
Win32−Fortran.text
c:/msys64/home/angelo/programming/win32−fortran/

1/1
07/06/2015

W I N 3 2 − F O R T R A N
=============================

by Angelo Graziosi

I N T R O D U C T I O N
=======================

A basic question for a fortranner is: How to create Fortran
applications with GUI interface? More advanced Fortran GUI programs
could be created with GTK−Fortran library
(https://github.com/jerryd/gtk−fortran), i.e. using the
interoperability between C and Fortran, which comes with the Fortran
2003 standard.

Following that example, we have created modules which partially
interface BGI (Borland Graphics Interface). They have been described
elsewhere on this WEB site.

On Windows we can have Fortran GUI programs using an interface to
Windows itself. This is what we present in the following: partial
interface to Windows which allow for creating simple Windows
applications in Fortran.

Rudimentary modules which implement this are contained in win32.f90,
win32boxes.f90 and win32app.f90 source files. The first contains the
interface itself, the second tries to recover an old idea we
implemented creating a dialog C++ library with the old Borland C++ 2.0
compiler (around 1991). The third, tries to do things in World
Coordinate System.

A few examples of these applications are attached below. As always,
details in the comments.

A special thanks goes to T. Burnus, F−X. Coudert and J. Blomqvist for
their valuable suggestions.

−−
This document has been created using EMACS (and some "friends"
tools like ps2pdf, pdftk etc..).

win32.f90
c:/msys64/home/angelo/programming/win32−fortran/

1/15
07/06/2015

!
! (Partial) Fortran Interface to the Windows API Library
! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi
!
! It is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
!
!
! DESCRIPTION
! This is the ’win32’ module.
! Just to start with Windows Fortran Applications...
!
! An idea from: http://home.comcast.net/~kmbtib/Fortran_stuff/HelloWin2.f90
!
! NOTE
! For Microsoft, the type "long" is always (in Windows 32 and 64 systems)
! a 32 bit integer.
! For GNU/Linux it is a 32/64 bit integer for systems 32/64 rispectively.
! So we have to adopt: C_LONG −−> C_INT, being C_INT a 32 bit integer
! in any case.
!
! See the thread: http://gcc.gnu.org/ml/fortran/2013−07/msg00087.html
! See also: http://cygwin.com/cygwin−ug−net/programming.html#gcc−64
!
! BTW
! The usage of iany() (Fortran 2008) need of GCC >= 4.7
!
! Notice that:
!
! int(0,UINT_T) −−> 0_UINT_T
! int(0,WPARAM_T) −−> 0_WPARAM_T
! int(0,LPARAM_T) −−> 0_LPARAM_T
! ...
!

module win32
 use , intrinsic :: iso_c_binding , only : C_CHAR, c_f_pointer, C_FUNPTR, C_INT, &
 C_INT8_T , C_INTPTR_T, C_LONG, C_NEW_LINE, C_NULL_CHAR, C_NULL_PTR, &
 C_PTR, C_SHORT
 implicit none
 private

 ! Common useful constants
 integer , parameter , public :: MAX_LEN = 256
 integer , parameter , public :: MAX_FMT = 12

 ! =================
 ! WIN32 ALIASES
 ! =================

 ! Using directly C_INT to define DWORD_T and LONG_T maybe misleading,
 ! so we adopt the Tobias tips
 ! (http://gcc.gnu.org/ml/fortran/2013−07/msg00090.html).
 !
 integer , parameter :: C_MS_LONG = C_INT

 integer , parameter , public :: BYTE_T = C_INT8_T
 integer , parameter , public :: DWORD_T = C_MS_LONG
 integer , parameter , public :: HANDLE_T = C_INTPTR_T
 integer , parameter , public :: INT_T = C_INT
 integer , parameter , public :: INT_PTR_T = C_INTPTR_T
 integer , parameter , public :: LONG_T = C_MS_LONG
 integer , parameter , public :: LONG_PTR_T = C_INTPTR_T
 integer , parameter , public :: SHORT_T = C_SHORT
 integer , parameter , public :: UINT_PTR_T = C_INTPTR_T
 integer , parameter , public :: WORD_T = C_SHORT

