_resource

implicit none

private
type , public : AboutBox

private

integer (HWND_T):: hDlg
integer (WORD_T):: idd_about
end type AboutBox

I TRUE_T if OK button is pressed, otherwise it is FALSE_T
integer (BOOL_T):: dialog_result = FALSE_T

interface new_box

module procedure AboutBox_init
end interface new_box
interface run

module procedure AboutBox_run
end interface run

public :: new_box, run
contains

subroutine AboutBox_init (this,hhDlg,idd_ab)

type(AboutBox) , intent (out):: this
integer (HWND_T), intent (in):: hhDlIg
integer (WORD_T), intent (in) : idd_ab

this%hDIg = hhDlIg
this%idd_about = idd_ab
end subroutine AboutBox_init

function AboutBox_run (this)
integer (BOOL_T):: AboutBox_run
type(AboutBox) , intent (in):: this
integer (INT_PTR_T) :: dummy

dummy = dialog_box(GetModuleHandle(NULL_LPSTR), &
make_int_resource(this%idd_about),this%hDlIg, c_funloc

AboutBox_run = dialog_result

end function AboutBox_run

function AboutDIgProc (hDlg,iMsg,wParam,|Param) bind (C)

IGCC$ ATTRIBUTES STDCALL :: AboutDIgProc
integer (BOOL_T):: AboutDlgProc

integer (HWND_T), intent (in), value : hDIg
integer (UINT_T), intent (in), value : iMsg

(AboutDIgProc))

win32boxes.f90
c:/msys64/home/angelo/programming/win32—fortran/

2/9
07/06/2015

integer (WPARAM_T), intent (in), value : wParam
integer (LPARAM_T), intent (in), value : IParam
integer 1 dummy

! To avoid some annoying warnings...
integer (LPARAM_T):: not_used_|Param
not_used_IParam = |[Param

select case (iMsg)
case (WM_INITDIALOG)
dialog_result = FALSE_T
AboutDIgProc = TRUE_T
return

case (WM_COMMAND)
select case (lo_word(int (wParam,DWORD_T)))
case (IDOK)
dummy = EndDialog(hDlg, int (IDOK,INT_PTR_T))
dialog_result = TRUE_T
AboutDIgProc = TRUE_T
return

case (IDCANCEL)
dummy = EndDialog(hDlg, int (IDCANCEL,INT_PTR_T))
AboutDIgProc = TRUE_T
return

end select
end select

AboutDIgProc = FALSE_T
return
end function AboutDIgProc
end module AboutBox_class

module XBox_class
use, intrinsic :» iso_c_binding , only :c_funloc
use kind_consts , only :DP

use win32 , only :BOOL_T, DWORD_T, FALSE_T, HWND_T, IDCANCEL, IDOK, INT_T,

INT_PTR_T, LPARAM_T, MAX_FMT, MAX_LEN, MB_ICONINFORMATION, MB_OK,
NUL, NULL_LPSTR, TRUE_T, UINT_T, WM_COMMAND, WM_INITDIALOG, WORD_T,
WPARAM_T, &
dialog_box, EndDialog, GetDIgltemText, GetModuleHandle, lo_word,
make_int_resource, MessageBox, PostQuitMessage, SetDIgltemText

implicit none

private

type , public 1 XBox
private
integer (HWND_T):: hDlg
integer (WORD_T) :: idd_data
integer (INT_T) = idc_x
character (len=MAX_FMT) :: fmt_str
real (DP): x

end type XBox

type(XBox) 1 xb

I TRUE_T if OK button is pressed, otherwise it is FALSE_T
integer (BOOL_T):: dialog_result = FALSE_T

interface new_hox

module procedure XBox_init
end interface new_box
interface run

module procedure XBox_run
end interface run

public :: new_box, run, get
contains

subroutine XBox_init (this,hhDlg,idd_data_xx,idc_xx,fmt,xx)

type(XBox) , intent (out) :: this
integer (HWND_T), intent (in):: hhDIg
integer (WORD_T), intent (in):: idd_data_xx

integer (INT_T), intent (in):: idc_xx

&

&
&

win32boxes.f90

c:/msys64/home/angelo/programming/win32—fortran/

3/9
07/06/2015

character (len=MAX_FMT), intent (in)::
real (DP), intent (in): XX

this%hDIg = hhDlIg
this%idd_data = idd_data_xx
this%idc_x = idc_xx
this%fmt_str = fmt

this%x = xx

end subroutine XBox_init

function XBox_run (this)
integer (BOOL_T):: XBox_run
type(XBox) , intent (inout) : this
integer (INT_PTR_T) :: dummy

! Input
xb = this

dummy = dialog_box(GetModuleHandle(NULL_LPSTR),

make_int_resource(xb%idd_data),xb%hDlg,

! Output
this = xb

XBox_run = dialog_result
end function XBox_run

function get (this)
real (DP): get

type(XBox) , intent (in):: this
get = this%x
end function get

function XDlIgProc (hDlg,iMsg,wParam,|Param)
IGCC$ ATTRIBUTES STDCALL :: XDlgProc
integer (BOOL_T):: XDlgProc
integer (HWND_T), intent (in), value
integer (UINT_T), intent (in), value
integer (WPARAM_T), intent (in), value
integer (LPARAM_T), intent (in), value

! To avoid some annoying warnings...
integer (LPARAM_T) 1 not_used_|Param
not_used_|Param = IParam

select case (iMsg)
case (WM_INITDIALOG)
call init_dialog (hDlg)
dialog_result = FALSE_T
XDIgProc = TRUE_T
return

case (WM_COMMAND)

fmt

&
c_funloc (XDlgProc))

bind (C)

hDlg

iMsg
wParam
IParam

select case (lo_word(int (wParam,DWORD_T)))

case (IDOK)
call ok _command(hDlg)
dialog_result = TRUE_T
XDlgProc = TRUE_T
return

case (IDCANCEL)
call cancel_command (hDIg)
XDlgProc = TRUE_T
return

end select
end select

XDlgProc = FALSE_T
return
end function XDlIgProc

subroutine init_dialog (hDlg)

integer (HWND_T), intent (in):: hDIg
character (len=MAX_LEN) :: buffer
integer :: dummy

buffer =

win32boxes.f90 4/9
c:/msys64/home/angelo/programming/win32—fortran/ 07/06/2015

write (buffer,xb%fmt_str) xb%x
dummy = SetDlIgltemText(hDlg,xb%idc_x, trim (adjustl (buffer))//NUL)
end subroutine init_dialog

subroutine ok_command(hDlg)
integer (HWND_T), intent (in):: hDIg
character (len=MAX_LEN) :: buffer
integer 1 dummy, ierr
real (DP):: x_ try=0.0 DP

buffer = "
dummy = GetDIgltemText(hDlg,xb%idc_x,buffer, MAX_LEN)
if (dummy > 0) then

dummy = index (buffer,NUL)
read (buffer(1:dummy-1),* iostat = ierr) x_try
it (ierr /= 0) then
write (*,%) 'IERR, X =" ,err, x_try
else
xb%x = x_try
end if
else
dummy = MessageBox(hDlg, "Failure reading X datal’ /INUL, &
'Fatal Error!!l’ /INUL, &

ior (MB_OK,MB_ICONINFORMATION))
call PostQuitMessage (1) !Exitcode 1 to flag an error occured

end if
dummy = EndDialog(hDlg, int (IDOK,INT_PTR_T))
end subroutine ok_command

subroutine cancel_command (hDIg)

integer (HWND_T), intent (in):: hDIg

integer ' dummy
dummy = EndDialog(hDlg, int (IDCANCEL,INT_PTR_T))
end subroutine cancel_command

end module XBox_class

module XYBox_class

use, intrinsic ;2 iso_c_binding , only :c_funloc

use kind_consts , only : DP

use win32, only : BOOL_T, DWORD_T, FALSE_T, HWND_T, IDCANCEL, IDOK, INT_T, &
INT_PTR_T, LPARAM_T, MAX_FMT, MAX_LEN, MB_ICONINFORMATION, MB_OK, &
NUL, NULL_LPSTR, TRUE_T, UINT_T, WM_COMMAND, WM_INITDIALOG, WORD_T, &
WPARAM_T, &
dialog_box, EndDialog, GetDIgltemText, GetModuleHandle, lo_word, &
make_int_resource, MessageBox, PostQuitMessage, SetDlIgltemText

implicit none

private

type , public 1 XYBox

private

integer (HWND_T):: hDlg
integer (WORD_T):: idd_data
integer (INT_T) = idc_x, idc_y
character (len=MAX_FMT) :: fmt_str
real (DP):: X,y

end type XYBox

type(XYBox) : xyb

I TRUE_T if OK button is pressed, otherwise it is FALSE_T
integer (BOOL_T):: dialog_result = FALSE_T

interface new_box

module procedure XYBox_init
end interface new_box
interface run

module procedure XYBox_run
end interface run

public :: new_box, run, get_x, get_y
contains
subroutine XYBox_init (this,hhDlg,idd_data_xy,idc_xx,idc_yy,fmt,xx,yy)

type(XYBox) , intent (out) : this
integer (HWND_T), intent (in):: hhDIg

win32boxes.f90
c:/msys64/home/angelo/programming/win32—fortran/

5/9
07/06/2015

integer (WORD_T), intent (in):: idd_data_xy
integer (INT_T), intent (in) :: idc_xx, idc_yy
character (len=MAX_FMT), intent (in):: fmt
real (DP), intent (in):: XX, Yy

this%hDIg = hhDlIg
this%idd_data = idd_data_xy
this%idc_x = idc_xx

this%idc_y = idc_yy
this%fmt_str = fmt

this%x = XX

this%y = yy

end subroutine XYBox_init

function XYBox_run (this)
integer (BOOL_T):: XYBox_run

type(XYBox) , intent (inout) : this
integer (INT_PTR_T) : dummy
I Input

xyb = this

dummy = dialog_box(GetModuleHandle(NULL_LPSTR), &
make_int_resource(xyb%idd_data),xyb%hDlIg, c_funloc
! Output

this = xyb

XYBox_run = dialog_result
end function XYBox_run

function get_x (this)
real (DP): get x

type(XYBox) , intent (in):: this
get_x = this%x
end function get x

function get_y (this)
real (DP): gety

type(XYBox) , intent (in):: this
get_y = this%y
end function get y
function XYDIgProc (hDlg,iMsg,wParam,|Param) bind (C)

IGCC$ ATTRIBUTES STDCALL :: XYDIgProc
integer (BOOL_T):: XYDIgProc
integer (HWND_T), intent (in), value : hDIg

integer (UINT_T), intent (in), value : iMsg
integer (WPARAM_T), intent (in), value : wParam
integer (LPARAM_T), intent (in), value : IParam

! To avoid some annoying warnings...
integer (LPARAM_T):: not_used |Param
not_used_|Param = |[Param

select case (iMsg)
case (WM_INITDIALOG)
call init_dialog (hDlg)
dialog_result = FALSE_T
XYDIgProc = TRUE_T
return

case (WM_COMMAND)
selectcase (lo_word(int (wParam,DWORD_T)))
case (IDOK)
call ok_command(hDIg)
dialog_result = TRUE_T
XYDIgProc = TRUE_T
return

case (IDCANCEL)
call cancel_command (hDlg)
XYDIlgProc = TRUE_T
return

end select
end select

(XYDlIgProc))

win32boxes.f90
c:/msys64/home/angelo/programming/win32—fortran/

6/9
07/06/2015

XYDIgProc = FALSE_T
return
end function XYDIgProc

subroutine init_dialog (hDlg)
integer (HWND_T), intent (in):: hDIg
character (len=MAX_LEN) :: buffer
integer 1 dummy

buffer = "
write (buffer,xyb%fmt_str) xyb%x
dummy = SetDlgltemText(hDlg,xyb%idc_x, trim (adjustl (buffer))//NUL)

buffer = "

write (buffer,xyb%fmt_str) xyb%y
dummy = SetDlgltemText(hDlg,xyb%idc_y, trim (adjustl (buffer))//NUL)
end subroutine init_dialog

subroutine ok_command(hDlIg)
integer (HWND_T), intent (in):: hDlIg
character (len=MAX_LEN) :: buffer
integer :: dummy, ierr
real (DP):: x try=0.0 DP,y try=0.0_DP

buffer = "
dummy = GetDIgltemText(hDlg,xyb%idc_x,buffer, MAX_LEN)
if (dummy > 0) then

dummy = index (buffer,NUL)
read (buffer(1:dummy-1),*iostat = ierr) x_try
if (ierr/=0) then
write (*,%) 'IERR, X =" , lerr, x_try
else
xyb%x = x_try
end if
else
dummy = MessageBox(hDlg, 'Failure reading X datal’ /INUL, &
'Fatal Error!!l’ /INUL, &

ior (MB_OK,MB_ICONINFORMATION))
call PostQuitMessage (1) !Exitcode 1 to flag an error occured
end if

buffer = "
dummy = GetDlgltemText(hDlg,xyb%idc_y,buffer, MAX_LEN)
if (dummy > 0) then

dummy = index (buffer,NUL)
read (buffer(1:dummy-1),*iostat = ierr) y_try
if (ierr/=0) then
write (*,%) 'IERR, Y ="’ ,lerr,y_try
else
xyb%y =y _try
end if
else
dummy = MessageBox(hDlg, 'Failure reading Y datal’ /INUL, &
'Fatal Error!!V’ /INUL, &

ior (MB_OK,MB_ICONINFORMATION))
call PostQuitMessage (1) !Exitcode 1 to flag an error occured

end if
dummy = EndDialog(hDlg, int (IDOK,INT_PTR_T))
end subroutine ok_command

subroutine cancel_command (hDIg)

integer (HWND_T), intent (in):: hDIg

integer 1 dummy
dummy = EndDialog(hDlg, int (IDCANCEL,INT_PTR_T))
end subroutine cancel_command

end module XYBox_class

module RadioBox_class

use, intrinsic ;. iso_c_binding , only :c_funloc

use win32, only : BOOL_T, DWORD_T, FALSE_T, HWND_T, IDCANCEL, IDOK, INT_T, &
INT_PTR_T, LPARAM_T, MAX_LEN, NUL, NULL_LPSTR, TRUE_T, UINT_T, &
WM_COMMAND, WM_INITDIALOG, WORD_T, WPARAM_T, &
CheckRadioButton, dialog_box, EndDialog, GetModuleHandle, lo_word, &
make_int_resource, SetDlIgltemText

implicit none

private

win32boxes.f90
c:/msys64/home/angelo/programming/win32—fortran/

7/9
07/06/2015

integer , parameter :: MAX_RADIO_BUTTONS =10

type , public : RadioBox
private
integer (HWND_T):: hDlg
integer (WORD_T):: idd_radio

integer (INT_T) :: idc_first_button, idc_last_button, idc_current_button
character (len=MAX_LEN) :: button_names(MAX_RADIO_BUTTONS)
integer 1 num_buttons

integer i current_button

end type RadioBox
type(RadioBox) t 1b

I TRUE_T if OK button is pressed, otherwise it is FALSE_T
integer (BOOL_T):: dialog_result = FALSE_T

interface new_box

module procedure RadioBox_init
end interface new_box
interface run

module procedure RadioBox_run
end interface run

public :: new_box, run, get_current_button

contains
subroutine RadioBox_init (this,hDlg,idd_radio,idc_first_button, &
button_names,num_buttons,current_button)
type(RadioBox) , intent (out):: this
integer (HWND_T), intent (in):: hDIg
integer (WORD_T), intent (in):: idd_radio
integer (INT_T), intent (in):: idc_first_button
character (len=*), intent (in) button_names(:)
integer , intent (in) num_buttons
integer , intent (in):: current_button
integer i

if (num_buttons > MAX_RADIO_BUTTONS) then
write (*,) "+ EATAL ERROR ***
write (*,*) 'NUM_BUTTONS >’ , MAX_RADIO_BUTTONS, ' NOT ALLOWED!!"
write (*,%) 'Program terminates...’
stop
end if

this%hDlIg = hDIg

this%idd_radio = idd_radio

this%idc_first_button = idc_first_button
this%idc_last_button = idc_first_button+(num_buttons-1)

do i =1, num_buttons
this%button_names(i) = trim (adjustl (button_names(i)))
end do

this%num_buttons = num_buttons
this%current_button = current_button
end subroutine RadioBox_init

function RadioBox_run (this)
integer (BOOL_T):: RadioBox_run
type(RadioBox) , intent (inout) : this
integer (INT_PTR_T) :: dummy

! Input
rb = this

dummy = dialog_box(GetModuleHandle(NULL_LPSTR), &
make_int_resource(rb%idd_radio),rb%hDlg, c_funloc (RadioDIgProc))

! Output
this = rb

RadioBox_run = dialog_result
end function RadioBox_run

function get_current_button (this)

win32boxes.f90
c:/msys64/home/angelo/programming/win32—fortran/

8/9
07/06/2015

integer :: get_current_button
type(RadioBox) , intent (in) : this
get_current_button = this%current_button
end function get_current_button

function RadioDIgProc (hDlg,iMsg,wParam,IParam) bind (C)
IGCC$ ATTRIBUTES STDCALL :: RadioDIgProc
integer (BOOL_T):: RadioDIgProc
integer (HWND_T), intent (in), value :: hDIg

integer (UINT_T), intent (in), value : iMsg
integer (WPARAM_T), intent (in), value : wParam
integer (LPARAM_T), intent (in), value : IParam
integer :: dummy

! To avoid some annoying warnings...
integer (LPARAM_T) 1 not_used_|Param
not_used_lParam = |[Param

I Now we use dummy to store the current button if it is valid. Se below...

dummy = lo_word(int (wParam,DWORD_T))

select case (iMsg)
case (WM_INITDIALOG)
call init_dialog (hDlg)
dialog_result = FALSE_T
RadioDIgProc = TRUE_T
return

case (WM_COMMAND)
I We test if the current button is valid...
it ((rb%idc_first_button <= dummy) and. &
(dummy <= rb%idc_last_button)) then

I ...being valid, we save it...
rb%idc_current_button = dummy

I Now dumy is "free" and can be reused... :-)
dummy = CheckRadioButton(hDlg, &
rb%idc_first_button,rb%idc_last_button,rb%idc_current_button)
RadioDIgProc = TRUE_T
return

end if

I...if itis not valid, it could be something else...
select case (dummy)
case (IDOK)
call ok _command(hDIg)
dialog_result = TRUE_T
RadioDIgProc = TRUE_T
return

case (IDCANCEL)
call cancel_command (hDlIg)
RadioDIgProc = TRUE_T
return

end select
end select

RadioDIgProc = FALSE_T

return

end function RadioDIgProc

subroutine init_dialog (hDlg)
integer (HWND_T), intent (in):: hDIg
integer : i, dummy

do i =1, rb%num_buttons
dummy = SetDIgltemText(hDlg,rb%idc_first_button+(i-1),
trim (adjustl (rb%button_names(i)))//NUL)
end do

rb%idc_current_button = rb%idc_first_button+(rb%current_button—1)
dummy = CheckRadioButton(hDlg, &

rb%idc_first_button,rb%idc_last_button,rb%idc_current_button)
end subroutine init_dialog

win32boxes.f90
c:/msys64/home/angelo/programming/win32—fortran/

9/9
07/06/2015

subroutine ok_command(hDlIg)
integer (HWND_T), intent (in):: hDIg
integer 1 dummy
rb%current_button = (rb%idc_current_button-rb%idc_first_button)+1
dummy = EndDialog(hDlg, int (IDOK,INT_PTR_T))
end subroutine ok_command

subroutine cancel_command (hDIg)

integer (HWND_T), intent (in):: hDlIg

integer ' dummy
dummy = EndDialog(hDlg, int (IDCANCEL,INT_PTR_T))
end subroutine cancel_command

end module RadioBox_class

win32app.f90 1/4
c:/msys64/home/angelo/programming/win32—fortran/ 07/06/2015

!