 integer , parameter , public :: ATOM_T = WORD_T
 integer , parameter , public :: BOOL_T = INT_T
 integer , parameter , public :: COLORREF_T = DWORD_T
 integer , parameter , public :: HBITMAP_T = HANDLE_T
 integer , parameter , public :: HBRUSH_T = HANDLE_T
 integer , parameter , public :: HCURSOR_T = HANDLE_T
 integer , parameter , public :: HDC_T = HANDLE_T
 integer , parameter , public :: HGDIOBJ_T = HANDLE_T
 integer , parameter , public :: HICON_T = HANDLE_T

win32.f90
c:/msys64/home/angelo/programming/win32−fortran/

2/15
07/06/2015

 integer , parameter , public :: HINSTANCE_T = HANDLE_T
 integer , parameter , public :: HMENU_T = HANDLE_T
 integer , parameter , public :: HMODULE_T = HINSTANCE_T
 integer , parameter , public :: HMONITOR_T = HANDLE_T
 integer , parameter , public :: HPEN_T = HANDLE_T
 integer , parameter , public :: HWND_T = HANDLE_T
 integer , parameter , public :: LPARAM_T = LONG_PTR_T
 integer , parameter , public :: LRESULT_T = LONG_PTR_T
 integer , parameter , public :: UINT_T = INT_T
 integer , parameter , public :: WPARAM_T = UINT_PTR_T

 ! ===============
 ! WIN32 TYPES
 ! ===============

 type , public , bind (C) :: WNDCLASSEX_T
 integer (UINT_T) :: cbSize
 integer (UINT_T) :: style
 type(C_FUNPTR) :: lpfnWndProc ! WNDPROC
 integer (INT_T) :: cbClsExtra
 integer (INT_T) :: cbWndExtra
 integer (HINSTANCE_T) :: hInstance
 integer (HICON_T) :: hIcon
 integer (HCURSOR_T) :: hCursor
 integer (HBRUSH_T) :: hbrBackground
 type(C_PTR) :: lpszMenuName ! LPCTSTR
 type(C_PTR) :: lpszClassName ! LPCTSTR
 integer (HICON_T) :: hIconSm
 end type WNDCLASSEX_T

 type , public , bind (C) :: POINT_T
 integer (LONG_T) :: x
 integer (LONG_T) :: y
 end type POINT_T

 type , public , bind (C) :: MSG_T
 integer (HWND_T) :: hWnd
 integer (UINT_T) :: message
 integer (WPARAM_T) :: wParam
 integer (LPARAM_T) :: lParam
 integer (DWORD_T) :: time
 type(POINT_T) :: pt
 end type MSG_T

 type , public , bind (C) :: RECT_T
 integer (LONG_T) :: left
 integer (LONG_T) :: top
 integer (LONG_T) :: right
 integer (LONG_T) :: bottom
 end type RECT_T

 type , public , bind (C) :: PAINTSTRUCT_T
 integer (HDC_T) :: hdc
 integer (BOOL_T) :: fErase
 type(RECT_T) :: rcPaint
 integer (BOOL_T) :: fRestore
 integer (BOOL_T) :: fIncUpdate
 integer (BYTE_T) :: rgbReserved(32)
 end type PAINTSTRUCT_T

 type , public , bind (C) :: MONITORINFO_T
 integer (DWORD_T) :: cbSize
 type(RECT_T) :: rcMonitor
 type(RECT_T) :: rcWork
 integer (DWORD_T) :: dwFlags
 end type MONITORINFO_T

 ! =================================
 ! WIN32 CONSTANTS AND VARIABLES
 ! =================================

 ! An alternative to the function null_p()
 character (C_CHAR), pointer , public :: NULL_LPSTR(:) => null()

 type(RECT_T) , pointer , public :: NULL_RECT_T => null()

 integer (HANDLE_T), parameter , public :: NULL_T = 0
 integer (BOOL_T), parameter , public :: FALSE_T = 0

win32.f90
c:/msys64/home/angelo/programming/win32−fortran/

3/15
07/06/2015

 integer (BOOL_T), parameter , public :: TRUE_T = 1

 type(C_PTR) , parameter , public :: NULL_PTR_T = C_NULL_PTR

 ! C string constants alaises using the ASCII name.
 character (C_CHAR), parameter , public :: NUL = C_NULL_CHAR
 character (C_CHAR), parameter , public :: NL = C_NEW_LINE

 ! COLORREF (Z’00BBGGRR’) constants
 integer (COLORREF_T), parameter , public :: BLACK_COLOR = 0 ! Z’00000000’
 integer (COLORREF_T), parameter , public :: CYAN_COLOR = 16776960 ! Z’00FFFF00’
 integer (COLORREF_T), parameter , public :: YELLOW_COLOR = 65535 ! Z’0000FFFF’
 integer (COLORREF_T), parameter , public :: WHITE_COLOR = 16777215 ! Z’00FFFFFF’

 ! Device−specific information index (/usr/include/w32api/wingdi.h)
 integer (INT_T), parameter , public :: ASPECTX = 40
 integer (INT_T), parameter , public :: ASPECTY = 42
 integer (INT_T), parameter , public :: ASPECTXY = 44

 ! Window default position and/or dimension.
 ! The C/C++ definition is ((int)0x80000000), i.e. (int)2147483648.
 ! Given the range of int (4 bytes) is [−2147483648,2147483647], 2147483648
 ! means −2147483648. The right way to obtain this is as follows:
 ! One cannot use CW_USEDEFAULT = −2147483648, because it would use an
 ! unary minus operator on the integer constant (+)2147483648, which
 ! does not exist! (the maximum is 2147483647!)
 ! See also this explanation
 ! http://gcc.gnu.org/ml/fortran/2013−12/msg00083.html,
 ! and the relative thread, for a similar question.
 integer (INT_T), parameter , public :: CW_USEDEFAULT = −2147483647−1

 ! Class styles (/usr/include/w32api/winuser.h)
 integer (UINT_T), parameter , public :: CS_VREDRAW = 1 ! Z’00000001’
 integer (UINT_T), parameter , public :: CS_HREDRAW = 2 ! Z’00000002’
 integer (UINT_T), parameter , public :: CS_SAVEBITS = 2048 ! Z’00000800’

 ! DrawText formats (/usr/include/w32api/winuser.h)
 integer (UINT_T), parameter , public :: DT_CENTER = 1
 integer (UINT_T), parameter , public :: DT_VCENTER = 4
 integer (UINT_T), parameter , public :: DT_SINGLELINE = 32

 ! Hatch style of the brush (/usr/include/w32api/wingdi.h)
 integer (INT_T), parameter , public :: HS_DIAGCROSS = 5

 ! IDC_* definitions for make_int_resource() (/usr/include/w32api/winuser.h)
 integer (WORD_T), parameter , public :: IDC_ARROW = 32512
 integer (WORD_T), parameter , public :: IDC_CROSS = 32515
 integer (WORD_T), parameter , public :: IDC_HAND = 32649
 integer (WORD_T), parameter , public :: IDC_WAIT = 32514

 ! IDI_* definitions for make_int_resource() (/usr/include/w32api/winuser.h)
 integer (WORD_T), parameter , public :: IDI_APPLICATION = 32512
 integer (WORD_T), parameter , public :: IDI_ASTERISK = 32516
 integer (WORD_T), parameter , public :: IDI_ERROR = 32513
 integer (WORD_T), parameter , public :: IDI_EXCLAMATION = 32515
 integer (WORD_T), parameter , public :: IDI_HAND = 32513
 integer (WORD_T), parameter , public :: IDI_INFORMATION = 32516
 integer (WORD_T), parameter , public :: IDI_QUESTION = 32514
 integer (WORD_T), parameter , public :: IDI_WARNING = 32515
 integer (WORD_T), parameter , public :: IDI_WINLOGO = 32517