! (Partial) Fortran Interface to the Windows API Library
! by Angelo Graziosi (firstname.lastnameATalice.it)

! Copyright Angelo Graziosi

|

It is distributed in the hope that it will be useful,

I but WITHOUT ANY WARRANTY; without even the implied warranty of
I MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

|

| DESCRIPTION
win32app module
Just to start with Windows applications in World Coordinete System...

Notice that:

int(O,UINT_T) --> 0_UINT_T
int(0, WPARAM_T) ——> 0_WPARAM_T

l
|
|
|
1
|
|
! int(0,LPARAM_T) --> 0_LPARAM_ T
L

|

module win32app

use kind_consts , only : DP

use win32, only : BOOL_T, DWORD_T, HBITMAP_T, HBRUSH_T, HDC_T, HWND_T, INT_T, &
LPARAM_T, MAX_FMT, NUL, SRCCOPY, WORD_T, &
RECT_T, &
BitBIt, CreateCompatibleBitmap, Ellipse, FillRect, hi_word, lo_word, &
Rectangle, TextOut

use XYBox_class

implicit none

private

character (len=MAX_FMT), parameter : FMT ="(1pgl2.5)
integer i client_width = 0, client_height =0
type , public : box_type
real (DP): x1,x2
real (DP): vyil,y2
end type box_type

I Output view region in WC

real (DP): x_min=-1.0_DP, x_max =1.0_DP, &
y_min=-1.0_DP,y max=1.0_DP, &
dx =1.0_DP, dy =1.0_DP
public :: win32app_BitBIt, win32app_clearDC, &
W|n32app CreateCompatibleBitmap, win32app_ elllpse win32app_fillbox, &
win32app_setup, win32app_textout,
win32app_xbounds, win32app_ybounds, &
win32app_xmin, win32app_xmax, win32app_ymin, win32app_ymax, &

win32app_height, win32app_width
contains

subroutine win32app_setup (IParam,x1,x2,y1,y2)
integer (LPARAM_T), intent (in): IParam
real (DP), intent (in), optional 1 x1,x2,y1,y2
real (DP): cx, cy

! Initializing with defaults values...
if (present (x1)) x_min=x1
if (present (x2)) x_max = x2
if (present (yl))y_min=yl
if (present (y2))y_max=y2

! The true width and height of client area
client_width = lo_word(int (IParam,DWORD_T)) + 1
client_height = hi_word(int (IParam,DWORD_T)) + 1

dx = x_max-x_min
dy =y_max-y_min

cx = x_min+0.5_DP*dx
cy =y_min+0.5_DP*dy

! First, adjusts WC region...
if (client_width > client_height) then

win32app.f90
c:/msys64/home/angelo/programming/win32—fortran/

2/4
07/06/2015

dy = (dx*client_height)/client_width
y_min = cy-0.5_DP*dy
y_max =y_min+dy

else
dx = (dy*client_width)/client_height
X_min = cx—0.5_DP*dx
X_max = X_min+dx

end if

I ...then, calculates the size of the mesh that represents each pixel
dx = (x_max-x_min)/client_width
dy = (y_max-y_min)/client_height

I Many Windows routines expect a "virtual" width and height,

I more precisely the client area bottom-right point coordinates
client_width = client_width — 1
client_height = client_height - 1
end subroutine win32app_setup

function XS (X)

integer &I XS

real (DP), intent (in):: X
xs = 0+ int ((x=x_min)/dx)
end function XS

function ys (y)

integer I ys

real (DP), intent (in)::
ys = 0+ int ((y_max-y)/dy)
end function ys

function win32app_xmin () result (r)
real (DP): r

r=x_min

end function win32app_xmin

function win32app_xmax () result (r)
real (DP): r

r = x_max

end function win32app_xmax

function win32app_ymin () result (r)
real (DP):: r

r=y_min

end function win32app_ymin

function win32app_ymax () result (r)
real (DP): r

r=y_max

end function win32app_ymax

function win32app_width () result (r)

integer & r
r = client_width +1 7
end function win32app_width

function win32app_height () result (r)
integer & r

r = client_height 1+17?

end function win32app_height

subroutine win32app_xbounds (hWnd,idd_data_xlimits,idc_xmin,idc_xmax)

integer (HWND_T), intent (in):: hwWnd

integer (WORD_T), intent (in):: idd_data_xlimits
integer (INT_T), intent (in):: idc_xmin, idc_xmax
type(XYBox) : xyb

real (DP): u_min, u_max, du, c_params

I The current Y view center
c_params = 0.5_DP*(y_max+y_min)

call new_box (xyb,hWnd,idd_data_xlimits,idc_xmin,idc_xmax,FMT,x_min,x_max)
if (run(xyb) > 0) then

u_min = get_x(xyb)

u_max = get_y(xyb)

I The assumed new intervall size

win32app.f90
c:/msys64/home/angelo/programming/win32—fortran/

3/4
07/06/2015

du = u_max-u_min

Ifitis too small
if (abs(du) <=0.0_DP) then
u_min =-2.0_DP
u_max =2.0_DP
du=4.0 DP
else
Lif u_max < u_min
if (du<0.0_DP) then
I'swap u_min/max using du as temp
du = u_max
u_max = u_min
u_min=du
du = u_max-u_min
end if
end if

! The new Y height (with the same aspect ratio)
du = du*(y_max-y_min)/(x_max—x_min)

! The X limits just inserted
X_min = u_min
X_max = u_max

! Adjusting the Y limits accordingly
y_min = c_params—0.5_DP*du
y_max =y_min+du

' We need to recompute the size of the mesh that represents each pixel
dx = (x_max—x_min)/(client_width+1)
dy = (y_max-y_min)/(client_height+1)

end if
end subroutine win32app_xbounds
subroutine win32app_ybounds (hWnd,idd_data_ylimits,idc_ymin,idc_ymax)
integer (HWND_T), intent (in):: hwnd
integer (WORD_T), intent (in):: idd_data_ylimits
integer (INT_T), intent (in):: idc_ymin, idc_ymax
type(XYBox) @ xyb
real (DP): u_min, u_max, du, c_params

I The current X view center
c_params = 0.5_DP*(x_max+x_min)

call new_box (xyb,hWnd,idd_data_ylimits,idc_ymin,idc_ymax,FMT,y_min,y_max)

if (run(xyb) > 0) then
u_min = get_x(xyb)
u_max = get_y(xyb)

I The assumed new intervall size
du = u_max-u_min

Ifitis too small
if (abs(du) <=0.0_DP) then
u_min =-2.0_DP
u_max =2.0_DP
du=4.0 DP
else
Lif u_max < u_min
if (du<0.0_DP) then
I'swap u_min/max using du as temp
du = u_max
u_max = u_min
u_min=du
du = u_max-u_min
end if
end if

! The new X width (with the same aspect ratio)
du = du*(x_max—x_min)/(y_max-y_min)

I The Y limits just inserted
y_min =u_min
y_max = u_max

! Adjusting the X limits accordingly

win32app.f90
c:/msys64/home/angelo/programming/win32—fortran/

4/4
07/06/2015

X_min = ¢_params—-0.5_DP*du
X_max = X_min+du

I We need to recompute the size of the mesh that represents each pixel

dx = (x_max—x_min)/(client_width+1)
dy = (y_max-y_min)/(client_height+1)
end if
end subroutine win32app_ybounds

function win32app_BitBlt (hdc,hdcMem) result (1)
integer (BOOL_T):: r
integer (HDC_T), intent (in):: hdc, hdcMem
r = BitBlt(hdc,0,0,client_width,client_height,hdcMem,0,0,SRCCOPY)
end function win32app_BitBIt

function win32app_clearDC (hdc,dwRop) result (r)
integer (BOOL_T):: r
integer (HDC_T), intent (in): hdc
integer (DWORD_T), intent (in) : dwRop
I dwRop = BLACKNESS or WHITENESS?

r = BitBIt(hdc,0,0,client_width,client_height,0_HDC_T,0,0,dwRop)
Ir = Rectangle(hdc,—1,-1,client_width+1,client_height+1)

end function win32app_clearDC
function win32app_CreateCompatibleBitmap (hdc) result ()
integer (HBITMAP_T):: r
integer (HDC_T), intent (in):: hdc
r = CreateCompatibleBitmap(hdc,client_width,client_height)
end function win32app_CreateCompatibleBitmap
function win32app_ellipse (hdc,left,top,right,bottom) result
integer (BOOL_T): r
integer (HDC_T), intent (in):: hdc
real (DP), intent (in):: left,top,right,bottom
r = Ellipse(hdc,xs(left),ys(top),xs(right),ys(bottom))
end function win32app_ellipse
function win32app_fillbox (hdc,box,hBrush) result (r)
integer (INT_T) = r
integer (HDC_T), intent (in): hdc
type(box_type) , intent (in) box
integer (HBRUSH_T), intent (in) :: hBrush
type(RECT_T) , save : rect

rect%left = xs(box%x1)
recto%right = xs(box%x2)
rect%bottom = ys(box%y1)
rect%top = ys(box%y2)

r = FillRect(hdc,rect,hBrush)
end function win32app_fillbox

function win32app_textout (hdc,x,y,text) result (r)
integer (INT_T) = r
integer (HDC_T), intent (in):: hdc
real (DP), intent (in):: X, Y
character (len=*), intent (in) : text

r= index (text,NUL)

r = TextOut(hdc,xs(x),ys(y),text(1:r),r-1)

end function win32app_textout
end module win32app

("

bounce.f90

c:/msys64/home/angelo/programming/win32-fortran/bounce/

1/8
07/06/2015

! (Partial) Fortran Interface to the Windows API Library
! by Angelo Graziosi (firstname.lastnameATalice.it)

! Copyright Angelo Graziosi
|

It is distributed in the hope that it will be useful,
I but WITHOUT ANY WARRANTY; without even the implied warranty of
I MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

|

| HOW TO BUILD (MSYS2/MINGW32/MINGW64 shell)

cd ~/programming/win32-fortran/bounce

rm —rf {*. mod,*.res,~/programming/modules/*} && \
windres bounce.rc —O coff —o bounce.res && \

gfortran -O3 -Wall

~/programming/basic-modules/basic_mods.f90 \
..{win32.f90,win32boxes.f90,win32app.fo0} bounce.fo0 \
bounce.res —o bounce.out && \
rm —rf {*. mod,*.res,~/programming/modules/*}

bounce.out ==

Remember that:

int(Q,UINT_T) -—>
int(0,WPARAM_T) --> 0_WPARAM_T
int(0,LPARAM_T) -—> 0_LPARAM_T

module the_app
use kind_consts
use AboutBox_class
use XBox_class
use XYBox_class

use win32 ,

O_UINT_T

only : DP

&

|
|
|
1
|
|
1
|
I
|
|
I'In MINGW32/MINGW64, add '-static’ and:
|
|
1
|
|
1
|
I
|
|
|

> bounce-mingw32/mingw64

—mwindows —J ~/programming/modules \

only : BLACK_COLOR, BOOL_T, DWORD_T, FALSE_T, HBITMAP_T,
HBRUSH T HDC_T, HINSTANCE_T, HS_DIAGCROSS, HWND_T, IDYES, INT_T,
LPARAM_T, LRESULT_T, MAX_FMT, MAX_LEN, NL, NUL, NULL_T, TRUE_T,

UINT_T, WHITENESS, WM_CLOSE, WM COMMAND WM_DESTROY, WM_SIZE, WORD_T,
WPARAM_T,

ask_confirmation, CreateCompatibleDC, CreateHatchBrush,

DefWindowProc, DeleteDC, DeleteObject, DestroyWindow, error_msg,
GetDC, lo_word, MessageBeep, PostMessage, PostQuitMessage, ReleaseDC,

RGB, SelectObject, SetBkColor, TextOut

use win32app ,

win32app_xbounds, win32app_ybounds,

win32app_xmin, win32app_xmax, win32app_ymin, win32app_ymax

implicit
private

integer
integer

integer
integer
integer
integer
integer
integer
integer
integer
integer

linteger(WORD_T), parameter ::

integer
integer

integer
integer

integer
integer

none

(WORD_T),
(WORD_T),

(WORD_T),
(WORD_T),
(WORD_T),
(WORD_T),
(WORD_T),
(WORD_T),
(WORD_T),
(WORD_T),

(WORD_T),

(WORD_T),

(INT_T),

(WORD_T),

(INT_T),

(WORD_T),

(INT_T),

parameter
parameter

parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter

parameter
parameter
parameter

parameter
parameter

parameter ::

only : win32app_BitBIt, win32app_clearDC,
win32app_CreateCompatibleBitmap, win32app_ellipse, win32app_setup,
&

public :: IDI_BOUNCE =1

public : IDM_MAINMENU = 9000

IDM_FILE_EXIT =9010

IDM_DATA_RADIUS =9020

IDM_DATA_SPEED =9021
IDM_DATA_TTOT =9022
IDM_DATA_TSTEP = 9023

IDM_DATA_XBOUNDS = 9024
IDM_DATA_YBOUNDS = 9025

IDM_RUNAPP =9030
IDM_HELP_ABOUT = 9999

IDC_STATIC = -1

IDD_DATA_RADIUS =100

" IDC_RADIUS

=101

IDD_DATA_SPEED = 150

IDC_SPEED

=151

IDD_DATA_TTOT = 200

" IDC_TMIN

=201

bounce.f90
c:/msys64/home/angelo/programming/win32-fortran/bounce/

2/8
07/06/2015

integer (INT_T), parameter : IDC_TMAX =202

integer (WORD_T), parameter : |IDD_DATA TSTEP =300
integer (INT_T), parameter : IDC_TSTEP =301

integer (WORD_T), parameter : IDD_DATA_XBOUNDS =400
integer (INT_T), parameter : IDC_XMIN =401

integer (INT_T), parameter : IDC_XMAX =402

integer (WORD_T), parameter : IDD_DATA_YBOUNDS =500
integer (INT_T), parameter : IDC_YMIN =501

integer (INT_T), parameter : IDC_YMAX =502

integer (WORD_T), parameter : |IDD_ABOUT =999

I COMMON data

integer (HBITMAP_T):: hBitmap = NULL_T

logical : run_flag = .true.

real (DP): box_xmin, box_xmax, box_ymin, box_ymax

! Application data, strictly speaking...
real (DP):: p(2)=0.0_DP, v(2)=0.0_DP, radius = 10.0_DP, speed = 10.0_DP

real (DP): t0=0.0_DP, tl=900.0_DP, &
tstep = 1.0_DP/16 10.0625 = 0.0001_2

real (DP):: t=0.0_DP
public :: paint_screen, WndProc
contains

subroutine setup_ball ()
use math_consts , only : DEG2RAD, PI
real (DP): u, phi

I Time initialization
t=t0

! The initial ball position (of its center)
p = [0.5_DP*(box_xmin+box_xmax), 0.5_DP*(box_ymin+box_ymax)]

! Initial moving (random) direction
call random_number (u)

phi = (U*360.0_DP)*DEG2RAD
v = speed*[cos (phi), sin (phi)]
end subroutine setup_ball

subroutine draw_ball (hdc,t)
integer (HDC_T), intent (in): hdc
real (DP), intent (in):: t
I We use SAVE just to save something at each call
! (draw_ball() is called intensively, at each iteration)
character (len=MAX_LEN), save :: buffer="
integer (HBRUSH_T), save : hBrush=NULL T

integer , save : dummy
buffer = "

write (buffer,*) Time :”’ t
buffer = trim (adjustl (buffer))// "7 JINUL
dummy = index (buffer,NUL)

dummy = TextOut(hdc,0,0,buffer(1:dummy),dummy-1)

hBrush = CreateHatchBrush(HS_DIAGCROSS,BLACK_COLOR)
IhBrush = CreateHatchBrush(HS_DIAGCROSS,YELLOW_COLOR)

dummy = int (SelectObject(hdc,hBrush),INT_T)

dummy = SetBkColor(hdc,RGB(255,0,255))

dummy = win32app_ellipse(hdc,p(1)-radius,p(2)+radius, &
p(1)+radius,p(2)-radius)

dummy = DeleteObject(hBrush)

end subroutine draw_ball

subroutine painting_setup (hwnd)
integer (HWND_T), intent (in): hwnd

logical , save : first = .true.

bounce.f90 3/8
c:/msys64/home/angelo/programming/win32-fortran/bounce/ 07/06/2015

integer (HDC_T):: hdc, hdcMem

integer :: dummy
it (first) then
call setup_ball ()
first = false.
end if

if (hBitmap /= NULL_T) then
dummy = DeleteObject(hBitmap)
end if

hdc = GetDC(hWnd)

hdcMem = CreateCompatibleDC(hdc)

hBitmap = win32app_CreateCompatibleBitmap(hdc)
dummy = ReleaseDC(hWnd,hdc)

dummy = int (SelectObject(hdcMem,hBitmap),INT_T)

! Clear the off-screen DC (hdcMem) for the next drawing
dummy = win32app_clearDC(hdcMem,WHITENESS)

call draw_ball (hdcMem,t)

dummy = DeleteDC(hdcMem)

end subroutine painting_setup

subroutine set_radius (hwnd)

integer (HWND_T), intent (in): hwnd

character (len=MAX_FMT), parameter : FMT ='(1pgl2.5)
type(XBox) @ xb

call new_box (xb,hWnd,IDD_DATA_RADIUS,IDC_RADIUS,FMT,radius)

if (run(xb) > 0) then
radius = get(xb)
if (radius < 0) then
call error_msg (’'Radius<0!ll /INL &
I ‘Taking its absolute value... ’ /INUL)
radius = abs (radius)
end if
end if
end subroutine set_radius

subroutine set_speed (hwWnd)

integer (HWND_T), intent (in):: hwnd
character (len=MAX_FMT), parameter : FMT ='(1pgl2.5)
type(XBox) : xb

call new_box (xb,hwnd,|IDD_DATA_SPEED,IDC_SPEED,FMT,speed)

if (run(xb) > 0) then
speed = get(xb)

if (speed<0) then
call error_msg (’'Speed<O0!ll /INL &
1 'Taking its absolute value... ’ /INUL)
speed = abs (speed)
end if
end if
end subroutine set_speed

subroutine set_timebounds (hwWnd)
integer (HWND_T), intent (in):: hwnd
character (len=MAX_FMT), parameter : FMT ='(1pgl2.5)
type(XYBox) : xyb

call new_box (xyb,hwnd,IDD_DATA_TTOT,IDC_TMIN,IDC_TMAX,FMT,t0,t1)

if (run(xyb) > 0) then
t0 = min (get_x(xyb),get_y(xyb))
tl = max(get_x(xyb),get_y(xyb))
end if
end subroutine set_timebounds

subroutine set_tstep (hwWnd)
integer (HWND_T), intent (in):: hwnd

bounce.f90
c:/msys64/home/angelo/programming/win32-fortran/bounce/

4/8
07/06/2015

character (len=MAX_FMT), parameter : FMT ='(1pgl2.5)
type(XBox) :: xb

call new_box (xb,hWnd,IDD_DATA TSTEP,IDC_TSTEP,FMT tstep)

it (run(xb) > 0) then
tstep = get(xb)

if (tstep <0) then
call error_msg ('TStep<0!l /INL &
1 'Taking its absolute value... ’ /INUL)
tstep = abs (tstep)
end if
end if
end subroutine set_tstep

subroutine help_dlg (hWnd)
integer (HWND_T), intent (in):: hwnd
type(AboutBox) woab
integer 1 dummy
call new_box (ab,hwnd,IDD_ABOUT)
dummy = run(ab)

end subroutine help_dlg

function process_command (hWnd,wParam)
integer (BOOL_T):: process _command
integer (HWND_T), intent (in) : hwnd
integer (WPARAM_T), intent (in) :: wParam
integer : dummy

run_flag = false.