 ! MessageBox() buttons and return values (/usr/include/w32api/winuser.h)
 integer (UINT_T), parameter , public :: MB_ICONASTERISK = 64 ! Z’00000040’
 integer (UINT_T), parameter , public :: MB_ICONHAND = 16 ! Z’00000010’
 integer (UINT_T), parameter , public :: MB_ICONERROR = MB_ICONHAND
 integer (UINT_T), parameter , public :: MB_ICONEXCLAMATION = 48 ! Z’00000030’
 integer (UINT_T), parameter , public :: MB_ICONINFORMATION = MB_ICONASTERISK
 integer (UINT_T), parameter , public :: MB_ICONQUESTION = 32 ! Z’00000020’
 integer (UINT_T), parameter , public :: MB_OK = 0 ! Z’00000000’
 integer (UINT_T), parameter , public :: MB_YESNO = 4 ! Z’00000004’
 integer (UINT_T), parameter , public :: MB_YESNOCANCEL = 3 ! Z’00000003’
 !
 integer (INT_T), parameter , public :: IDCANCEL = 2
 integer (INT_T), parameter , public :: IDOK = 1
 integer (INT_T), parameter , public :: IDYES = 6

 ! Specifies how messages are to be handled (/usr/include/w32api/winuser.h)
 integer (UINT_T), parameter , public :: PM_NOREMOVE = 0 ! Z’00000000’

win32.f90
c:/msys64/home/angelo/programming/win32−fortran/

4/15
07/06/2015

 integer (UINT_T), parameter , public :: PM_REMOVE = 1 ! Z’00000001’
 integer (UINT_T), parameter , public :: PM_NOYIELD = 2 ! Z’00000002’

 ! Pen styles (/usr/include/w32api/wingdi.h)
 integer (INT_T), parameter , public :: PS_SOLID = 0
 integer (INT_T), parameter , public :: PS_DASH = 1
 integer (INT_T), parameter , public :: PS_DOT = 2
 integer (INT_T), parameter , public :: PS_DASHDOT = 3
 integer (INT_T), parameter , public :: PS_DASHDOTDOT = 4
 integer (INT_T), parameter , public :: PS_NULL = 5
 integer (INT_T), parameter , public :: PS_INSIDEFRAME = 6
 integer (INT_T), parameter , public :: PS_USERSTYLE = 7
 integer (INT_T), parameter , public :: PS_ALTERNATE = 8

 ! Background modes (/usr/include/w32api/wingdi.h)
 integer (INT_T), parameter , public :: OPAQUE = 1
 integer (INT_T), parameter , public :: TRANSPARENT = 1

 ! Foreground mix modes (/usr/include/w32api/wingdi.h)
 integer (INT_T), parameter , public :: R2_BLACK = 1
 integer (INT_T), parameter , public :: R2_NOTMERGEPEN = 2
 integer (INT_T), parameter , public :: R2_MASKNOTPEN = 3
 integer (INT_T), parameter , public :: R2_NOTCOPYPEN = 4
 integer (INT_T), parameter , public :: R2_MASKPENNOT = 5
 integer (INT_T), parameter , public :: R2_NOT = 6
 integer (INT_T), parameter , public :: R2_XORPEN = 7
 integer (INT_T), parameter , public :: R2_NOTMASKPEN = 8
 integer (INT_T), parameter , public :: R2_MASKPEN = 9
 integer (INT_T), parameter , public :: R2_NOTXORPEN = 10
 integer (INT_T), parameter , public :: R2_NOP = 11
 integer (INT_T), parameter , public :: R2_MERGENOTPEN = 12
 integer (INT_T), parameter , public :: R2_COPYPEN = 13
 integer (INT_T), parameter , public :: R2_MERGEPENNOT= 14
 integer (INT_T), parameter , public :: R2_MERGEPEN = 15
 integer (INT_T), parameter , public :: R2_WHITE = 16
 integer (INT_T), parameter , public :: R2_LAST = 16

 ! Raster−operation codes (/usr/include/w32api/wingdi.h)
 integer (DWORD_T), parameter , public :: BLACKNESS = 66 ! Z’00000042’
 integer (DWORD_T), parameter , public :: SRCCOPY = 13369376 ! Z’00CC0020’
 integer (DWORD_T), parameter , public :: WHITENESS = 16711778 ! Z’00FF0062’

 ! Flags for playing the sound (/usr/include/w32api/mmsystem.h)
 integer (DWORD_T), parameter , public :: SND_ALIAS = 65536 ! Z’00010000’

 ! Show window constants (/usr/include/w32api/winuser.h)
 integer (INT_T), parameter , public :: SW_SHOWDEFAULT = 10
 integer (INT_T), parameter , public :: SW_SHOW = 5

 ! Text alignments (/usr/include/w32api/wingdi.h)
 integer (INT_T), parameter , public :: TA_NOUPDATECP = 0
 integer (INT_T), parameter , public :: TA_UPDATECP = 1
 integer (INT_T), parameter , public :: TA_LEFT = 0
 integer (INT_T), parameter , public :: TA_RIGHT = 2
 integer (INT_T), parameter , public :: TA_CENTER = 6
 integer (INT_T), parameter , public :: TA_TOP = 0
 integer (INT_T), parameter , public :: TA_BOTTOM = 8
 integer (INT_T), parameter , public :: TA_BASELINE = 24
 integer (INT_T), parameter , public :: TA_RTLREADING = 256
 integer (INT_T), parameter , public :: TA_MASK = &
 (TA_BASELINE+TA_CENTER+TA_UPDATECP+TA_RTLREADING)
 integer (INT_T), parameter , public :: VTA_BASELINE = TA_BASELINE
 integer (INT_T), parameter , public :: VTA_LEFT = TA_BOTTOM
 integer (INT_T), parameter , public :: VTA_RIGHT = TA_TOP
 integer (INT_T), parameter , public :: VTA_CENTER = TA_CENTER
 integer (INT_T), parameter , public :: VTA_BOTTOM = TA_RIGHT
 integer (INT_T), parameter , public :: VTA_TOP = TA_LEFT

 ! Stock objects brushes (/usr/include/w32api/wingdi.h)
 integer (INT_T), parameter , public :: BLACK_BRUSH = 4
 integer (INT_T), parameter , public :: DC_BRUSH = 18
 integer (INT_T), parameter , public :: DKGRAY_BRUSH = 3
 integer (INT_T), parameter , public :: GRAY_BRUSH = 2
 integer (INT_T), parameter , public :: HOLLOW_BRUSH = 5
 integer (INT_T), parameter , public :: LTGRAY_BRUSH = 1
 integer (INT_T), parameter , public :: NULL_BRUSH = 5
 integer (INT_T), parameter , public :: OBJ_BRUSH = 2
 integer (INT_T), parameter , public :: WHITE_BRUSH = 0

win32.f90
c:/msys64/home/angelo/programming/win32−fortran/

5/15
07/06/2015

 ! Virtual key codes (/usr/include/w32api/winuser.h)
 integer (INT_T), parameter , public :: VK_ESCAPE = 27 ! Z’0000001B’

 ! Windows messages (/usr/include/w32api/winuser.h)
 integer (UINT_T), parameter , public :: WM_LBUTTONDOWN = 513 ! Z’00000201’
 integer (UINT_T), parameter , public :: WM_CHAR = 258 ! Z’00000102’
 integer (UINT_T), parameter , public :: WM_CLOSE = 16 ! Z’00000010’
 integer (UINT_T), parameter , public :: WM_COMMAND = 273 ! Z’00000111’
 integer (UINT_T), parameter , public :: WM_CREATE = 1 ! Z’00000001’
 integer (UINT_T), parameter , public :: WM_DESTROY = 2 ! Z’00000002’
 integer (UINT_T), parameter , public :: WM_ERASEBKGND = 20 ! Z’00000014’
 integer (UINT_T), parameter , public :: WM_INITDIALOG = 272 ! Z’00000110’
 integer (UINT_T), parameter , public :: WM_PAINT = 15 ! Z’0000000F’
 integer (UINT_T), parameter , public :: WM_PRINTCLIENT = 792 ! Z’00000318’
 integer (UINT_T), parameter , public :: WM_QUIT = 18 ! Z’00000012’
 integer (UINT_T), parameter , public :: WM_SIZE = 5 ! Z’00000005’
 integer (UINT_T), parameter , public :: WM_TIMER = 275 ! Z’00000113’