selectcase (lo_word(int (wParam,DWORD_T)))
case (IDM_FILE_EXIT)
dummy = MessageBeep(64)

if (ask_confirmation(hwnd, 'Sure you want to exit? ’ /INUL,

'Exit?” /INUL) == IDYES) then
dummy = PostMessage(hWnd,WM_CLOSE,0_ WPARAM_T,0_LPARAM_T)
end if
process_command = TRUE_T
return

case (IDM_DATA_RADIUS)
call set_radius (hwnd)
process_command = TRUE_T
return

case (IDM_DATA_SPEED)
call set_speed (hwnd)
process_command = TRUE_T
return

case (IDM_DATA_TTOT)
call set_timebounds (hwWnd)
process_command = TRUE_T
return

case (IDM_DATA_TSTEP)
call set tstep (hwWnd)
process_command = TRUE_T
return

case (IDM_DATA_XBOUNDS)

call win32app_xbounds (hWnd,IDD_DATA_XBOUNDS,IDC_XMIN,IDC_XMAX)

process_command = TRUE_T
return

case (IDM_DATA_YBOUNDS)

call win32app_ybounds (hWnd,IDD_DATA_YBOUNDS,IDC_YMIN,IDC_YMAX)

process_command = TRUE_T
return

case (IDM_RUNAPP)
run_flag = true.
call setup_ball ()
process_command = TRUE_T
return

&

bounce.f90
c:/msys64/home/angelo/programming/win32-fortran/bounce/

5/8
07/06/2015

case (IDM_HELP_ABOUT)
call help_dlg (hwnd)
process_command = TRUE_T
return

case default
process_command = FALSE_T
return
end select
end function process_command

function WndProc (hWnd,iMsg,wParam,|lParam) bind (C)
IGCC$ ATTRIBUTES STDCALL :: WndProc
integer (LRESULT_T): WndProc

integer (HWND_T), value : hwWnd
integer (UINT_T), value : iMsg
integer (WPARAM_T), value : wParam
integer (LPARAM_T), value : [|Param
logical , save : first = .true.

integer :: dummy

select case (iMsg)
case (WM_SIZE)

it (first) then
call win32app_setup (IParam,—300.0_DP,300.0_DP)
first = false.
else
call win32app_setup (IParam)
end if

I Getting the box boundaries... each time, maybe, the mapping changed...
box_xmin = win32app_xmin()
box_xmax = win32app_xmax()
box_ymin = win32app_ymin()
box_ymax = win32app_ymax()

! Now that the mapping has been defined, we can initialize the painting
call painting_setup (hwnd)

WndProc =0
return

case (WM_COMMAND)
if (process_command(hWnd,wParam) == TRUE_T) then
WndProc =0
return
end if
I ...else it continues with DefWindowProc

case (WM_CLOSE)
dummy = DestroyWindow(hWnd)
WndProc =0
return

case (WM_DESTROY)

if (hBitmap /= NULL_T) then
dummy = DeleteObject(hBitmap)

end if

call PostQuitMessage (0)
I Commenting out the next two statements, it continues
' with DefWindowProc()
WndProc =0
return
end select

WndProc = DefWindowProc(hWnd,iMsg,wParam,IParam)

end function WndProc
subroutine update_ball_position 0
integer , save : dummy

I Computing position at current time. Trial position...
p = pt+v*tstep

I ...and correction to keep balls inside the box

bounce.f90
c:/msys64/home/angelo/programming/win32-fortran/bounce/

6/8
07/06/2015

I Right
if (p(1) > box_xmax-radius) then
v(1) = 0.0_DP-v(1)
p(1) = box_xmax-radius
lprint *, C_ALERT
dummy = MessageBeep(0)
end if

I Left
if (p(1) < box_xmin+radius) then
v(1) = 0.0_DP-v(1)
p(1) = box_xmin+radius
lprint *, C_ALERT
dummy = MessageBeep(0)
end if

I bottom
if (p(2) < box_ymin+radius) then
v(2) = 0.0_DP-v(2)
p(2) = box_ymin+radius
lprint *, C_ALERT
dummy = MessageBeep(0)
end if

I'top

if (p(2) > box_ymax-radius) then
v(2) = 0.0_DP-v(2)
p(2) = box_ymax-radius

lprint *, C_ALERT

dummy = MessageBeep(0)

end if

end subroutine update_ball_position

subroutine paint_screen (hWnd)
integer (HWND_T), intent (in):: hwnd
' We use SAVE just to save something at each call
I (paint_screen() is called intensively, at each iteration)
integer (HDC_T), save : hdc, hdcMem
integer , save : dummy

if (hBitmap /= NULL_T) then
hdc = GetDC(hwWnd)
hdcMem = CreateCompatibleDC(hdc)
dummy = int (SelectObject(hdcMem,hBitmap),INT_T)

! Transfer the off-screen DC to the screen
dummy = win32app_BitBlt(hdc,hdcMem)
dummy = ReleaseDC(hWnd,hdc)

if (t<tl .and. run_flag) then

t = t+tstep
call update_ball_position 0

end if

I Clear the off-screen DC (hdcMem) for the next drawing
dummy = win32app_clearDC(hdcMem,WHITENESS)

call draw_ball (hdcMem,t)

dummy = DeleteDC(hdcMem)
end if
end subroutine paint_screen
end module the_app

function WinMain (hinstance,hPrevinstance,|pCmdLine,nCmdShow) &
bind (C, name= 'WinMain’)
use randoms, only :init_random_seed

use, intrinsic 1 iso_c_binding , only : C_PTR C_CHARc_sizeof, c_funloc,

C_FUNPTRc_loc

use win32, only : CS_HREDRAW, CS_VREDRAW, CW_USEDEFAULT, DWORD_T

HINSTANCE_T, HWND_T, INT_T, NUL, NULL_PTR_T, NULL_T, PM_REMOVE,
WM_QUIT, WS_OVERLAPPEDWINDOW, UINT_T, WHITE_BRUSH, &
MSG_T, WNDCLASSEX T, &
arrow_cursor, CreateWindowEx, DispatchMessage, error_msg,
GetStockObject, LoadCursor, Loadlcon, make_int_resource, &
make_int_resource_C_PTR, PeekMessage, RegisterClassEx, ShowWindow,
TranslateMessage, UpdateWindow

use the app , only :IDI_BOUNCE, IDM_MAINMENU, &

Exit Process ,

bounce.f90 7/8
c:/msys64/home/angelo/programming/win32-fortran/bounce/ 07/06/2015

paint_screen, WndProc

implicit none

IGCC$ ATTRIBUTES STDCALL :: WinMain

integer (INT_T) : WinMain

integer (HINSTANCE_T), value : hinstance

integer (HINSTANCE_T), value : hPrevinstance

type(C_PTR) , value : IpCmdLine !LPSTR

integer (INT_T), value : nCmdShow

character (kind= C_CHARen=128), target : app_name= &
‘Bounce’ //INUL

character (kind= C_CHARen=*), parameter : WINDOW_CAPTION = &
'Bouncing Ball’ /INUL

type(WNDCLASSEX_T) :: WndClass
integer (HWND_T): hwnd
type(MSG_T) : msg

integer 1 dummy

! To avoid some annoying warnings...

integer (HINSTANCE_T):: not used_hPrevinstance

type(C_PTR) : not _used IpCmdLine
not_used_hPrevinstance = hPrevinstance
not_used_IpCmdLine = IpCmdLine

call init_random_seed ()

WndClass%chSize = int (c_sizeof (Wndclass),UINT_T)
WndClass%style = ior (CS_HREDRAW,CS_VREDRAW)
WndClass%lpfnWndProc = c_funloc (WndProc)

WndClass%cbClsExtra = 0

WndClass%cbWndExtra = 0

WndClass%hinstance = hinstance

WndClass%hlcon = Loadlcon(hinstance,make_int_resource(IDI_BOUNCE))

WndClass%hCursor = LoadCursor(NULL_T,arrow_cursor())

WndClass%hbrBackground = GetStockObject(WHITE_BRUSH)
!WndClass%hbrBackground = GetStockObject(BLACK_BRUSH)

WndClass%lpszMenuName = make_int_resource_C_PTR(IDM_MAINMENU)

WndClass%lpszClassName = c_loc (app_name(1:1))

WndClass%hlconSm = Loadlcon(hinstance,make_int_resource(IDI_BOUNCE))

if (RegisterClassEx(WndClass) == 0) then
call error_msg (’'Window Registration Failure! ' /INUL)
call ExitProcess (0_UINT_T)

WinMain = 0
Ireturn

end if

hwnd = CreateWindowEx(0_DWORD_T, &
app_name, &
WINDOW_CAPTION, &
WS_OVERLAPPEDWINDOW, &
CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,&
NULL_T,NULL_T,hinstance,NULL_PTR_T)

if (hWnd ==NULL_T) then

call error_msg (’'Window Creation Failure! ’ /INUL)
call ExitProcess (0_UINT_T)

WinMain = 0
Ireturn

end if

dummy = ShowWindow(hWnd,nCmdShow)
dummy = UpdateWindow(hWnd)

I See: Charles Petzold "Programming Windows", 5th ed., pag. 162
I’'Random Rectangles’
do
if (PeekMessage(msg,NULL_T,0,0,PM_REMOVE) /= 0) then
if (msg%message == WM_QUIT) exit
dummy = TranslateMessage(msg)

dummy = int (DispatchMessage(msg),INT_T)
else
call paint_screen (hwnd)
end if
end do

call ExitProcess (int (msg%wParam,UINT_T))
WinMain =0

bounce.f90 8/8
c:/msys64/home/angelo/programming/win32-fortran/bounce/ 07/06/2015

end function WinMain

bounce.rc
c:/msys64/home/angelo/programming/win32-fortran/bounce/

1/3
07/06/2015

1

/I (Partial) Fortran Interface to the Windows API Library

/I by Angelo Graziosi (firstname.lastnameATalice.it)

/I Copyright Angelo Graziosi

1

/I It is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of
/I MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
1

/I RC file for "bounce" app

/i

#define IDI_BOUNCE 1
IDI_BOUNCE ICON DISCARDABLE "../common_icons/smiling_sun.ico"

#define IDM_MAINMENU 9000
#define IDM_FILE_EXIT 9010
#define IDM_DATA_RADIUS 9020
#define IDM_DATA_SPEED 9021
#define IDM_DATA_TTOT 9022
#define IDM_DATA_TSTEP 9023
#define IDM_DATA_XBOUNDS 9024
#define IDM_DATA_YBOUNDS 9025
#define IDM_RUNAPP 9030
#define IDM_HELP_ABOUT 9999

IDM_MAINMENU MENU DISCARDABLE
BEGIN
POPUP "&File"
BEGIN
MENUITEM "E&xit...", IDM_FILE_EXIT
END

POPUP "&Data"
BEGIN
MENUITEM "Ball &Radius...", IDM_DATA_RADIUS

MENUITEM "Ball &Speed...", IDM_DATA_SPEED
MENUITEM SEPARATOR
MENUITEM "Time &lInterval...", IDM_DATA_TTOT
MENUITEM "Time Ste&p...", IDM_DATA_TSTEP
MENUITEM SEPARATOR
MENUITEM "&X bounds...", IDM_DATA_XBOUNDS
MENUITEM "&Y bounds...", IDM_DATA_YBOUNDS

END

POPUP "&Run Application"
BEGIN

MENUITEM "R&un", IDM_RUNAPP
END

POPUP "&Help"
BEGIN
MENUITEM "&About...", IDM_HELP_ABOUT
END
END

#include <windows.h>
#define IDC_STATIC -1

#define IDD_DATA_RADIUS 100
#define IDC_RADIUS 101

IDD_DATA_RADIUS DIALOG DISCARDABLE 0, 0, 284, 77
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Ball Radius"
FONT 8, "MS Sans Serif"
BEGIN
DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
CTEXT "This program will shows a ball bouncing in a rectangle.",
IDC_STATIC, 7, 7, 153, 18
GROUPBOX "Ball &Radius", IDC_STATIC, 13, 30, 186, 34
EDITTEXT IDC_RADIUS, 35, 43, 60, 14, ES_AUTOHSCROLL
LTEXT "cm", IDC_STATIC, 97, 45, 20, 8
END

bounce.rc
c:/msys64/home/angelo/programming/win32-fortran/bounce/

2/3
07/06/2015

#define IDD_DATA_SPEED 150
#define IDC_SPEED 151

IDD_DATA_SPEED DIALOG DISCARDABLE 0, 0, 284, 77
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Ball Radius"
FONT 8, "MS Sans Serif"
BEGIN
DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
CTEXT "This program will shows a ball bouncing in a rectangle.",
IDC_STATIC, 7, 7, 153, 18
GROUPBOX "Ball &Speed", IDC_STATIC, 13, 30, 186, 34
EDITTEXT IDC_SPEED, 35, 43, 60, 14, ES_ AUTOHSCROLL
LTEXT "cm/s", IDC_STATIC, 97, 45, 20, 8
END

#define IDD_DATA_TTOT 200
#define IDC_TMIN 201
#define IDC_TMAX 202

IDD_DATA_TTOT DIALOG DISCARDABLE 0, 0, 284, 97
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Time Interval”
FONT 8, "MS Sans Serif"
BEGIN
DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
CTEXT "This program will shows a ball bouncing in a rectangle."”,
IDC_STATIC, 7, 7, 153, 18
GROUPBOX "Time &Interval”, IDC_STATIC, 13, 30, 186, 54

LTEXT "TM&IN : ", IDC_STATIC, 35, 45, 30, 8
EDITTEXT IDC_TMIN, 85, 43, 60, 14, ES_AUTOHSCROLL
LTEXT "s", IDC_STATIC, 147, 45, 20, 8
LTEXT "TM&AX : ", IDC_STATIC, 35, 65, 30, 8
EDITTEXT IDC_TMAX, 85, 63, 60, 14, ES_AUTOHSCROLL
LTEXT "s", IDC_STATIC, 147, 65, 20, 8

END

#define IDD_DATA_TSTEP 300
#define IDC_TSTEP 301

IDD_DATA_TSTEP DIALOG DISCARDABLE 0, 0, 284, 77
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Time Step"
FONT 8, "MS Sans Serif"
BEGIN
DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
CTEXT "This program will shows a ball bouncing in a rectangle.",
IDC_STATIC, 7,7, 153, 18
GROUPBOX "Time &Step", IDC_STATIC, 13, 30, 186, 34
EDITTEXT IDC_TSTEP, 35, 43, 60, 14, ES_AUTOHSCROLL
LTEXT "s", IDC_STATIC, 97, 45, 20, 8
END

#define IDD_DATA_XBOUNDS 400
#define IDC_XMIN 401
#define IDC_XMAX 402

IDD_DATA_XBOUNDS DIALOG DISCARDABLE 0, 0, 284, 97
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "X bounds"
FONT 8, "MS Sans Serif"
BEGIN
DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
CTEXT "This program will shows a ball bouncing in a rectangle.",
IDC_STATIC, 7, 7, 153, 18
GROUPBOX "&X Bounds", IDC_STATIC, 13, 30, 186, 54

LTEXT "XM&IN : ", IDC_STATIC, 35, 45, 30, 8

EDITTEXT IDC_XMIN, 85, 43, 60, 14, ES_AUTOHSCROLL
LTEXT "cm", IDC_STATIC, 147, 45, 20, 8

LTEXT "XM&AX ", IDC_STATIC, 35, 65, 30, 8
EDITTEXT IDC_XMAX, 85, 63, 60, 14, ES_AUTOHSCROLL
LTEXT "cm", IDC_STATIC, 147, 65, 20, 8

END

bounce.rc
c:/msys64/home/angelo/programming/win32-fortran/bounce/

3/3
07/06/2015

#define IDD_DATA_YBOUNDS 500
#define IDC_YMIN 501
#define IDC_YMAX 502

IDD_DATA_YBOUNDS DIALOG DISCARDABLE 0, 0, 284, 97
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Y bounds"
FONT 8, "MS Sans Serif"
BEGIN
DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
CTEXT "This program will shows a ball bouncing in a rectangle.",
IDC_STATIC, 7, 7, 153, 18
GROUPBOX "&Y Bounds", IDC_STATIC, 13, 30, 186, 54

LTEXT "YM&IN : ", IDC_STATIC, 35, 45, 30, 8
EDITTEXT IDC_YMIN, 85, 43, 60, 14, ES_AUTOHSCROLL
LTEXT "cm", IDC_STATIC, 147, 45, 20, 8
LTEXT "YM&AX : ", IDC_STATIC, 35, 65, 30, 8
EDITTEXT IDC_YMAX, 85, 63, 60, 14, ES_AUTOHSCROLL
LTEXT "cm", IDC_STATIC, 147, 65, 20, 8

END

#define IDD_ABOUT 999

IDD_ABOUT DIALOG DISCARDABLE 0, 0, 239, 66
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "About Box"
FONT 8, "MS Sans Serif"
BEGIN
DEFPUSHBUTTON "OK", IDOK, 174, 18, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 174, 35, 50, 14
GROUPBOX "About this program...", IDC_STATIC, 7, 7, 225, 52
CTEXT "A Double Buffering Method Demo\n\nby Angelo Graziosi",
IDC_STATIC, 16, 18, 144, 33
END

bounce plus.f90
c:/msys64/home/angelo/programming/win32—fortran/bounce_plus/

1/10
07/06/2015

! (Partial) Fortran Interface to the Windows API Library
! by Angelo Graziosi (firstname.lastnameATalice.it)

! Copyright Angelo Graziosi

|

It is distributed in the hope that it will be useful,

I but WITHOUT ANY WARRANTY; without even the implied warranty of
I MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

|

i HOW TO BUILD (MSYS2/MINGW32/MINGW64 shell)
]

cd ~/programming/win32-fortran/bounce_plus

|

|

I rm —rf {*.mod,*.res,~/programming/modules/*} && \

I windres bounce_plus.rc —O coff —o bounce_plus.res &&\

I gfortran —~O3 —Wall -mwindows —-J ~/programming/modules \
I ~/programming/basic—-modules/basic_mods.f90 \

I Awin32.f90,win32boxes.f90,win32app.fo0} rseed_rand.fo0 \
I bounce_plus.f90 bounce_plus.res —o bounce_plus.out && \

I rm —rf {*mod,*.res,~/programming/modules/*}
|

I

|

|

I

|

I

|

I

|

|

In MINGW32/MINGW64, add '-static’ and:

bounce_plus.out ==> bounce_plus—mingw32/mingw64

int(O,UINT_T) —--> 0_UINT_T
int(0,WPARAM_T) --> 0_WPARAM_T

i Remember that:
| int(0.LPARAM_T) —-> 0 LPARAM_T

module the_app
use kind_consts , only : DP
use AboutBox_class
use XBox_class
use XYBox_class
use RadioBox_class

use win32 , only : BLACK_COLOR, BLACKNESS, COLORREF T, CYAN_COLOR, BOOL_T, &

DWORD_T, FALSE_T, HBITMAP_T, HBRUSH_T, HDC_T, HINSTANCE_T, &
HOLLOW_BRUSH, HPEN_T, HWND_T, IDYES, INT_T, LPARAM_T, LRESULT_T,
MAX_FMT, MAX_LEN, NL, NUL, NULL_T, PS_SOLID, TRUE_T, UINT_T, &

&

WHITE_COLOR, WM_CLOSE, WM_COMMAND, WM_CREATE, WM_DESTROY, WM_SIZE, &

WORD_T, WPARAM_T, YELLOW_COLOR, &
ask_confirmation, CreateCompatibleDC, CreateHatchBrush, CreatePen,
DefWindowProc, DeleteDC, DeleteObject, DestroyWindow, error_msg,
GetDC, GetStockObject, lo_word, MessageBeep, PostMessage, &
PostQuitMessage, ReleaseDC, &
RGB, SelectObject, SetBkColor, SetTextColor, TextOut

use win32app , only :win32app_BitBIt, win32app_clearDC, &
win32app_CreateCompatibleBitmap, win32app_ellipse, win32app_setup,
win32app_xbounds, win32app_ybounds, &
win32app_xmin, win32app_xmax, win32app_ymin, win32app_ymax

implicit none

private

integer (WORD_T), parameter , public : IDI_BOUNCE PLUS =1
integer (WORD_T), parameter , public : IDM_MAINMENU =9000
integer (WORD_T), parameter : IDM_FILE_EXIT =9010
integer (WORD_T), parameter : IDM_DATA_NBALLS =9020
integer (WORD_T), parameter : IDM_DATA_DENSITY =9021
integer (WORD_T), parameter : IDM_DATA_ STIFFNES = 9022
integer (WORD_T), parameter : IDM_DATA_MBOUNDS =9023
integer (WORD_T), parameter : IDM_DATA_TTOT =09024
integer (WORD_T), parameter : IDM_DATA TSTEP =9025
integer (WORD_T), parameter : IDM_DATA_XBOUNDS =9026
integer (WORD_T), parameter : IDM_DATA_YBOUNDS =9027
integer (WORD_T), parameter : IDM_OPTIONS_TCOLOR =9030
integer (WORD_T), parameter : IDM_RUNAPP =9040
integer (WORD_T), parameter : IDM_HELP_ABOUT =9999

linteger(WORD_T), parameter :: IDC_STATIC = -1

integer (WORD_T), parameter : IDD_DATA_NBALLS =100
integer (INT_T), parameter : IDC_NBALLS =101

&

&

bounce plus.f90
c:/msys64/home/angelo/programming/win32—fortran/bounce_plus/

2/10
07/06/2015

integer (WORD_T), parameter : IDD_DATA_DENSITY =200
integer (INT_T), parameter : IDC_DENSITY =201
integer (WORD_T), parameter : IDD_DATA_STIFFNES = 300
integer (INT_T), parameter : IDC_STIFFNES =301
integer (WORD_T), parameter : IDD_DATA_MBOUNDS =400
integer (INT_T), parameter : IDC_MMIN =401

integer (INT_T), parameter : IDC_MMAX =402
integer (WORD_T), parameter : IDD_DATA TTOT =500
integer (INT_T), parameter : IDC_TMIN =501

integer (INT_T), parameter : IDC_TMAX =502

integer (WORD_T), parameter : IDD_DATA_TSTEP =600
integer (INT_T), parameter : IDC_TSTEP =601

integer (WORD_T), parameter : IDD_DATA_XBOUNDS =700
integer (INT_T), parameter : IDC_XMIN =701

integer (INT_T), parameter : IDC_XMAX =702

integer (WORD_T), parameter : IDD_DATA_YBOUNDS =800
integer (INT_T), parameter : IDC_YMIN =801

integer (INT_T), parameter : IDC_YMAX =802

integer (WORD_T), parameter : IDD_OPTIONS_TCOLOR =900
integer (INT_T), parameter : IDC_CYAN =901
integer (INT_T), parameter : IDC_WHITE =902
integer (INT_T), parameter : IDC_YELLOW =903
integer (WORD_T), parameter : |IDD_ABOUT =999

type ball_type
integer (COLORREF_T):: col=BLACK _COLOR
real (DP): mass=0.0_DP, &
density = 0.0_DP, &
radius = 0.0_DP
real (DP), dimension (2):: frc = 0.0_DP, &
acc =0.0_DP, &
vel =0.0_DP, &
pos =0.0_DP
end type ball_type

I COMMON data

integer (HBITMAP_T):: hBitmap = NULL_ T

logical :: run_flag = .true.

real (DP): box_xmin, box_xmax, box_ymin, box_ymax

I Application data, strictly speaking...

integer :: nballs =12

real (DP):: density =0.01_DP, stiffnes = 5E5_DP
real (DP): mO =400.0_DP, m1=28000.0_DP

type(ball_type) , allocatable o ball(y)

real (DP): t=0.0_DP,t0=0.0_DP,tl=900.0_DP, &
tstep = 1.0_DP/512 11.953125E-03 = 0.000000001_2

integer i tcolor=2 'WHITE

public :: paint_screen, WndProc
contains

subroutine balls_on ()

integer 1 err
allocate (ball(nballs),stat=ierr)
if (ierr/=0) then

write (*,*) **% EATAL ERROR ***
write (*,%) 'BALL: Allocation request denied’
stop
end if
end subroutine balls_on

subroutine balls_off ()

integer i ierr
if (allocated (ball)) deallocate (ball,stat=ierr)
if (ierr/=0) then

write (*,*) *** FATAL ERROR ***

bounce plus.f90
c:/msys64/home/angelo/programming/win32—fortran/bounce_plus/

3/10
07/06/2015

write (*,%) 'BALL: Deallocation request denied’
stop
end if
end subroutine balls_off

subroutine setup_balls ()
use math_consts , only :PI

real (DP), parameter : Z3=1.0_DP/3, Z43PI = 4*Z3*PI
real (DP): u(9)
integer & i

I Time initialization
t=t0

I Set startup conditions of elastic balls
do i=1, nballs
call random_number (u)
ball(i)%col = RGB(int (64+u(1)*192), int (64+u(2)*192), int (64+u(3)*192))
ball(i}%mass = m0+(i—1)*(m1-m0)/(nballs-1)
ball(i)%density = density
ball(i)%radius = ((ball(i)%mass/ball(i)%density)/(Z43PI))**Z3
ball(i)%pos =[(1.0_DP-u(4))*(box_ xm|n+ball(|)%rad|us) &
+u(4)*(box_xmax-ball(i)%radius),
(1.0_DP-u(5))*(box_ymin+ball(i)%radius) &
+Uu(5)*(box_ymax-ball(i)%radius)]
ball(i)%vel = 200*[u(6)-u(7), u(8)-u(9)]
end do
end subroutine setup_balls

subroutine draw_time (hdc,t)
integer (HDC_T), intent (in):: hdc
real (DP), intent (in): t
integer (COLORREF_T), parameter : TXT_COLOR(3)= &
[CYAN_COLOR, WHITE_COLOR, YELLOW_COLOR]
I We use SAVE just to save something at each call
I (draw_time() is called intensively, at each iteration)
integer (COLORREF_T), save :: old bk color, old_text color
character (len=MAX_LEN), save : buffer="
integer , save : dummy

old_bk_color = SetBkColor(hdc,BLACK_COLOR)
old_text_color = SetTextColor(hdc, TXT_COLOR(tcolor))

buffer = "

write (buffer,*) Time : 't
buffer = trim (adjustl (buffer))// "7 JINUL
dummy = index (buffer,NUL)

ldummy = TextOut(hdc,xs(x_min),ys(y_max),buffer(1:dummy),dummy-1)
dummy = TextOut(hdc,0,0,buffer(1:dummy),dummy-1)

I Restore previous text colors...
dummy = SetBkColor(hdc,old_bk_color)
dummy = SetTextColor(hdc,old_text_color)
end subroutine draw_time

subroutine draw_ball (hdc,p,r,col)

integer (HDC_T), intent (in):: hdc
real (DP), intent (in):: p(C), r
integer (COLORREF_T), intent (in):: col

I We use SAVE just to save something at each call
I (draw_ball() is called intensively, at each iteration)
integer (HPEN_T), save : hPen

integer , save : dummy

I Set the fill style
dummy = int (SelectObject(hdc,GetStockObject(HOLLOW_BRUSH)),INT_T)

hPen = CreatePen(PS_SOLID,1,col)
dummy = int (SelectObject(hdc,hPen),INT_T)

dummy = win32app_ellipse(hdc,p(1)-r,p(2)+r,p(1)+r,p(2)-r)

dummy = win32app_ellipse(hdc,p(1)-(r-0.5_DP),p(2)+(r—-0.5_DP), &
p(1)+(r-0.5_DP),p(2)-(r-0.5_DP))

dummy = win32app_ellipse(hdc,p(1)—(r-1.0_DP),p(2)+(r-1.0_DP), &
p(1)+(r-1.0_DP),p(2)-(r-1.0_DP))

bounce plus.f90
c:/msys64/home/angelo/programming/win32—fortran/bounce_plus/

4/10
07/06/2015

dummy = DeleteObject(hPen)
end subroutine draw_ball

subroutine painting_setup (hwnd)

integer (HWND_T), intent (in): hwnd
logical , save : first = .true.
integer (HDC_T):: hdc, hdcMem
integer ' dummy, i
if (first) then

call setup_balls ()
first = false.
end if
if (hBitmap /= NULL_T) then
dummy = DeleteObject(hBitmap)
end if

hdc = GetDC(hwnd)

hdcMem = CreateCompatibleDC(hdc)

hBitmap = win32app_CreateCompatibleBitmap(hdc)
dummy = ReleaseDC(hWnd,hdc)

dummy = int (SelectObject(hdcMem,hBitmap),INT_T)

! Clear the off-screen DC (hdcMem) for the next drawing
dummy = win32app_clearDC(hdcMem,BLACKNESS)

! Draw (on the off-screen DC) time and elastic balls at time t
call draw_time (hdcMem,t)
do i =1, nballs
call draw_bpall (hdcMem,ball(i)%pos,ball(i)%radius,ball(i)%col)
end do

dummy = DeleteDC(hdcMem)

end subroutine painting_setup

subroutine set_nballs (hWnd)

integer (HWND_T), intent (in):: hwWnd

character (len=MAX_FMT), parameter : FMT ='(f12.0)’
type(XBox) : xb

call new_box (xb,hWnd,|IDD_DATA_NBALLS,IDC_NBALLS,FMT, real (nballs,DP))
if (run(xb) > 0) then

! Destroying the current balls...
call balls_off ()

I We need nballs > 0, at least...

nballs = int (abs (get(xb)))
if (nballs <2) then
call error_msg (’'NBalls <21l /INL &
I 'You need at least 2 balls... ’ /INUL)
nballs = 2
end if

! Creating the new balls...
call balls_on ()

! If you prefer to see something, uncomment the following...
Icall setup_balls()
end if
end subroutine set_nballs

subroutine set_density (hWnd)

integer (HWND_T), intent (in): hwnd
character (len=MAX_FMT), parameter : FMT ='(1pgl2.5)
type(XBox) 1 xb

call new_box (xb,hWnd,IDD_DATA DENSITY,IDC_DENSITY,FMT,density)

if (run(xb) > 0) then
density = get(xb)

if (density <0) then
call error_msg (’'Density <0 !l /INL &

bounce plus.f90
c:/msys64/home/angelo/programming/win32—fortran/bounce_plus/

5/10
07/06/2015

1 'Taking its absolute value... ’ /INUL)
density = abs (density)
end if
end if
end subroutine set_density
subroutine set_stiffnes (hwnd)
integer (HWND_T), intent (in):: hwWnd
character (len=MAX_FMT), parameter : FMT ='(1pgl2.5)
type(XBox) :: xb

call new_box (xb,hWnd,IDD_DATA_STIFFNES,IDC_STIFFNES,FMT ,stiffnes)

it (run(xb) > 0) then
stiffnes = get(xb)
if (stiffnes < 0) then
call error_msg (’Stiffnes<0 !l /IINL &
1 'Taking its absolute value... ’ /INUL)
stiffnes = abs (stiffnes)
end if
end if
end subroutine set_stiffnes

subroutine set_massbounds (hwnd)

integer (HWND_T), intent (in):: hwWnd
character (len=MAX_FMT), parameter : FMT ="(1pgl2.5)
type(XYBox) : xyb

call new_box (xyb,hwnd,IDD_DATA_MBOUNDS,IDC_MMIN,IDC_MMAX,FMT,m0,m1)

it (run(xyb) > 0) then
m0 = min (abs (get_x(xyb)), abs (get_y(xyb)))
ml = max(abs (get_x(xyb)), abs (get_y(xyb)))
end if
end subroutine set_massbounds

subroutine set_timebounds (hWnd)

integer (HWND_T), intent (in):: hwWnd
character (len=MAX_FMT), parameter : FMT ="(1pgl2.5)’
type(XYBox) : xyb

call new_box (xyb,hwnd,IDD_DATA_TTOT,IDC_TMIN,IDC_TMAX,FMT,t0,t1)

if (run(xyb) > 0) then
t0 = min (get_x(xyb),get_y(xyb))
tl = max(get_x(xyb),get_y(xyb))
end if
end subroutine set_timebounds

subroutine set_tstep (hWnd)

integer (HWND_T), intent (in):: hwWnd
character (len=MAX_FMT), parameter : FMT ='(1pgl2.5)
type(XBox) :: xb

call new_box (xb,hWnd,IDD_DATA TSTEP,IDC_TSTEP,FMT tstep)

it (run(xb) > 0) then
tstep = get(xb)

if (tstep <0) then
call error_msg ('TStep<0!l /INL &
I 'Taking its absolute value... ’ /INUL)
tstep = abs (tstep)
end if
end if
end subroutine set_tstep

subroutine set_tcolor (hwWnd)

integer (HWND_T), intent (in):: hwnd

integer , parameter : NUM_BUTTONS =3

character (len=*), parameter :: BUTTON_NAMES(NUM_BUTTONS) =[&
‘&Cyan =, &
'‘&White* , &
‘&Yellow”]

type(RadioBox) b

call new_box (rb,hWnd,IDD_OPTIONS_TCOLOR,IDC_CYAN,BUTTON_NAMES, &

bounce plus.f90
c:/msys64/home/angelo/programming/win32—fortran/bounce_plus/

6/10
07/06/2015

NUM_BUTTONS,tcolor)
if (run(rb) > 0) tcolor = get_current_button(rb)
Iprint *, "TCOLOR = ",tcolor

end subroutine set_tcolor

subroutine help_dlg (hwnd)

integer (HWND_T), intent (in):: hwWnd
type(AboutBox) o oab
integer :: dummy

call new_box (ab,hwnd,IDD_ABOUT)
dummy = run(ab)

end subroutine help_dlg

function process_command (hWnd,wParam)
integer (BOOL_T):: process_command
integer (HWND_T), intent (in):: hwWnd
integer (WPARAM_T), intent (in) : wParam
integer :: dummy

run_flag = false.

selectcase (lo_word(int (wParam,DWORD_T)))
case (IDM_FILE_EXIT)
dummy = MessageBeep(64)
if (ask_confirmation(hWnd, 'Sure you want to exit? ’ /INUL, &
Exit?” /INUL) == IDYES) then
dummy = PostMessage(hWnd,WM_CLOSE,0_ WPARAM_T,0_LPARAM_T)
end if
process_command = TRUE_T
return

case (IDM_DATA_NBALLS)
call set nballs (hwnd)
process_command = TRUE_T
return

case (IDM_DATA_DENSITY)
call set _density (hWnd)
process_command = TRUE_T
return

case (IDM_DATA_STIFFNES)
call set_stiffnes (hwnd)
process_command = TRUE_T
return

case (IDM_DATA_MBOUNDS)
call set_massbounds (hWnd)
process_command = TRUE_T
return

case (IDM_DATA_TTOT)
call set_timebounds (hWnd)
process_command = TRUE_T
return

case (IDM_DATA_TSTEP)
call set tstep (hwWnd)
process_command = TRUE_T
return

case (IDM_DATA_XBOUNDS)
call win32app_xbounds (hWnd,IDD_DATA_XBOUNDS,IDC_XMIN,IDC_XMAX)
process_command = TRUE_T
return

case (IDM_DATA_YBOUNDS)
call win32app_ybounds (hWnd,IDD_DATA_YBOUNDS,IDC_YMIN,IDC_YMAX)
process_command = TRUE_T
return

case (IDM_OPTIONS_TCOLOR)
call set_tcolor (hwWnd)
process_command = TRUE_T
return

case (IDM_RUNAPP)

bounce plus.f90
c:/msys64/home/angelo/programming/win32—fortran/bounce_plus/

7/10
07/06/2015

run_flag = true.
call setup_balls ()
process_command = TRUE_T
return

case (IDM_HELP_ABOUT)
call help_dlg (hwnd)
process_command = TRUE_T
return

case default
process_command = FALSE_T
return
end select
end function process_command

function WndProc (hWnd,iMsg,wParam,|IParam) bind (C)
IGCC$ ATTRIBUTES STDCALL :: WndProc
integer (LRESULT_T): WndProc
integer (HWND_T), value : hwWnd

integer (UINT_T), value : iMsg
integer (WPARAM_T), value : wParam
integer (LPARAM_T), value : [Param
logical , save : first= true.

integer : dummy

select case (iMsg)
case (WM_CREATE)
! Creating the balls...
call balls_on ()

WndProc =0
return

case (WM_SIZE)

it (first) then
call win32app_setup (IParam,-600.0_DP,600.0_DP)
first = false.
else
call win32app_setup (IParam)
end if

| Getting the box boundaries... each time, maybe, the mapping changed...
box_xmin = win32app_xmin()
box_xmax = win32app_xmax()
box_ymin = win32app_ymin()
box_ymax = win32app_ymax()

I Now that the mapping has been defined, we can initialize the painting
call painting_setup (hwnd)