 ! Windows styles (/usr/include/w32api/winuser.h)
 integer (DWORD_T), parameter , public :: WS_CAPTION = 12582912 ! Z’00C00000’
 integer (DWORD_T), parameter , public :: &
 WS_CLIPCHILDREN = 33554432 ! Z’02000000’
 integer (DWORD_T), parameter , public :: &
 WS_CLIPSIBLINGS = 67108864 ! Z’04000000’
 integer (DWORD_T), parameter , public :: WS_MAXIMIZEBOX = 65536 ! Z’00010000’
 integer (DWORD_T), parameter , public :: WS_MINIMIZEBOX = 131072 ! Z’00020000’
 integer (DWORD_T), parameter , public :: WS_SYSMENU = 524288 ! Z’00080000’
 integer (DWORD_T), parameter , public :: WS_THICKFRAME = 262144 ! Z’00040000’
 integer (DWORD_T), parameter , public :: WS_OVERLAPPED = 0 ! Z’00000000’
 integer (DWORD_T), parameter , public :: WS_OVERLAPPEDWINDOW = &
 iany ([WS_OVERLAPPED, WS_CAPTION, WS_SYSMENU, WS_THICKFRAME, &
 WS_MINIMIZEBOX, WS_MAXIMIZEBOX]) ! 13565952

 ! Windows styles extended (/usr/include/w32api/winuser.h)
 integer (DWORD_T), parameter , public :: WS_EX_CLIENTEDGE = 512 ! Z’00000200’

 ! ===================
 ! WIN32 INTERFACE
 ! ===================

 interface

 function BeginPaint (hWnd,lpPaint) bind (C, name= ’BeginPaint’)
 import :: HDC_T, HWND_T, PAINTSTRUCT_T
 !GCC$ ATTRIBUTES STDCALL :: BeginPaint
 integer (HDC_T) :: BeginPaint
 integer (HWND_T), value :: hWnd
 type(PAINTSTRUCT_T) , intent (out) :: lpPaint
 end function BeginPaint

 function BitBlt (hdcDest,nXDest,nYDest,nWidth,nHeight,hdcSrc, &
 nXSrc,nYSrc,dwRop) bind (C, name= ’BitBlt’)
 import :: BOOL_T, DWORD_T, HDC_T, INT_T
 !GCC$ ATTRIBUTES STDCALL :: BitBlt
 integer (BOOL_T) :: BitBlt
 integer (HDC_T), value :: hdcDest
 integer (INT_T), value :: nXDest
 integer (INT_T), value :: nYDest
 integer (INT_T), value :: nWidth
 integer (INT_T), value :: nHeight
 integer (HDC_T), value :: hdcSrc
 integer (INT_T), value :: nXSrc
 integer (INT_T), value :: nYSrc
 integer (DWORD_T), value :: dwRop
 end function BitBlt

 function CheckRadioButton (hDlg,nIDFirstButton,nIDLastButton, &
 nIDCheckButton) bind (C, name= ’CheckRadioButton’)
 import :: BOOL_T, HWND_T, INT_T
 !GCC$ ATTRIBUTES STDCALL :: CheckRadioButton
 integer (BOOL_T) :: CheckRadioButton
 integer (HWND_T), value :: hDlg
 integer (INT_T), value :: nIDFirstButton
 integer (INT_T), value :: nIDLastButton
 integer (INT_T), value :: nIDCheckButton
 end function CheckRadioButton

win32.f90
c:/msys64/home/angelo/programming/win32−fortran/

6/15
07/06/2015

 function CreateCompatibleBitmap (hdc,nWidth,nHeight) &
 bind (C, name= ’CreateCompatibleBitmap’)
 import :: HBITMAP_T, HDC_T, INT_T
 !GCC$ ATTRIBUTES STDCALL :: CreateCompatibleBitmap
 integer (HBITMAP_T) :: CreateCompatibleBitmap
 integer (HDC_T), value :: hdc
 integer (INT_T), value :: nWidth
 integer (INT_T), value :: nHeight
 end function CreateCompatibleBitmap