WndProc =0
return

case (WM_COMMAND)
if (process_command(hWnd,wParam) == TRUE_T) then
WndProc =0
return
end if
I ...else it continues with DefWindowProc

case (WM_CLOSE)
dummy = DestroyWindow(hWnd)
WndProc =0
return

case (WM_DESTROY)

if (hBitmap /= NULL_T) then
dummy = DeleteObject(hBitmap)

end if

! Destroying the balls...
call balls_off ()

call PostQuitMessage (0)
I Commenting out the next two statements, it continues
' with DefWindowProc()

bounce plus.f90
c:/msys64/home/angelo/programming/win32—fortran/bounce_plus/

8/10
07/06/2015

WndProc =0
return
end select

WndProc = DefWindowProc(hWnd,iMsg,wParam,IParam)
end function WndProc

subroutine update_ball_position 0
I We use SAVE just to save something at each call
! (update_ball_position() is called intensively, at each iteration)
real (DP), save :: force(2), ball_distance, dist_min, dst(2)
integer , save & i,]j

| Test all elastic balls against each other.
! Calculate forces if they touch.
do i =1, nballs-1
do j =i+1, nballs
| Distance between elastic balls (Pythagoras’ theorem)
dst = ball(j)%pos—ball(i)%pos

ball_distance = norm?2 (dst)
dist_min = ball(i)%radius+ball(j)%radius
if (ball_distance < dist_min) then

I Cosine and sine to the angle between ball i and j
I (trigonometry): here 'force’ is a unit vector!
force = dst/ball_distance

I Spring force (Hooke's law of elasticity)
I Here "force’ is the total force of i on ’j' :
I (All capital letters are vectors)

|

! F@i —>j) = -k * S = —-k*(Bd-Dm) = -k*(|Bd|-|Dm|)*U
I U =Bd/|Bd|
force = —stiffnes*(ball_distance—dist_min)*force

PR() = F()+F(.i) = F()-F(i.)), F() = FO+F(.)
I being F(i,j) the force of '’ on '
ball(i)%frc = ball(i)%frc—force
ball(j)%frc = ball(j)%frc+force
end if
end do
end do

! Update acceleration, velocity, and position of elastic balls
! (using the Euler—Cromer 1st order integration algorithm)
do i=1, nballs
! Accelerate balls (acceleration = force / mass)
ball(i)%acc = ball(i)%frc/ball(i)%mass

| Reset force vector
ball(i)%frc = 0.0_DP

! Update velocity

! delta velocity = acceleration * delta time

I new velocity = old velocity + delta velocity
ball(i)%vel = ball(i)%vel+ball(i)%acc*tstep

! Update position
I delta position = velocity * delta time
! new position = old position + delta position
ball(i)%pos = ball(i)%pos+ball(i)%vel*tstep
end do

! Keep elastic balls within screen boundaries
do i=1, nballs
! Right
if (ball(i)%pos(1) > box_xmax—ball(i)%radius) then
ball(i)%vel(1) = —ball(i)%vel(1)
ball(i)%pos(1) = box_xmax-ball(i)%radius
end if

| Left

if (ball(i)%pos(1) < box_xmin+ball(i)%radius) then
ball(i)%vel(1) = —ball(i)%vel(1)
ball(i)%pos(1) = box_xmin+ball(i)%radius

end if

I Top

bounce plus.f90 9/10
c:/msys64/home/angelo/programming/win32—fortran/bounce_plus/ 07/06/2015

if (ball(i)%pos(2) > box_ymax-ball(i)%radius) then
ball(i)%vel(2) = —ball(i)%vel(2)
ball(i)%pos(2) = box_ymax-ball(i)%radius

end if

! Bottom
if (ball(i)%pos(2) < box_ymin+ball(i)%radius) then
ball(i)%vel(2) = —ball(i)%vel(2)
ball(i)%pos(2) = box_ymin+ball(i)%radius
end if
end do
end subroutine update_ball_position

subroutine paint_screen (hWnd)
integer (HWND_T), intent (in):: hwnd
I We use SAVE just to save something at each call
! (paint_screen() is called intensively, at each iteration)
integer (HDC_T), save : hdc, hdcMem
integer , save : dummy, i

if (hBitmap /= NULL_T) then
hdc = GetDC(hwWnd)
hdcMem = CreateCompatibleDC(hdc)
dummy = int (SelectObject(hdcMem,hBitmap),INT_T)

I Transfer the off-screen DC to the screen
dummy = win32app_BitBlt(hdc,hdcMem)
dummy = ReleaseDC(hWnd,hdc)

if (t<tl .and. run_flag) then

t = t+tstep
call update_ball_position 0

end if

! Clear the off-screen DC (hdcMem) for the next drawing
dummy = win32app_clearDC(hdcMem,BLACKNESS)

! Draw (on the off-screen DC) time and elastic balls at time t
call draw_time (hdcMem,t)
do i =1, nballs
call draw_ball (hdcMem,ball(i)%pos,ball(i)%radius,ball(i)%col)
end do

dummy = DeleteDC(hdcMem)
end if
end subroutine paint_screen
end module the_app

function WinMain (hinstance,hPrevinstance,|pCmdLine,nCmdShow) &
bind (C, name= 'WinMain’)
use rseed_rand
use, intrinsic ;. iso_c_binding , only : C PTR C_CHARc_sizeof, c_funloc, &
C_FUNPTRc_loc

use win32, only : BLACK_BRUSH, CS_HREDRAW, CS_VREDRAW, CW_USEDEFAULT&
DWORD_T, HINSTANCE_T, HWND_T, INT_T, NUL, NULL_PTR_T, NULL_T, &
PM_REMOVE, WM_QUIT, WS_OVERLAPPEDWINDOW, UINT_T, &
MSG_T, WNDCLASSEX_T, &

arrow_cursor, CreateWindowEx, DispatchMessage, error_msg, Exit Process , &
GetStockObiject, LoadCursor, Loadlcon, make_int_resource, &
make_int_resource_C_PTR, PeekMessage, RegisterClassEx, ShowWindow, &

TranslateMessage, UpdateWindow

use the_app , only :IDI_BOUNCE_PLUS, IDM_MAINMENU, &
paint_screen, WndProc

use rseed_rand

implicit none

IGCC$ ATTRIBUTES STDCALL :: WinMain

integer (INT_T) : WinMain

integer (HINSTANCE_T), value : hinstance

integer (HINSTANCE_T), value : hPrevinstance

type(C_PTR) , value : IpCmdLine !LPSTR

integer (INT_T), value : nCmdShow

character (kind= C_CHARIlen=128), target @ app_name= &
‘Bounce_Plus’ /INUL

character (kind= C_CHARlen=*), parameter :: WINDOW_CAPTION = &
'Bouncing Balls’ /INUL

type(WNDCLASSEX_T) :: WndClass
integer (HWND_T): hwnd

bounce plus.f90 10/10
c:/msys64/home/angelo/programming/win32—fortran/bounce_plus/ 07/06/2015

type(MSG_T) : msg
integer : dummy

! To avoid some annoying warnings...

integer (HINSTANCE_T) :: not_used_hPrevinstance

type(C_PTR) : not_used_IpCmdLine
not_used_hPrevinstance = hPrevinstance
not_used_lpCmdLine = IpCmdLine

call rseed ()

WndClass%cbSize = int (c_sizeof (Wndclass),UINT_T)
WndClass%style = ior (CS_HREDRAW,CS_VREDRAW)
WndClass%lpfnWndProc = c_funloc (WndProc)

WndClass%cbClsExtra = 0

WndClass%cbWndExtra = 0

WhndClass%hlnstance = hinstance

WhndClass%hlcon = Loadlcon(hinstance,make_int_resource(IDI_BOUNCE_PLUS))
WndClass%hCursor = LoadCursor(NULL_T,arrow_cursor())
WndClass%hbrBackground = GetStockObject(BLACK_BRUSH)
WndClass%lpszMenuName = make_int_resource_C_PTR(IDM_MAINMENU)
WndClass%lpszClassName = c_loc (app_name(1:1))

WhndClass%hlconSm = Loadlcon(hinstance,make_int_resource(IDI_BOUNCE_PLUS))

if (RegisterClassEx(WndClass) == 0) then
call error_msg (’'Window Registration Failure! ' /INUL)
call ExitProcess (0_UINT_T)

WinMain = 0
Ireturn

end if

hwnd = CreateWindowEx(0O_DWORD_T, &
app_name, &
WINDOW_CAPTION, &
WS_OVERLAPPEDWINDOW, &
CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,&
NULL_T,NULL_T,hinstance,NULL_PTR_T)

if (hWnd ==NULL_T) then

call error_msg (’'Window Creation Failure! ’ /INUL)
call ExitProcess (0_UINT_T)

WinMain = 0
Ireturn

end if

dummy = ShowWindow(hWnd,nCmdShow)
dummy = UpdateWindow(hWnd)

I See: Charles Petzold "Programming Windows", 5th ed., pag. 162
I’'Random Rectangles’
do
if (PeekMessage(msg,NULL_T,0,0,PM_REMOVE) /= 0) then
if (msg%message == WM_QUIT) exit
dummy = TranslateMessage(msg)

dummy = int (DispatchMessage(msg),INT_T)
else
call paint_screen (hWnd)
end if
end do

call ExitProcess (int (msg%wParam,UINT_T))
WinMain =0
end function WinMain

bounce_plus.rc
c:/msys64/home/angelo/programming/win32—fortran/bounce_plus/

1/4
07/06/2015

1

/I (Partial) Fortran Interface to the Windows API Library

/I by Angelo Graziosi (firstname.lastnameATalice.it)

/I Copyright Angelo Graziosi

1

/I It is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of
/I MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
1

/I RC file for "bounce_plus" app

/i

#define IDI_BOUNCE_PLUS 1
IDI_BOUNCE_PLUS ICON DISCARDABLE "../common_icons/smiling_sun.ico"

#define IDM_MAINMENU 9000
#define IDM_FILE_EXIT 9010
#define IDM_DATA_NBALLS 9020
#define IDM_DATA_DENSITY 9021
#define IDM_DATA_STIFFNES 9022
#define IDM_DATA_MBOUNDS 9023
#define IDM_DATA_TTOT 9024
#define IDM_DATA_TSTEP 9025
#define IDM_DATA_XBOUNDS 9026
#define IDM_DATA_YBOUNDS 9027
#define IDM_OPTIONS_TCOLOR 9030
#define IDM_RUNAPP 9040
#define IDM_HELP_ABOUT 9999

IDM_MAINMENU MENU DISCARDABLE
BEGIN
POPUP "&File"
BEGIN
MENUITEM "E&xit...", IDM_FILE_EXIT
END

POPUP "&Data"
BEGIN
MENUITEM "&Number Of Balls...", IDM_DATA_NBALLS

MENUITEM SEPARATOR
MENUITEM "Ball &Density...", IDM_DATA_DENSITY
MENUITEM "Spring Sti&ffnes...", IDM_DATA_STIFFNES
MENUITEM "&Mass bounds...", IDM_DATA_MBOUNDS
MENUITEM SEPARATOR
MENUITEM "Time &lnterval...", IDM_DATA_TTOT
MENUITEM "Time &Step...", IDM_DATA_TSTEP
MENUITEM SEPARATOR
MENUITEM "&X bounds...", IDM_DATA_XBOUNDS
MENUITEM "&Y bounds...", IDM_DATA_YBOUNDS

END

POPUP "&Options"
BEGIN

MENUITEM "Time &Color...", IDM_OPTIONS_TCOLOR
END

POPUP "&Run Application"
BEGIN

MENUITEM "R&un", IDM_RUNAPP
END

POPUP "&Help"
BEGIN
MENUITEM "&About...", IDM_HELP_ABOUT
END
END

#include <windows.h>
#define IDC_STATIC -1

#define IDD_DATA_NBALLS 100
#define IDC_NBALLS 101

IDD_DATA_NBALLS DIALOG DISCARDABLE 0, 0, 284, 77
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Number Of Balls"

bounce_plus.rc
c:/msys64/home/angelo/programming/win32—fortran/bounce_plus/

214
07/06/2015

FONT 8, "MS Sans Serif"

BEGIN
DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
CTEXT "This program will shows bouncing balls in a box.",

IDC_STATIC, 7, 7, 153, 18

GROUPBOX "&Number Of Balls", IDC_STATIC, 13, 30, 186, 34
EDITTEXT IDC_NBALLS, 35, 43, 60, 14, ES_AUTOHSCROLL
LTEXT ";-)", IDC_STATIC, 97, 45, 20, 8

END

#define IDD_DATA_DENSITY 200
#define IDC_DENSITY 201

IDD_DATA_DENSITY DIALOG DISCARDABLE 0, 0, 284, 77
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Ball Density"
FONT 8, "MS Sans Serif"
BEGIN
DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
CTEXT "This program will shows bouncing balls in a box.",
IDC_STATIC, 7, 7, 153, 18
GROUPBOX "Ball &Density", IDC_STATIC, 13, 30, 186, 34
EDITTEXT IDC_DENSITY, 35, 43, 60, 14, ES_AUTOHSCROLL
LTEXT "g/lcm**3", IDC_STATIC, 97, 45, 60, 8
END

#define IDD_DATA_STIFFNES 300
#define IDC_STIFFNES 301

IDD_DATA_STIFFNES DIALOG DISCARDABLE 0, 0, 284, 77
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Spring Stiffnes"
FONT 8, "MS Sans Serif"
BEGIN
DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
CTEXT "This program will shows bouncing balls in a box.",
IDC_STATIC, 7, 7, 153, 18
GROUPBOX "Spring Sti&ffnes”, IDC_STATIC, 13, 30, 186, 34
EDITTEXT IDC_STIFFNES, 35, 43, 60, 14, ES_AUTOHSCROLL
LTEXT " dyn/cm", IDC_STATIC, 97, 45, 60, 8
END

#define IDD_DATA_MBOUNDS 400
#define IDC_MMIN 401
#define IDC_MMAX 402

IDD_DATA_MBOUNDS DIALOG DISCARDABLE 0, 0, 284, 97
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Mass bounds"
FONT 8, "MS Sans Serif"
BEGIN
DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
CTEXT "This program will shows bouncing balls in a box.",
IDC_STATIC, 7, 7, 153, 18
GROUPBOX "&Mass bounds", IDC_STATIC, 13, 30, 186, 54

LTEXT "MM&IN : ", IDC_STATIC, 35, 45, 30, 8
EDITTEXT IDC_MMIN, 85, 43, 60, 14, ES_AUTOHSCROLL
LTEXT "g", IDC_STATIC, 147, 45, 20, 8
LTEXT "MM&AX : ", IDC_STATIC, 35, 65, 30, 8
EDITTEXT IDC_MMAX, 85, 63, 60, 14, ES_AUTOHSCROLL
LTEXT "g", IDC_STATIC, 147, 65, 20, 8

END

#define IDD_DATA_TTOT 500
#define IDC_TMIN 501
#define IDC_TMAX 502

IDD_DATA_TTOT DIALOG DISCARDABLE 0, 0, 284, 97
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Time Interval"
FONT 8, "MS Sans Serif"
BEGIN
DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14

bounce_plus.rc
c:/msys64/home/angelo/programming/win32—fortran/bounce_plus/

3/4
07/06/2015

CTEXT "This program will shows a ball bouncing in a rectangle.",
IDC_STATIC, 7,7, 153, 18
GROUPBOX "Time &Interval", IDC_STATIC, 13, 30, 186, 54

LTEXT "TM&IN : ", IDC_STATIC, 35, 45, 30, 8
EDITTEXT IDC_TMIN, 85, 43, 60, 14, ES_AUTOHSCROLL
LTEXT "s", IDC_STATIC, 147, 45, 20, 8
LTEXT "TM&AX : ", IDC_STATIC, 35, 65, 30, 8
EDITTEXT IDC_TMAX, 85, 63, 60, 14, ES_AUTOHSCROLL
LTEXT "s", IDC_STATIC, 147, 65, 20, 8

END

#define IDD_DATA_TSTEP 600
#define IDC_TSTEP 601

IDD_DATA_TSTEP DIALOG DISCARDABLE 0, 0, 284, 77
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Time Step"
FONT 8, "MS Sans Serif"
BEGIN
DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
CTEXT "This program will shows a ball bouncing in a rectangle.",
IDC_STATIC, 7, 7, 153, 18
GROUPBOX "Time &Step", IDC_STATIC, 13, 30, 186, 34
EDITTEXT IDC_TSTEP, 35, 43, 60, 14, ES_AUTOHSCROLL
LTEXT "s", IDC_STATIC, 97, 45, 20, 8
END

#define IDD_DATA_XBOUNDS 700
#define IDC_XMIN 701
#define IDC_XMAX 702

IDD_DATA_XBOUNDS DIALOG DISCARDABLE 0, 0, 284, 97
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "X bounds"
FONT 8, "MS Sans Serif"
BEGIN
DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
CTEXT "This program will shows a ball bouncing in a rectangle."”,
IDC_STATIC, 7, 7, 153, 18
GROUPBOX "&X Bounds", IDC_STATIC, 13, 30, 186, 54

LTEXT "XM&IN : ", IDC_STATIC, 35, 45, 30, 8
EDITTEXT IDC_XMIN, 85, 43, 60, 14, ES_AUTOHSCROLL
LTEXT " cm", IDC_STATIC, 147, 45, 20, 8
LTEXT "XM&AX : ", IDC_STATIC, 35, 65, 30, 8
EDITTEXT IDC_XMAX, 85, 63, 60, 14, ES_ AUTOHSCROLL
LTEXT "cm", IDC_STATIC, 147, 65, 20, 8

END

#define IDD_DATA_YBOUNDS 800

#define IDC_YMIN 801

#define IDC_YMAX 802

IDD_DATA_YBOUNDS DIALOG DISCARDABLE 0, 0, 284, 97
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Y bounds"
FONT 8, "MS Sans Serif"
BEGIN
DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
CTEXT "This program will shows a ball bouncing in a rectangle."”,
IDC_STATIC, 7, 7, 153, 18
GROUPBOX "&Y Bounds", IDC_STATIC, 13, 30, 186, 54

LTEXT "YM&IN : ", IDC_STATIC, 35, 45, 30, 8
EDITTEXT IDC_YMIN, 85, 43, 60, 14, ES_AUTOHSCROLL
LTEXT "cm", IDC_STATIC, 147, 45, 20, 8
LTEXT "YM&AX : ", IDC_STATIC, 35, 65, 30, 8
EDITTEXT IDC_YMAX, 85, 63, 60, 14, ES_AUTOHSCROLL
LTEXT "cm", IDC_STATIC, 147, 65, 20, 8

END

#define IDD_OPTIONS_TCOLOR 900

#define IDC_CYAN 901

#define IDC_WHITE 902

#define IDC_YELLOW 903

IDD_OPTIONS_TCOLOR DIALOG DISCARDABLE 0, 0, 284, 117

bounce_plus.rc
c:/msys64/home/angelo/programming/win32—fortran/bounce_plus/

4/4
07/06/2015

STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU

CAPTION "Time Color"

FONT 8, "MS Sans Serif"

BEGIN
DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
CTEXT "This program will shows bouncing balls in a box.",

IDC_STATIC, 7, 7, 153, 18

GROUPBOX "Time &Color", IDC_STATIC, 13, 30, 186, 74
RADIOBUTTON "&Cyan", IDC_CYAN, 35, 45, 60, 8
RADIOBUTTON "&White", IDC_WHITE, 35, 65, 60, 8
RADIOBUTTON "&Yellow", IDC_YELLOW, 35, 85, 60, 8

END

#define IDD_ABOUT 999

IDD_ABOUT DIALOG DISCARDABLE 0, 0, 239, 66
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "About Box"
FONT 8, "MS Sans Serif"
BEGIN
DEFPUSHBUTTON "OK", IDOK, 174, 18, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 174, 35, 50, 14
GROUPBOX "About this program...", IDC_STATIC, 7, 7, 225, 52
CTEXT "A Double Buffering Method Demo\n\nby Angelo Graziosi",
IDC_STATIC, 16, 18, 144, 33
END

poisson2D.f90
c:/msys64/home/angelo/programming/win32-fortran/poisson2D/

1/17
07/06/2015

!