 function CreateCompatibleDC (hdc) bind (C, name= ’CreateCompatibleDC’)
 import :: HDC_T
 !GCC$ ATTRIBUTES STDCALL :: CreateCompatibleDC
 integer (HDC_T) :: CreateCompatibleDC
 integer (HDC_T), value :: hdc
 end function CreateCompatibleDC

 function CreatePen (fnPenStyle,nWidth,crColor) bind (C, name= ’CreatePen’)
 import :: COLORREF_T, HPEN_T, INT_T
 !GCC$ ATTRIBUTES STDCALL :: CreatePen
 integer (HPEN_T) :: CreatePen
 integer (INT_T), value :: fnPenStyle
 integer (INT_T), value :: nWidth
 integer (COLORREF_T), value :: crColor
 end function CreatePen

 function CreateSolidBrush (crColor) bind (C, name= ’CreateSolidBrush’)
 import :: COLORREF_T, HBRUSH_T
 !GCC$ ATTRIBUTES STDCALL :: CreateSolidBrush
 integer (HBRUSH_T) :: CreateSolidBrush
 integer (COLORREF_T), value :: crColor
 end function CreateSolidBrush

 function CreateHatchBrush (fnStyle,clrref) bind (C, name= ’CreateHatchBrush’)
 import :: COLORREF_T, HBRUSH_T, INT_T
 !GCC$ ATTRIBUTES STDCALL :: CreateHatchBrush
 integer (HBRUSH_T) :: CreateHatchBrush
 integer (INT_T), value :: fnStyle
 integer (COLORREF_T), value :: clrref
 end function CreateHatchBrush

 function CreateWindowEx (dwExStyle,lpClassName,lpWindowName,dwStyle, &
 x,y,nWidth,nHeight, &
 hWndParent,hMenu,hInstance,lpParam) bind (C, name= ’CreateWindowExA’)
 import :: C_CHAR, C_PTR, DWORD_T, HINSTANCE_T, HMENU_T, HWND_T, INT_T
 !GCC$ ATTRIBUTES STDCALL :: CreateWindowEx
 integer (HWND_T) :: CreateWindowEx
 integer (DWORD_T), value :: dwExStyle
 character (C_CHAR), intent (in) :: lpClassName(*) ! LPCTSTR
 character (C_CHAR), intent (in) :: lpWindowName(*) ! LPCTSTR
 integer (DWORD_T), value :: dwStyle
 integer (INT_T), value :: x
 integer (INT_T), value :: y
 integer (INT_T), value :: nWidth
 integer (INT_T), value :: nHeight
 integer (HWND_T), value :: hWndParent
 integer (HMENU_T), value :: hMenu
 integer (HINSTANCE_T), value :: hInstance
 type(C_PTR) , value :: lpParam
 end function CreateWindowEx

 function DeleteDC (hdc) bind (C, name= ’DeleteDC’)
 import :: BOOL_T, HDC_T
 !GCC$ ATTRIBUTES STDCALL :: DeleteDC
 integer (BOOL_T) :: DeleteDC
 integer (HDC_T), value :: hdc
 end function DeleteDC

 function DeleteObject (hObject) bind (C, name= ’DeleteObject’)
 import :: BOOL_T, HGDIOBJ_T
 !GCC$ ATTRIBUTES STDCALL :: DeleteObject
 integer (BOOL_T) :: DeleteObject
 integer (HGDIOBJ_T), value :: hObject
 end function DeleteObject

 function DestroyWindow (hWnd) bind (C, name= ’DestroyWindow’)
 import :: BOOL_T, HWND_T
 !GCC$ ATTRIBUTES STDCALL :: DestroyWindow

win32.f90
c:/msys64/home/angelo/programming/win32−fortran/

7/15
07/06/2015

 integer (BOOL_T) :: DestroyWindow
 integer (HWND_T), value :: hWnd
 end function DestroyWindow

 function DefWindowProc (hWnd,Msg,wParam,lParam) &
 bind (C, name= ’DefWindowProcA’)
 import :: HWND_T, LPARAM_T, LRESULT_T, UINT_T, WPARAM_T
 !GCC$ ATTRIBUTES STDCALL :: DefWindowProc
 integer (LRESULT_T) :: DefWindowProc
 integer (HWND_T), value :: hWnd
 integer (UINT_T), value :: Msg
 integer (WPARAM_T), value :: wParam
 integer (LPARAM_T), value :: lParam
 end function DefWindowProc