! (Partial) Fortran Interface to the Windows API Library
! by Angelo Graziosi (firstname.lastnameATalice.it)

! Copyright Angelo Graziosi

!

It is distributed in the hope that it will be useful,

I but WITHOUT ANY WARRANTY; without even the implied warranty of
I MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

|

! HOW TO BUILD (MSYS2/MINGW32/MINGW64 shell)
1

cd ~/programming/win32-fortran/poisson2D

|
I
I rm —rf {*.mod,*.res,~/programming/modules/*} && \

I windres poisson2D.rc —O coff —o poisson2D.res && \

I gfortran —~O3 —Wall -mwindows —-J ~/programming/modules \
I ~/programming/basic—-modules/basic_mods.f90 \

I .Awin32.f90,win32boxes.f90,win32app.fo0} \

I poisson2D.f90 poisson2D.res —o poisson2D.out && \

I rm —rf {*mod,*.res,~/programming/modules/*}

|

In MINGW32/MINGW64, add '-static’ and:

poisson2D.out ==> poisson2D-mingw32/mingw64

DESCRIPTION
Boundary Value Problem for Poisson Equation.
We solve the Dirichlet problem for Poisson equation in two
dimension with overrelaxation of Gauss—Seidel method.
The equation is

Uxx+Uyy = =S(X,y)

the potential. =S(x,y) is the charge density.
| References
Press W.H., Numerical Recipes, C.U.P
Karlen D., Computational Physics, Carleton University
Koonin S.E., Computational Physics, Addison-Wesley

Remember that:

int(O,UINT_T) --> 0_UINT_T
int(0,WPARAM_T) ——> 0_WPARAM_T

!
|

!

!

|

!

!

!

!

!

!

!

!

I where Uxx (Uyy) is the 2nd partial derivative w.r.t. x (y) of U(X,y),
!

|

!

!

!

!

!

|

!

|

!

I int(O,LPARAM_T) ——> O0_LPARAM_T
!

I A new implementation of shade.kumac PAW macro. See
! http://paw.web.cern.ch/paw/allfags.html
module color_map

use win32 , only : COLORREF_T, RGB

implicit none

private

integer , parameter : NMXPT =20

integer , parameter , public : MAXCOLOURINDEX =255

integer , parameter , public @ MAXCOLOURS = MAXCOLOURINDEX+1
integer (COLORREF_T), public : crColors(0:MAXCOLOURINDEX)
integer :: npt, idx(NMXPT)

integer : r(NMXPT), g(NMXPT), b(NMXPT)

public :: set_color_map
contains

subroutine set_shade (idxi,ri,gi,bi)
integer , intent (in) idxi, ri, gi, bi
if (idxi <0) then
npt=0
return
end if
npt = npt+1
if (npt>NMXPT) then

poi

c:/msys64/home/angelo/programming/win32-fortran/poisson2D/

sson2D.f90

2/17
07/06/2015

write (*,%) 'Error: too many colours’
stop

endif

idx(

npt) = idxi

r(npt) =ri
g(npt) =gi
b(npt) = bi

end

sub

subroutine set_shade

routine shade ()

integer i, ii,11,i2,j, n, s, gs, bs, rl, g1, b1, r2, g2, b2

r

eal : scale

if (npt<2) then

write (*,*) ‘Error: at least two colours are needed’
stop

endif
do i=2, npt
j=i-1

il
i2
rl

= idx(j)
= idx(i)
=1()

g1 = g())
b1 = b(j)

r2

= (i)

92 = g(i)
b2 = b(i)

n

=i2-i1+1

doii=il,i2
scale = (ii-i1)/(n—1.0)
rs = int ((r2 - rl)*scale + rl)
gs= int ((g2 — gl)*scale + g1)
bs = int ((b2 - bl)*scale + bl)

crColors(ii) = RGB(rs,gs,bs)
enddo

enddo

end

sub

subroutine shade

routine set_color_map

lcrColors(0) = RGB(0,0,0) I BLACK
IcrColors(255) = RGB(255,255,255) | WHITE

The first call to set_shade() MUST be this INITIALIZATION

call set_shade (-1,0,0,0)

call set_shade (0, 0, 0,128)
call set_shade (40, 0, 0,255)
call set shade (100, 0,255,255)
call set_shade (120, 0,255,128)
call set_shade (160,255,255, 0)
call set_shade (255,128, 0, 0)
call shade ()

end
end m

subroutine set_color_map
odule color_map

module the_app

use
use
use
use
use
use

kind_consts , only : DP
color_map
AboutBox_class
XBox_class

XYBox_class
RadioBox_class

use win32 , only : BLACK_COLOR, BLACKNESS, COLORREF_T, BOOL_T, DWORD_T, &

FALSE_T, HBITMAP_T, HBRUSH_T, HDC_T, HINSTANCE_T, HWND_T, IDYES,
INT_T, LPARAM_T, LRESULT_T, MAX_FMT, MAX_LEN, NL, NUL, NULL_T,

TA_CENTER, TA_LEFT, TRUE_T, UINT_T, VK_ESCAPE, WHITE_COLOR, WM_CHAR,

&

WM_CLOSE, WM_COMMAND, WM_CREATE, WM_DESTROY, WM_SIZE, WORD_T, &

WPARAM_T, &

ask_confirmation, CreateCompatibleDC, CreateSolidBrush, &
DefWindowProc, DeleteDC, DeleteObject, DestroyWindow, error_msg,

GetDC, GetStockObject, lo_word, MessageBeep, PostMessage, &
PostQuitMessage, ReleaseDC, SelectObject, SetBkColor, SetTextAlign,
SetTextColor

use win32app , only : box_type, win32app_BitBIt, win32app_clearDC, &

win32app_CreateCompatibleBitmap, win32app_fillbox, win32app_setup,
win32app_textout, win32app_xmin, win32app_xmax, win32app_ymax
implicit none

private

&

poisson2D.f90
c:/msys64/home/angelo/programming/win32-fortran/poisson2D/

3/17
07/06/2015

integer (WORD_T), parameter , public : IDI_POISSON2D =1
integer (WORD_T), parameter , public : IDM_MAINMENU = 9000
integer (WORD_T), parameter : IDM_FILE_EXIT =9010
integer (WORD_T), parameter : |IDM_DATA_NDIV =9020
integer (WORD_T), parameter : IDM_DATA_MAXI =9021
integer (WORD_T), parameter : IDM_DATA_EPS =9022
integer (WORD_T), parameter : IDM_DATA_OMEGA =9023
integer (WORD_T), parameter : IDM_DATA_XBOUNDS =9024
integer (WORD_T), parameter : IDM_DATA_YBOUNDS =9025
integer (WORD_T), parameter : IDM_DATA_NSOUT =9026
integer (WORD_T), parameter : IDM_DATA_PHILIMITS =9027
integer (WORD_T), parameter : IDM_OPTIONS_CFGTYPE = 9030
integer (WORD_T), parameter : IDM_OPTIONS_FLDTYPE = 9031
integer (WORD_T), parameter : IDM_RUNAPP =9040
integer (WORD_T), parameter : IDM_HELP_DISCLAIMER = 9998
integer (WORD_T), parameter : IDM_HELP_ABOUT =9999

linteger(WORD_T), parameter, public :: IDC_STATIC = -1

integer (WORD_T), parameter : |IDD_DATA _NDIV =100
integer (INT_T), parameter : IDC_NDIV =101

integer (WORD_T), parameter : IDD_DATA_MAXI =200
integer (INT_T), parameter : IDC_MAXI =201

integer (WORD_T), parameter : IDD_DATA_EPS =300
integer (INT_T), parameter : IDC_EPS =301

integer (WORD_T), parameter : |IDD_DATA_OMEGA =400
integer (INT_T), parameter : IDC_OMEGA =401

integer (WORD_T), parameter : IDD_DATA XBOUNDS =500
integer (INT_T), parameter : IDC_ULEFT =501

integer (INT_T), parameter : IDC_URIGHT =502
integer (WORD_T), parameter : |IDD_DATA_YBOUNDS = 600
integer (INT_T), parameter : |IDC_UBOTTOM =601
integer (INT_T), parameter : IDC_UTOP =602

integer (WORD_T), parameter : IDD_DATA _NSOUT =700
integer (INT_T), parameter : IDC_NSOUT =701

integer (WORD_T), parameter : IDD_DATA_PHILIMITS =800
integer (INT_T), parameter : IDC_PHIMIN =801
integer (INT_T), parameter : IDC_PHIMAX =802
integer (WORD_T), parameter : IDD_OPTIONS_CFGTYPE =900
integer (INT_T), parameter : IDC_ONEBOX =901
integer (INT_T), parameter : IDC_TWOBOX =902
integer (INT_T), parameter : IDC_CONDENSER =903
integer (INT_T), parameter : IDC_THREECHARGES =904
integer (INT_T), parameter : IDC_CHARGEDLINE =905
integer (INT_T), parameter : ONE_BOX =1

integer (INT_T), parameter : TWO_BOX =2

integer (INT_T), parameter : CONDENSER =3

integer (INT_T), parameter : THREE_CHARGES =4
integer (INT_T), parameter : CHARGED_LINE =5

integer (WORD_T), parameter : IDD_OPTIONS FLDTYPE =950
integer (INT_T), parameter : IDC_POTENTIAL =951
integer (INT_T), parameter : |IDC_GRADIENT =952
integer (INT_T), parameter : POTENTIAL_FLD=1

integer (INT_T), parameter : GRADIENT_FLD =2

integer (WORD_T), parameter : IDD_DISCLAIMER =998
integer (WORD_T), parameter : IDD_ABOUT =999

I COMMON data
integer (HBITMAP_T):: hBitmap = NULL_T

logical :: run_flag = .true.

real (DP):: box_xmin, box_xmax, box_ymax

! Application data, strictly speaking...

logical :: converg = .false., not_converg = .true.

integer :: ndiv =100, max_iter = 100, count_iter = 0, nsout = 10,

cfg_type = ONE_BOX, fld_type = POTENTIAL_FLD

poisson2D.f90 4/17
c:/msys64/home/angelo/programming/win32—fortran/poisson2D/ 07/06/2015

real (DP):: eps=0.0001_DP, omega=1.8 DP

real (DP):: u_left=1.0_DP, u_right=0.0_DP, &
u_bottom = 0.0_DP, u_top = 0.0_DP, &
phi_min =0.0_DP, phi_max =1.0_DP

real (DP):: dphi=0.0_DP, h=0.0_DP, hq=0.0_DP, h2=0.0_DP, &
omegal = 0.0_DP, omega4 = 0.0_DP, &

energy = 0.0_DP, energy_old =0.0_DP

I Dynamic memory...

real (DP), target , allocatable aoouG)fGe)
real (DP), allocatable woos()

real (DP), pointer : phi(:,:) => null()

logical , allocatable Db

public :: paint_screen, WndProc
contains

subroutine grid_on ()
integer i ierr

allocate (u(0:ndiv,0:ndiv),stat=ierr)

if (ierr/=0) then
write (*,%) % EATAL ERROR ***
write (*,%) 'U: Allocation request denied’
stop

end if

allocate (s(0:ndiv,0:ndiv),stat=ierr)

if (ierr/=0) then
write (*,*) *** EATAL ERROR ***
write (*,*) 'S: Allocation request denied’
stop

end if

allocate (f(0:ndiv,0:ndiv),stat=ierr)

if (ierr/=0) then
write (*,*) % EATAL ERROR ***
write (*,%) 'F: Allocation request denied’
stop

end if

allocate (b(0:ndiv,0:ndiv),stat=ierr)

if (ierr/=0) then
write (*,*) *** EATAL ERROR ***
write (*,*) 'B: Allocation request denied’
stop

end if

I Now that all is allocated, we can associate the pointer
if (fld_type == POTENTIAL_FLD) then
phi=>u
else
phi => f
end if
end subroutine grid_on

subroutine grid_off ()
integer 1 ierr

if (allocated (b)) deallocate (b,stat=ierr)
if (ierr/=0) then
write (*,%) % EATAL ERROR ***
write (*,%) 'B: Deallocation request denied’
stop
end if

if (allocated (f)) deallocate (f,stat=ierr)
if (ierr/=0) then
write (*,%) *x EATAL ERROR ***
write (*,*) 'F: Deallocation request denied’
stop
end if

if (allocated (s)) deallocate (s,stat=ierr)
if (ierr/=0) then

write (*,*) " EATAL ERROR ***

write (*,%) 'S: Deallocation request denied’

poisson2D.f90

c:/msys64/home/angelo/programming/win32-fortran/poisson2D/

5/17
07/06/2015

stop
end if
if (allocated (u)) deallocate (u,stat=ierr)
it (ierr/=0) then
write (*,*) "+ EATAL ERROR ***
write (*,%) 'U: Deallocation request denied’
stop
end if
I Now that all is deallocated, we can deassociate the pointer
nullify — (phi)
end subroutine grid_off
subroutine fcn_one_box (x,y,u,s,b)
real (DP), intent (in):: X,y
real (DP), intent (out):: u,s
logical , intent (out):: b
real (DP): not_used_x, not_used_y
not_used_x = x
not_used_y =y
u=0.0_DP
s=0.0_DP
b= false.

end subroutine fcn_one_box

subroutine fcn_two_box (x,y,u,s,b)
real (DP), intent (in):: X, Y
real (DP), intent (out):: u, s
logical , intent (out):: b

I A box inside a box without charge. The inner box is

1(0.25,0.25) - (0.75,0.75), but the boundary conditions are assigned
' ONLY on its perimeter, NOT on its inner points!!!

! (We have a kind of square ring...)

integer & 0,i1,i2,],j1,]j2
il1= int (0.25_DP/h)
i2= int (0.75_DP/h)
j1=il
j2=1i2
i= int (x/h)
i= int (y/h)
s=0.0 DP
if (((==i1 or. i==i2) and. (1<=j and. j<=j2))
(==11 or. j==j2) and. (i1<=i and. i<=i2)))
u=1.0_DP
b= true.
else
u=0.0_DP
= false
end if

end subroutine fcn_two_box

subroutine fcn_condenser (x,y,u,s,b)
real (DP), intent (in):: X, Y
real (DP), intent (out):: u, s
logical , intent (out):: b

I A Condenser inside a box without charge
I The condenser plates are at 0.25 and 0.75

integer : i0,i1,i2,},j1,j2
i1= int (0.25_DP/h)
i2 = int (0.75_DP/h)
ji1=i1
j2=i2
i= int (x/h)
i= int (y/h)
s=0.0_DP
if ((i==i1) and. (j1<=j and. j<=j2)) then

u=1.0 DP

.or

. &
then

poisson2D.f90
c:/msys64/home/angelo/programming/win32-fortran/poisson2D/

6/17
07/06/2015

b= true.
else if ((i==i2) and. (l<=j and. j<=j2)) then
u=-1.0_DP
b= true.
else
u=0.0_DP
b= false.
end if
end subroutine fcn_condenser

function delta (x,hwhm)
real (DP): delta

real (DP), intent (in):: X, hwhm

real (DP), parameter : Pl=3.14159265358979323846 DP
delta = hwhm/(PI*(hwhm*hwhm-+x*x))
end function delta

function theta (x)
real (DP): theta
real (DP), intent (in):: X
if (x>0.0_DP) then
theta = 1.0_DP
else
theta = 0.0_DP
end if
end function theta

subroutine fcn_three_charges (x,y,u,s,b)

real (DP), intent (in):: X, Y

real (DP), intent (out):: u,s

logical , intent (out):: b

real (DP), parameter : HWHM =0.0005_DP

u=0.0_ DP

b= false.

s = 0.1_DP*(delta(x—0.25_DP,HWHM)*delta(y—0.25_DP,HWHM) &
+delta(x-0.75_DP,HWHM)*delta(y-0.25_DP,HWHM) &
—delta(x-0.5_DP,HWHM)*delta(y-0.75_DP,HWHM))

end subroutine fcn_three_charges

subroutine fcn_charged_line (x,y,u,s,b)
real (DP), intent (in):: X, Y
real (DP), intent (out):: u, s
logical , intent (out):: b
real (DP), parameter : HWHM =0.0005_DP
real (DP): not_used_y

not used y=y

u=0.0_DP

b= false.

s = delta(x-0.5_DP,HWHM)*(theta(x-0.25_DP)-theta(x-0.75_DP))
end subroutine fcn_charged_line

function get_grid_energy ()
real (DP): get_grid_energy
integer , save & i,]j
real (DP), save :: sumil, sum2, ff

! Koonin’s formula (6.7):
|

| E = 0.5*sum(i=1,N)Sum(j=1,N)[(u(i,j)-u(i-L1,)))**2+(u(i,j)-u(i,i-1))**2]
! —h*h*Sum(i=1,N-1)Sum(j=1,N-1)[S(i,j)*u(i.j)]
|

suml =0.0_DP
sum2 = 0.0_DP

do i =1, ndiv
do j =1, ndiv

! The (length of the) gradient -
ff= hypot (u(i.)-u(i=1.j),u(i.)-u(ij-1))

f(ij) = ff

! The total sum of the gradient squared

poisson2D.f90
c:/msys64/home/angelo/programming/win32-fortran/poisson2D/

7/17
07/06/2015

suml = sum1+ff*ff

1 On i == ndiv, j == ndiv we have s == 0: this means summing
Ifori=1,N-1,j=1,N-1
sum2 = sum2+s(i,j)*u(i,j)
end do
end do

I Completing the calculus of the field.

I We assume the continuity of the field
f(1:ndiv,0) = f(1:ndiv,1)
f(0,1:ndiv) = f(1,1:ndiv)
(0,0) = f(1,1)

1's(i,j) = hg*S(i*h,j*h)
get_grid_energy = 0.5_DP*suml1-sum2
end function get_grid_energy

subroutine setup_grid ()
real (DP): x,y
integer & 0,]

I lterations initialization
count_iter=0

! Grid initialization

I The method, as you can see, NEVER uses the values of density s(:,:) on
! boundaries! This is used as a trick in computing the energy: we

I set s(:,:) on boundary to ZERO.

1'b(i,j) == true if in x = i*h, y = j*h there is a boundary condition

|

! First the bottom and top side...
do i =0, ndiv

u(i,0) = u_bottom

u(i,ndiv) = u_top

s(i,0) = 0.0_DP

s(i,ndiv) = 0.0_DP

f(i,0) = 0.0_DP

f(i,ndiv) = 0.0_DP

b(i,0) = true.

b(i,ndiv) = true.
end do

I ...then the left and right side...
do j =0, ndiv

u(0,j) = u_left

u(ndiv,j) = u_right

s(0,j) =0.0_DP

s(ndiv,j) = 0.0_DP

f(0,j) =0.0_DP

f(ndiv,j) =0.0_DP

b(0,j) = true.

b(ndiv,j) = true.
end do

| ...then the inner nodes
do i=1, ndiv-1
X =i*h
do j =1, ndiv-1
y=j*h
select case (cfg_type)
case (ONE_BOX)
call fen_one_box (x,y,u(i,j),s(i,j),b(.}))
case (TWO_BOX)
call fen_two_box (x,y,u(i,j),s(i.j).b(i.j))
case (CONDENSER)
call fcn_condenser (x,y,u(i,j),s(i,j),b(i,j))
case (THREE_CHARGES)
call fcn_three_charges y,u(ig),s(,),b(,j)
case (CHARGED_LINE)
call fcn_charged_line .y, u(i.j),s(i.j).b(.j))

case default
call fen_one_box (x,y,u(i,j),s(i.j),b(.j)
end select

s(i,j) = s(i.j)*hq
f(i,j) = 0.0_DP

poisson2D.f90
c:/msys64/home/angelo/programming/win32-fortran/poisson2D/

8/17
07/06/2015

end do
end do

I Initialization of energy and convergence flags
energy = get_grid_energy()

converg = false.
not_converg = true.
end subroutine setup_grid

subroutine draw_colorbar (hdc)
integer (HDC_T), intent (in):: hdc
|

I'A simple colour bar scale
|

character (len=*), parameter 1 NAME_FLD(2) =[&
'Potential’ , &
'Gradient’]

integer , parameter : SCALE_PTS=5

integer (COLORREF_T), save : old_bk_color, old_text_color
integer (UINT_T), save :: old_align

integer (HBRUSH_T), save : hBrush

character (len=MAX_LEN), save :: buffer="

integer , save i i

real (DP), save : bar_width, delta_y, phi, delta_phi
type(box_type) , save : bar_box

integer , save : dummy

I The space on the right of the grid is in [1,box_xmax], the bar width is
11/15
bar_width = (box_xmax-1.0_DP)/15

'In X, the bar is in [1+7*bar_width,1+8*bar_width], i.e at position 8
I (7+1+7 = 15)

bar_box%x1 = 1.0_DP+7.0_DP*bar_width

bar_box%x2 = 1.0_DP+8.0_DP*bar_width

I'In'Y the bar is in [0,1] and composed of 0, 1,... MAXCOLOURINDEX
I filled slices
delta_y = (1.0_DP-0.0_DP) / MAXCOLOURS

bar_box%y2 = 0.0_DP
do i =0, MAXCOLOURINDEX
bar_box%y1 = bar_box%y?2
bar_box%y2 = bar_box%y?2+delta_y

hBrush = CreateSolidBrush(crColors(i))
dummy = int (SelectObject(hdc,hBrush),INT_T)

dummy = win32app_fillbox(hdc,bar_box,hBrush)

dummy = DeleteObject(hBrush)
end do

delta_phi = (phi_max—phi_min)/(SCALE_PTS-1)
delta_y = (1.0_DP-0.0_DP)/(SCALE_PTS-1)

old_bk_color = SetBkColor(hdc,BLACK_COLOR)
old_text_color = SetTextColor(hdc, WHITE_COLOR)
old_align = SetTextAlign(hdc, TA_LEFT)

phi = phi_min J
bar_box%x2 = bar_box%x2+0.2_DP*bar_width
bar_box%y2 = 0.0_DP+0.2_DP*bar_width

do i=1, SCALE_PTS

buffer = "
write (buffer, ’(f10.4)) phi
buffer = trim (adjustl (buffer))// 7 JINUL

dummy = win32app_textout(hdc,bar_box%x2,bar_box%y?2,buffer)

phi = phi+delta_phi
bar_box%y2 = bar_box%y?2+delta_y
end do

bar_box%x2 = bar_box%x2+0.8_DP*bar_width
bar_box%y2 = bar_box%y2-3*delta_y/2

buffer = "
write (buffer,*) NAME_FLD(fld_type)

poisson2D.f90
c:/msys64/home/angelo/programming/win32-fortran/poisson2D/

9/17
07/06/2015

buffer = trim (adjustl (buffer))// "7 JINUL
dummy = win32app_textout(hdc,bar_box%x2,bar_box%y2,buffer)

I Restore previous text colors...
dummy = SetTextAlign(hdc,old_align)
dummy = SetTextColor(hdc,old_text_color)
dummy = SetBkColor(hdc,old_bk_color)
end subroutine draw_colorbar

subroutine draw_grid (hdc)
integer (HDC_T), intent (in):: hdc
character (len=*), parameter :: FMT ='(a,i6,2(a,1pgl4.7),a,i6,a,1pgl4.7)
I We use SAVE just to save something at each call
I (draw_time() is called intensively, at each iteration)
integer (COLORREF_T), save :: old bk color, old_text color
integer (UINT_T), save : old_align
integer (HBRUSH_T), save :: hBrush
character (len=MAX_LEN), save : buffer="

type(box_type) , save @ box
integer , save : i, j,i_col

real (DP), save @ X,y

integer , save : dummy

old_bk_color = SetBkColor(hdc,BLACK_COLOR)
old_text_color = SetTextColor(hdc, WHITE_COLOR)
old_align = SetTextAlign(hdc,TA_CENTER)

x=0.5_DP
y =0.5_DP*(1.0_DP+box_ymax)
buffer = "
write (buffer,FMT) 'NDIV="",ndiv, ' OMEGA=' ,omega, ' EPS="’
" COUNT =" ,count_iter, T E=T .energy
buffer = trim (adjustl (buffer))// "' JINUL

dummy = win32app_textout(hdc,x,y,buffer)

I Restore previous text colors...
dummy = SetTextAlign(hdc,old_align)
dummy = SetTextColor(hdc,old_text_color)
dummy = SetBkColor(hdc,old_bk_color)

x =-h2
box%x2 = x
do i =0, ndiv
box%x1 = box%x2
X = x+h
box%x2 = x
y =-h2
box%y2 =y
do j =0, ndiv
box%y1 = box%y?2
y =y+h
box%y2 =y
i_col = int ((phi(i,j)—phi_min)/dphi)
if (i_col<0) then
i_col=0

else if (i_col > MAXCOLOURINDEX) then
i_col = MAXCOLOURINDEX
end if

hBrush = CreateSolidBrush(crColors(i_col))
dummy = int (SelectObject(hdc,hBrush),INT_T)

dummy = win32app_fillbox(hdc,box,hBrush)

dummy = DeleteObject(hBrush)

end do
end do
end subroutine draw_grid
subroutine painting_setup (hwnd)
integer (HWND_T), intent (in):: hwnd
logical , save : first= true.

integer (HDC_T):: hdc, hdcMem

,eps,

poisson2D.f90
c:/msys64/home/angelo/programming/win32-fortran/poisson2D/

10/17
07/06/2015

integer 1 dummy

it (first) then
call set _color_ map ()
dphi = (phi_max—phi_min)/MAXCOLOURS
h =1.0_DP/ndiv
hqg = h*h
h2 = 0.5_DP*h
omegal = 1.0_DP-omega
omega4 = 0.25_DP*omega
call setup_grid ()

first = false.
end if
if (hBitmap /= NULL_T) then
dummy = DeleteObject(hBitmap)
end if

hdc = GetDC(hwnd)

hdcMem = CreateCompatibleDC(hdc)

hBitmap = win32app_CreateCompatibleBitmap(hdc)
dummy = ReleaseDC(hWnd,hdc)

dummy = int (SelectObject(hdcMem,hBitmap),INT_T)

I Clear the off-screen DC (hdcMem) for the next drawing
dummy = win32app_clearDC(hdcMem,BLACKNESS)

I Draw (on the off-screen DC) the color scale
call draw_colorbar (hdcMem)

I Draw (on the off-screen DC) grid at current iteration
call draw_grid (hdcMem)

dummy = DeleteDC(hdcMem)
end subroutine painting_setup

function process_char (hWnd,wParam)
integer (BOOL_T):: process _char

integer (HWND_T), intent (in): hwnd
integer (WPARAM_T), intent (in) :: wParam
integer 1 dummy

select case (wParam)
case (VK_ESCAPE)
dummy = DestroyWindow(hWnd)

process_char = TRUE_T
return

case default
process_char = FALSE_T

return
end select
end function process_char
subroutine set_ndiv (hwnd)
integer (HWND_T), intent (in):: hwnd
character (len=MAX_FMT), parameter : FMT ='(f12.0)
type(XBox) : xb

real (DP): x
X = real (ndiv,DP)
call new_box (xb,hwWnd,IDD_DATA_NDIV,IDC_NDIV,FMT,Xx)
if (run(xb) > 0) then
X = get(xb)
if (x>0.0_DP) then
I Destroy the current grid...
call grid_off ()

I Get the new value
ndiv = int (x)

I Readjust some params

poisson2D.f90
c:/msys64/home/angelo/programming/win32-fortran/poisson2D/

11/17
07/06/2015

h =1.0_DP/ndiv
hg = h*h
h2 = 0.5_DP*h

! Create the new grid...
call grid_on ()

I'If you prefer to see something, uncomment the following...
Icall setup_grid()

else
call error_msg ('NDIV<=0!Ir /INL &
1 'Must be NDIV > 0... ’ /INUL)
end if
end if
end subroutine set_ndiv

subroutine set_maxi (hwnd)

integer (HWND_T), intent (in): hwnd
character (len=MAX_FMT), parameter : FMT ='(f12.0)
type(XBox) i xb

real (DP): X
X = real (max_iter,DP)

call new_box (xb,hWnd,IDD_DATA_MAXIIDC_MAXI,FMT,x)

it (run(xb) > 0) then
x = get(xb)
if (x>0.0_DP) then
max_iter = int (x)
else
call error_msg ('MAX_ ITER<=0!I /INL &
I 'Must be MAX_ITER >0... ’ /INUL)
end if
end if
end subroutine set_maxi

subroutine set_eps (hwWnd)

integer (HWND_T), intent (in):: hwWnd
character (len=MAX_FMT), parameter : FMT ='(1pgl2.5)
type(XBox) :: xb

real (DP): X
X = eps

call new_box (xb,hWnd,IDD_DATA EPS,IDC_EPS,FMT ,x)

if (run(xb) > 0) then
X = get(xb)
if (0.0_DP <x .and. x<1.0_DP) then
eps =X
else
call error_msg ('EPS notin (0,1)!" /INL &
1 'Mustbe 0 <EPS<1.. ’ /INUL)
end if
end if
end subroutine set_eps
subroutine set_omega (hwWnd)
integer (HWND_T), intent (in):: hwWnd
character (len=MAX_FMT), parameter : FMT ='(1pgl2.5)
type(XBox) : xb

real (DP): x
X = omega
call new_box (xb,hwnd,IDD_DATA_OMEGA,IDC_OMEGA,FMT x)
if (run(xb) > 0) then
X = get(xb)

if (0.0_DP <x .and. x<2.0_DP) then
omega = X

poisson2D.f90 12/17
c:/msys64/home/angelo/programming/win32—fortran/poisson2D/ 07/06/2015

! Readjust some params
omegal = 1.0_DP-omega
omega4 = 0.25_DP*omega

else

call error_msg ('OMEGA notin (0,2)!'" /INL &
1 'Must be 0 < OMEGA < 2... ’ /INUL)
end if
end if
end subroutine set_omega
subroutine set_xbounds (hWnd)
integer (HWND_T), intent (in):: hwnd
character (len=MAX_FMT), parameter : FMT ='(1pgl2.5)
type(XYBox) : xyb
call new_box (xyb,hwnd,IDD_DATA_XBOUNDS,IDC_ULEFT,IDC_URIGHT,FMT, &
u_left,u_right)
if (run(xyb) > 0) then

u_left = get_x(xyb)
u_right = get_y(xyb)
end if
end subroutine set_xbounds

subroutine set_ybounds (hWnd)

integer (HWND_T), intent (in): hwnd
character (len=MAX_FMT), parameter : FMT ='(1pgl2.5)
type(XYBox) : xyb

call new_box (xyb,hWnd,IDD_DATA_YBOUNDS,IDC_UBOTTOM,IDC_UTOP,FMT, &
u_bottom,u_top)

if (run(xyb) > 0) then
u_bottom = get_x(xyb)
u_top = get_y(xyb)
end if
end subroutine set_ybounds

subroutine set_nsout (hWnd)
integer (HWND_T), intent (in):: hwWnd
character (len=MAX_FMT), parameter : FMT ='(f12.0)
type(XBox) 1 xb
real (DP): X

X = real (nsout,DP)

call new_box (xb,hWnd,IDD_DATA NSOUT,IDC_NSOUT,FMT,x)

it (run(xb) > 0) then
X = get(xb)
if (x>0.0_DP) then
nsout = int (x)
else
call error_msg ('NSOUT <=0l /INL &
1 'Must be NSOUT >0... ’ /INUL)
end if
end if
end subroutine set_nsout

subroutine set_phi_limits (hWnd)

integer (HWND_T), intent (in):: hwWnd
character (len=MAX_FMT), parameter : FMT ='(1pgl2.5)
type(XYBox) : xyb
real (DP): x, vy
X = phi_min
y = phi_max

call new_box (xyb,hWnd,IDD_DATA_PHILIMITS,IDC_PHIMIN,IDC_PHIMAX,FMT,X,y)
if (run(xyb) > 0) then

X = get_x(xyb)
y = get_y(xyb)

poisson2D.f90
c:/msys64/home/angelo/programming/win32-fortran/poisson2D/

13/17
07/06/2015

if (x<y) then
phi_min = x
phi_max =y

I Readjust some params
dphi = (phi_max-phi_min)/MAXCOLOURS

else
call error_msg ('PHI_MIN >=PHI_MAX !lI’ /INL &
Ji 'Must be PHI_MIN < PHI_MAX... /INUL)
end if
end if
end subroutine set_phi_limits
subroutine set_cfgtype (hWnd)
integer (HWND_T), intent (in):: hwnd
integer , parameter : NUM_BUTTONS =5
character (len=*), parameter :: BUTTON_NAMES(NUM_BUTTONS) =[&
'&0One Box ' , &
‘&Two Box . &
‘&Condenser ' , &
'T&hree Charges’ , &
'Charged &Line’]
type(RadioBox) norb

call new_box (rb,hWnd,IDD_OPTIONS_CFGTYPE,IDC_ONEBOX,BUTTON_NAMES, &

NUM_BUTTONS,cfg_type)

if (run(rb) > 0) cfg_type = get_current_button(rb)

end subroutine set_cfgtype
subroutine set_fldtype (hWnd)
integer (HWND_T), intent (in):: hwnd
integer , parameter : NUM_BUTTONS =2
character (len=*), parameter :: BUTTON_NAMES(NUM_BUTTONS) =[&
‘&Potential’ , &
'‘&Gradient’]
type(RadioBox) o orb

call new_box (rb,hwWnd,IDD_OPTIONS_FLDTYPE,IDC_POTENTIAL,BUTTON_NAMES, &

NUM_BUTTONS,fld_type)

if (run(rb) > 0) then
fld_type = get_current_button(rb)

I Now we can re—associate the pointer

if (fid_type == POTENTIAL_FLD) then
phi=>u
else
phi=>f
end if
end if
end subroutine set_fldtype
subroutine disclaimer_dlg (hWnd)
integer (HWND_T), intent (in):: hwWnd
type(AboutBox) o ab
integer 1 dummy

call new_box (ab,hwnd,IDD_DISCLAIMER)
dummy = run(ab)
end subroutine disclaimer_dlg

subroutine about_dlg (hwWnd)
integer (HWND_T), intent (in):: hwWnd
type(AboutBox) o oab
integer 1 dummy
call new_box (ab,hwnd,IDD_ABOUT)
dummy = run(ab)

end subroutine about_dlg

function process_command (hWnd,wParam)
integer (BOOL_T):: process_command
integer (HWND_T), intent (in):: hwnd
integer (WPARAM_T), intent (in) : wParam
integer 1 dummy

run_flag = false.

selectcase (lo_word(int (wParam,DWORD_T)))

poisson2D.f90 14/17
c:/msys64/home/angelo/programming/win32—fortran/poisson2D/ 07/06/2015

case (IDM_FILE_EXIT)
dummy = MessageBeep(64)
if (ask_confirmation(hWnd, 'Sure you want to exit? ’ /INUL, &
'Exit?” /INUL) == IDYES) then
dummy = PostMessage(hWnd,WM_CLOSE,0_ WPARAM_T,0_LPARAM_T)
end if
process_command = TRUE_T
return

case (IDM_DATA_NDIV)
call set_ndiv (hwnd)
process_command = TRUE_T
return

case (IDM_DATA_MAXI)
call set_maxi (hwWnd)
process_command = TRUE_T
return

case (IDM_DATA_EPS)
call set_eps (hWnd)
process_command = TRUE_T
return

case (IDM_DATA_OMEGA)
call set_omega (hwnd)
process_command = TRUE_T
return

case (IDM_DATA_XBOUNDS)
call set xbounds (hWnd)
process_command = TRUE_T
return

case (IDM_DATA_YBOUNDS)
call set_ybounds (hWnd)
process_command = TRUE_T
return

case (IDM_DATA_NSOUT)
call set_nsout (hwnd)
process_command = TRUE_T
return

case (IDM_DATA_PHILIMITS)
call set_phi_limits (hwnd)
process_command = TRUE_T
return

case (IDM_OPTIONS_CFGTYPE)
call set_cfgtype (hwnd)
process_command = TRUE_T
return

case (IDM_OPTIONS_FLDTYPE)
call set fldtype (hWnd)
process_command = TRUE_T
return

case (IDM_RUNAPP)
run_flag = true.
call setup_grid ()
process_command = TRUE_T
return

case (IDM_HELP_DISCLAIMER)
call disclaimer_dlg (hwnd)
process_command = TRUE_T
return

case (IDM_HELP_ABOUT)
call about_dlg (hwnd)
process_command = TRUE_T
return

case default
process_command = FALSE_T
return

poisson2D.f90
c:/msys64/home/angelo/programming/win32-fortran/poisson2D/

15/17
07/06/2015

end select
end function process_command

function WndProc (hWnd,iMsg,wParam,IParam) bind (C)
IGCC$ ATTRIBUTES STDCALL :: WndProc
integer (LRESULT_T): WndProc

integer (HWND_T), value : hwWnd
integer (UINT_T), value : iMsg
integer (WPARAM_T), value : wParam
integer (LPARAM_T), value : [|Param
logical , save : first = .true.

integer :: dummy

select case (iMsg)
case (WM_CREATE)
! Creating the grid...
call grid_on ()

WndProc =0
return

case (WM_SIZE)

it (first) then
call win32app_setup (IParam,-0.7_DP,1.7_DP,-0.5_DP,1.5_DP)
first = false.
else
call win32app_setup (IParam)
end if

! Getting the box boundaries... each time, maybe, the mapping changed...
box_xmin = win32app_xmin()
box_xmax = win32app_xmax()
box_ymax = win32app_ymax()

I'...and initialize the painting
call painting_setup (hwnd)

WndProc =0
return

case (WM_CHAR)
if (process_char(hWnd,wParam) == TRUE_T) then
WndProc =0
return
end if
I ...else it continues with DefWindowProc

case (WM_COMMAND)
if (process_command(hWnd,wParam) == TRUE_T) then
WndProc =0
return
end if
I ...else it continues with DefWindowProc

case (WM_CLOSE)
dummy = DestroyWindow(hWnd)
WndProc =0
return

case (WM_DESTROY)

if (hBitmap /= NULL_T) then
dummy = DeleteObject(hBitmap)

end if

! Destroying the grid...
call grid_off ()

call PostQuitMessage (0)
I Commenting out the next two statements, it continues
' with DefWindowProc()
WndProc =0
return
end select

WndProc = DefWindowProc(hWnd,iMsg,wParam,IParam)
end function WndProc

poisson2D.f90
c:/msys64/home/angelo/programming/win32-fortran/poisson2D/

16/17
07/06/2015

subroutine update_grid ()
I We use SAVE just to save something at each call
! (update_ball_position() is called intensively, at each iteration)
integer , save I |,j

do i =1, ndiv-1
do j=1, ndiv-1
it (b(i,j) cycle
u(i,j) = omegal*u(i,) &
+omegad*(u(i+1,j)+u(i-1,j)+u(i,j+1)+u(i,j-1)+s(ij))
end do
end do
end subroutine update_grid

subroutine paint_screen (hWnd)
integer (HWND_T), intent (in) : hwnd
I We use SAVE just to save something at each call
! (paint_screen() is called intensively, at each iteration)
integer (HDC_T), save : hdc, hdcMem
integer , save : dummy

if (hBitmap /= NULL_T) then
hdc = GetDC(hwnd)
hdcMem = CreateCompatibleDC(hdc)
dummy = int (SelectObject(hdcMem,hBitmap),INT_T)

if ((mod(count_iter,nsout) == 0) .or. converg) then
I Transfer the off-screen DC to the screen
dummy = win32app_BitBlt(hdc,hdcMem)
end if

dummy = ReleaseDC(hWnd,hdc)

if (count_iter < max_iter .and. not_converg .and. run_flag) then
energy_old = energy I Save current energy
count_iter = count_iter+1 I Update iteration counter...
call update_grid () I'...then UPDATE the grid
energy = get_grid_energy() I Get the energy for the updated grid
I Set the convergence flags for the updated grid
not_converg = abs (energy-energy_old) > eps
converg = .not. not_converg
end if
it ((modcount_iter,nsout) == 0) .or. converg) then

I Clear the off-screen DC (hdcMem) for the next drawing
dummy = win32app_clearDC(hdcMem,BLACKNESS)

I Draw (on the off-screen DC) the color scale
call draw_colorbar (hdcMem)

! Draw (on the off-screen DC) grid at current iteration
call draw_grid (hdcMem)

end if
dummy = DeleteDC(hdcMem)
end if

end subroutine paint_screen
end module the_app
function WinMain (hinstance,hPrevinstance,|pCmdLine,nCmdShow) &

bind (C, name= 'WinMain’)
use, intrinsic :» iso_c_binding , only : C PTR C_CHARc_sizeof, c_funloc,

C_FUNPTRc_loc

use win32 , only : BLACK_BRUSH, CS_HREDRAW, CS_VREDRAW, CW_USEDEFAULT&

DWORD_T, HINSTANCE_T, HWND_T, INT_T, NUL, NULL_PTR_T, NULL_T, &
PM_REMOVE, WM_QUIT, WS_OVERLAPPEDWINDOW, UINT T, &
MSG_T, WNDCLASSEX_T, &

arrow_cursor, CreateWindowEXx, DispatchMessage, error_msg, Exit Process ,

GetStockObject, LoadCursor, Loadlcon, make_int_resource, &
make_int_resource_C_PTR, PeekMessage, RegisterClassEx, ShowWindow,
TranslateMessage, UpdateWindow

use the_app , only :IDI_POISSON2D, IDM_MAINMENU, &
paint_screen, WndProc

implicit none

IGCC$ ATTRIBUTES STDCALL :: WinMain

integer (INT_T) : WinMain

poisson2D.f90
c:/msys64/home/angelo/programming/win32-fortran/poisson2D/

17/17
07/06/2015

integer (HINSTANCE_T), value :: hinstance

integer (HINSTANCE_T), value : hPrevinstance

type(C_PTR) , value : IpCmdLine !LPSTR

integer (INT_T), value : nCmdShow

character (kind= C_CHARen=128), target : app_name= &
'Poisson2D’ /INUL

character (kind= C_CHARen=%*), parameter : WINDOW_CAPTION = &
'Poisson Equation in 2D’ /INUL

type(WNDCLASSEX_T) :: WndClass
integer (HWND_T): hwnd
type(MSG_T) : msg

integer : dummy

! To avoid some annoying warnings at compile time...

integer (HINSTANCE_T) :: not_used_hPrevinstance

type(C_PTR) : not_used_IpCmdLine
not_used_hPrevinstance = hPrevinstance
not_used_lpCmdLine = IpCmdLine

WndClass%cbSize = int (c_sizeof (Wndclass),UINT_T)
WndClass%style = ior (CS_HREDRAW,CS_VREDRAW)
WndClass%lpfnWndProc = c_funloc (WndProc)

WndClass%cbClsExtra = 0

WndClass%cbWndExtra = 0

WhndClass%hinstance = hinstance

WndClass%hlcon = Loadlcon(hinstance,make_int_resource(IDI_POISSON2D))
WndClass%hCursor = LoadCursor(NULL_T,arrow_cursor())
WhndClass%hbrBackground = GetStockObject(BLACK_BRUSH)
WndClass%lpszMenuName = make_int_resource_C_PTR(IDM_MAINMENU)
WndClass%lpszClassName = c_loc (app_name(1:1))

WndClass%hlconSm = Loadlcon(hinstance,make_int_resource(IDI_POISSON2D))

if (RegisterClassEx(WndClass) == 0) then
call error_msg (’'Window Registration Failure! ’ /INUL)
call ExitProcess (0_UINT_T)

WinMain =0
Ireturn

end if

hwnd = CreateWindowEx(0_DWORD_T, &
app_name, &
WINDOW_CAPTION, &
WS_OVERLAPPEDWINDOW, &
CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,&
NULL_T,NULL_T,hinstance,NULL_PTR_T)

if (hWnd ==NULL_T) then

call error_msg (’'Window Creation Failure! ’ /INUL)
call ExitProcess (0_UINT_T)

WinMain =0
Ireturn

end if

dummy = ShowWindow(hWnd,nCmdShow)
dummy = UpdateWindow(hWnd)

I See: Charles Petzold "Programming Windows", 5th ed., pag. 162
I ’'Random Rectangles’
do
if (PeekMessage(msg,NULL_T,0,0,PM_REMOVE) /= 0) then
if (msg%message == WM_QUIT) exit
dummy = TranslateMessage(msg)

dummy = int (DispatchMessage(msg),INT_T)
else
call paint_screen (hWnd)
end if
end do

call ExitProcess (int (msg%wParam,UINT_T))
WinMain =0
end function WinMain

poisson2D.rc
c:/msys64/home/angelo/programming/win32-fortran/poisson2D/

1/4
07/06/2015

1

/I (Partial) Fortran Interface to the Windows API Library

/I by Angelo Graziosi (firstname.lastnameATalice.it)

/I Copyright Angelo Graziosi

1

/I It is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of
/I MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
1

/I RC file for "poisson2D" app

/i

#define IDI_POISSON2D 1
IDI_POISSON2D ICON DISCARDABLE "../common_icons/smiling_sun.ico"

#define IDM_MAINMENU 9000
#define IDM_FILE_EXIT 9010
#define IDM_DATA_NDIV 9020
#define IDM_DATA_MAXI 9021
#define IDM_DATA_EPS 9022
#define IDM_DATA_OMEGA 9023
#define IDM_DATA_XBOUNDS 9024
#define IDM_DATA_YBOUNDS 9025
#define IDM_DATA_NSOUT 9026
#define IDM_DATA_PHILIMITS 9027
#define IDM_OPTIONS_CFGTYPE 9030
#define IDM_OPTIONS_FLDTYPE 9031
#define IDM_RUNAPP 9040
#define IDM_HELP_DISCLAIMER 9998
#define IDM_HELP_ABOUT 9999

IDM_MAINMENU MENU DISCARDABLE
BEGIN
POPUP "&File"
BEGIN
MENUITEM "E&xit...", IDM_FILE_EXIT
END

POPUP "&Data"
BEGIN
MENUITEM "Number of lattice &divisions...", IDM_DATA_NDIV
MENUITEM "Maximum number of &iterations...", IDM_DATA_MAXI
MENUITEM "&Precision for convergence...", IDM_DATA_EPS
MENUITEM "&Relaxation parameter...", IDM_DATA_ OMEGA
MENUITEM SEPARATOR
MENUITEM "&X-boundary conditions...", IDM_DATA_XBOUNDS
MENUITEM "&Y-boundary conditions...", IDM_DATA_YBOUNDS
MENUITEM SEPARATOR
MENUITEM "lIteration steps for &output...", IDM_DATA_NSOUT
MENUITEM "Color &scale limits...", IDM_DATA_ PHILIMITS
END

POPUP "&Options"
BEGIN
MENUITEM "&Problem solving...", IDM_OPTIONS_CFGTYPE
MENUITEM "Plotting &field...", IDM_OPTIONS_FLDTYPE
END

POPUP "&Run Application"
BEGIN

MENUITEM "R&un”, IDM_RUNAPP
END

POPUP "&Help"
BEGIN
MENUITEM "&Disclaimer...", IDM_HELP_DISCLAIMER
MENUITEM "&About...", IDM_HELP_ABOUT

END
END
#include <windows.h>
#define IDC_STATIC -1
#define IDC_CTEXT "The Dirichlet problem for Poisson equation in 2D."

#define IDD_DATA_NDIV 100

poisson2D.rc
c:/msys64/home/angelo/programming/win32-fortran/poisson2D/

214
07/06/2015

#define IDC_NDIV 101

IDD_DATA_NDIV DIALOG DISCARDABLE 0, 0, 284, 77
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Number of lattice divisions"
FONT 8, "MS Sans Serif"
BEGIN
DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
CTEXT IDC_CTEXT, IDC_STATIC, 7, 7,153, 18
GROUPBOX "Number of lattice &divisions", IDC_STATIC, 13, 30, 186, 34
EDITTEXT IDC_NDIV, 35, 43, 60, 14, ES_ AUTOHSCROLL
LTEXT ";-)", IDC_STATIC, 97, 45, 20, 8
END

#define IDD_DATA_MAXI 200
#define IDC_MAXI 201

IDD_DATA_MAXI DIALOG DISCARDABLE 0, 0, 284, 77

STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU

CAPTION "Maximum number of iterations"

FONT 8, "MS Sans Serif"

BEGIN
DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
CTEXT IDC_CTEXT, IDC_STATIC, 7, 7,153, 18
GROUPBOX "Maximum number of &iterations",

IDC_STATIC, 13, 30, 186, 34

EDITTEXT IDC_MAXI, 35, 43, 60, 14, ES_AUTOHSCROLL
LTEXT ";=)", IDC_STATIC, 97, 45, 20, 8

END

#define IDD_DATA_EPS 300
#define IDC_EPS 301

IDD_DATA_EPS DIALOG DISCARDABLE 0, 0, 284, 77
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Precision for convergence”
FONT 8, "MS Sans Serif"
BEGIN
DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
CTEXT IDC_CTEXT, IDC_STATIC, 7, 7, 153, 18
GROUPBOX "&Precision for convergence", IDC_STATIC, 13, 30, 186, 34
EDITTEXT IDC_EPS, 35, 43, 60, 14, ES_AUTOHSCROLL
LTEXT ";-)", IDC_STATIC, 97, 45, 20, 8
END

#define IDD_DATA_OMEGA 400
#define IDC_OMEGA 401

IDD_DATA_OMEGA DIALOG DISCARDABLE 0, 0, 284, 77
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Relaxation parameter"
FONT 8, "MS Sans Serif"
BEGIN
DEFPUSHBUTTON "OK", IDOK, 227, 7,50, 14
PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
CTEXT IDC_CTEXT, IDC_STATIC, 7, 7, 153, 18
GROUPBOX "&Relaxation parameter”, IDC_STATIC, 13, 30, 186, 34
EDITTEXT IDC_OMEGA, 35, 43, 60, 14, ES_AUTOHSCROLL
LTEXT ";-)", IDC_STATIC, 97, 45, 20, 8
END

#define IDD_DATA_XBOUNDS 500
#define IDC_ULEFT 501
#define IDC_URIGHT 502

IDD_DATA_XBOUNDS DIALOG DISCARDABLE 0, 0, 284, 97
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "X-boundary conditions"
FONT 8, "MS Sans Serif"
BEGIN
DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
CTEXT IDC_CTEXT, IDC_STATIC, 7, 7, 153, 18
GROUPBOX "&X-boundary conditions", IDC_STATIC, 13, 30, 186, 54
LTEXT "U(&L) : ", IDC_STATIC, 35, 45, 30, 8

poisson2D.rc
c:/msys64/home/angelo/programming/win32-fortran/poisson2D/

3/4
07/06/2015

EDITTEXT IDC_ULEFT, 85, 43, 60, 14, ES_AUTOHSCROLL

LTEXT ";-)", IDC_STATIC, 147, 45, 20, 8
LTEXT "U(&R) : ", IDC_STATIC, 35, 65, 30, 8
EDITTEXT IDC_URIGHT, 85, 63, 60, 14, ES_AUTOHSCROLL
LTEXT ";-) ", IDC_STATIC, 147, 65, 20, 8
END

#define IDD_DATA_YBOUNDS 600
#define IDC_UBOTTOM 601
#define IDC_UTOP 602

IDD_DATA_YBOUNDS DIALOG DISCARDABLE 0, 0, 284, 97
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Y-boundary conditions"
FONT 8, "MS Sans Serif"
BEGIN
DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14

CTEXT IDC_CTEXT, IDC_STATIC, 7,7, 153, 18
GROUPBOX "&Y-boundary conditions", IDC_STATIC, 13, 30, 186, 54
LTEXT "U(&B) : ", IDC_STATIC, 35, 45, 30, 8
EDITTEXT IDC_UBOTTOM, 85, 43, 60, 14, ES_AUTOHSCROLL
LTEXT ";-)", IDC_STATIC, 147, 45, 20, 8
LTEXT "U(&T) : ", IDC_STATIC, 35, 65, 30, 8
EDITTEXT IDC_UTORP, 85, 63, 60, 14, ES_AUTOHSCROLL
LTEXT ";-)", IDC_STATIC, 147, 65, 20, 8
END

#define IDD_DATA_NSOUT 700
#define IDC_NSOUT 701

IDD_DATA_NSOUT DIALOG DISCARDABLE 0, 0, 284, 77
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "lteration steps for output”
FONT 8, "MS Sans Serif"
BEGIN
DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14

CTEXT IDC_CTEXT, IDC_STATIC, 7, 7, 153, 18
GROUPBOX "lteration steps for &output", IDC_STATIC, 13, 30, 186, 34
EDITTEXT IDC_NSOUT, 35, 43, 60, 14, ES_AUTOHSCROLL
LTEXT ";-)", IDC_STATIC, 97, 45, 20, 8
END
#define IDD_DATA_PHILIMITS 800
#define IDC_PHIMIN 801
#define IDC_PHIMAX 802

IDD_DATA_PHILIMITS DIALOG DISCARDABLE 0, 0, 284, 97
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Color scale limits"
FONT 8, "MS Sans Serif"
BEGIN
DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14

CTEXT IDC_CTEXT, IDC_STATIC, 7, 7, 153, 18
GROUPBOX "Color &scale limits", IDC_STATIC, 13, 30, 186, 54
LTEXT "M&IN : ", IDC_STATIC, 35, 45, 30, 8
EDITTEXT IDC_PHIMIN, 85, 43, 60, 14, ES_AUTOHSCROLL
LTEXT ";-)", IDC_STATIC, 147, 45, 20, 8
LTEXT "M&AX : ", IDC_STATIC, 35, 65, 30, 8
EDITTEXT IDC_PHIMAX, 85, 63, 60, 14, ES_AUTOHSCROLL
LTEXT ";-)", IDC_STATIC, 147, 65, 20, 8

END

#define IDD_OPTIONS_CFGTYPE 900

#define IDC_ONEBOX 901

#define IDC_TWOBOX 902

#define IDC_CONDENSER 903
#define IDC_THREECHARGES 904
#define IDC_CHARGEDLINE 905

IDD_OPTIONS_CFGTYPE DIALOG DISCARDABLE 0, 0, 284, 157
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Problem solving"
FONT 8, "MS Sans Serif"
BEGIN
DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14

poisson2D.rc
c:/msys64/home/angelo/programming/win32-fortran/poisson2D/

4/4
07/06/2015

PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14

CTEXT IDC_CTEXT, IDC_STATIC, 7, 7, 153, 18

GROUPBOX "&Problem solving”, IDC_STATIC, 13, 30, 186, 114

RADIOBUTTON "&One Box", IDC_ONEBOX, 35, 45, 60, 8

RADIOBUTTON "&Two Box", IDC_TWOBOX, 35, 65, 60, 8

RADIOBUTTON “"&Condenser", IDC_CONDENSER, 35, 85, 60, 8

RADIOBUTTON "T&hree Charges", IDC_THREECHARGES, 35, 105, 60, 8

RADIOBUTTON "Charged &Line", IDC_CHARGEDLINE, 35, 125, 60, 8
END

#define IDD_OPTIONS_FLDTYPE 950
#define IDC_POTENTIAL 951
#define IDC_GRADIENT 952

IDD_OPTIONS_FLDTYPE DIALOG DISCARDABLE 0, 0, 284, 97

STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU

CAPTION "Plotting field"

FONT 8, "MS Sans Serif"

BEGIN
DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
CTEXT IDC_CTEXT, IDC_STATIC, 7, 7, 153, 18
GROUPBOX "Plotting &field", IDC_STATIC, 13, 30, 186, 54
RADIOBUTTON "&Potential", IDC_POTENTIAL, 35, 45, 60, 8
RADIOBUTTON "&Gradient", IDC_GRADIENT, 35, 65, 60, 8

END

#define IDD_DISCLAIMER 998

IDD_DISCLAIMER DIALOG DISCARDABLE 0, 0, 319, 66
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Disclaimer Box"
FONT 8, "MS Sans Serif"
BEGIN
DEFPUSHBUTTON "OK", IDOK, 254, 18, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 254, 35, 50, 14
GROUPBOX "Disclaimer...", IDC_STATIC, 7, 7, 305, 52
CTEXT "It is distributed in the hope that it will be useful \n"
"but WITHOUT ANY WARRANTY; without even the implied "
"warranty ofin"

"MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.",

IDC_STATIC, 16, 18, 224, 33
END

#define IDD_ABOUT 999

IDD_ABOUT DIALOG DISCARDABLE 0, 0, 239, 66
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "About Box"
FONT 8, "MS Sans Serif"
BEGIN
DEFPUSHBUTTON "OK", IDOK, 174, 18, 50, 14
PUSHBUTTON "Cancel", IDCANCEL, 174, 35, 50, 14
GROUPBOX "About this program...", IDC_STATIC, 7, 7, 225, 52
CTEXT "A Solution for Poisson equation.\n\n"
"by (C) Angelo Graziosi",
IDC_STATIC, 16, 18, 144, 33
END