 function DialogBoxParam (hInstance,lpTemplate,hWndParent,lpDialogFunc, &
 dwInitParam) bind (C, name= ’DialogBoxParamA’)
 import :: C_CHAR, C_FUNPTR, HINSTANCE_T, HWND_T, INT_PTR_T, LPARAM_T
 !GCC$ ATTRIBUTES STDCALL :: DialogBoxParam
 integer (INT_PTR_T) :: DialogBoxParam
 integer (HINSTANCE_T), value :: hInstance
 character (C_CHAR), intent (in) :: lpTemplate(*) ! LPCTSTR
 !type(C_PTR), value :: lpTemplate ! LPCTSTR
 integer (HWND_T), value :: hWndParent
 type(C_FUNPTR) , value :: lpDialogFunc ! DLGPROC
 integer (LPARAM_T), value :: dwInitParam
 end function DialogBoxParam

 function DispatchMessage (lpMsg) bind (C, name= ’DispatchMessageA’)
 import :: LRESULT_T, MSG_T
 !GCC$ ATTRIBUTES STDCALL :: DispatchMessage
 integer (LRESULT_T) :: DispatchMessage
 type(MSG_T) , intent (in) :: lpMsg
 end function DispatchMessage

 function DrawText (hdc,lpString,nCount,lpRect,uFormat) &
 bind (C, name= ’DrawTextA’)
 import :: C_CHAR, HDC_T, INT_T, RECT_T, UINT_T
 !GCC$ ATTRIBUTES STDCALL :: DrawText
 integer (INT_T) :: DrawText
 integer (HDC_T), value :: hdc
 character (C_CHAR), intent (inout) :: lpString(*) ! LPCTSTR
 integer (INT_T), value :: nCount
 type(RECT_T) , intent (inout) :: lpRect
 integer (UINT_T), value :: uFormat
 end function DrawText

 function Ellipse (hdc,nLeftRect,nTopRect,nRightRect,nBottomRect) &
 bind (C, name= ’Ellipse’)
 import :: BOOL_T, HDC_T, INT_T
 !GCC$ ATTRIBUTES STDCALL :: Ellipse
 integer (BOOL_T) :: Ellipse
 integer (HDC_T), value :: hdc
 integer (INT_T), value :: nLeftRect
 integer (INT_T), value :: nTopRect
 integer (INT_T), value :: nRightRect
 integer (INT_T), value :: nBottomRect
 end function Ellipse

 function EndDialog (hWnd,nResult) bind (C, name= ’EndDialog’)
 import :: BOOL_T, HWND_T, INT_PTR_T
 !GCC$ ATTRIBUTES STDCALL :: EndDialog
 integer (BOOL_T) :: EndDialog
 integer (HWND_T), value :: hWnd
 integer (INT_PTR_T), value :: nResult
 end function EndDialog

 function EndPaint (hWnd,lpPaint) bind (C, name= ’EndPaint’)
 import :: BOOL_T, HWND_T, PAINTSTRUCT_T
 !GCC$ ATTRIBUTES STDCALL :: EndPaint
 integer (BOOL_T) :: EndPaint
 integer (HWND_T), value :: hWnd
 type(PAINTSTRUCT_T) , intent (in) :: lpPaint
 end function EndPaint

 subroutine ExitProcess (uExitCode) bind (C, name= ’ExitProcess’)
 import :: UINT_T
 !GCC$ ATTRIBUTES STDCALL :: ExitProcess

win32.f90
c:/msys64/home/angelo/programming/win32−fortran/

8/15
07/06/2015

 integer (UINT_T), value :: uExitCode
 end subroutine ExitProcess

 function FillRect (hdc,lprc,hbr) bind (C, name= ’FillRect’)
 import :: HBRUSH_T, HDC_T, INT_T, RECT_T
 !GCC$ ATTRIBUTES STDCALL :: FillRect
 integer (INT_T) :: FillRect
 integer (HDC_T), value :: hdc
 type(RECT_T) , intent (in) :: lprc
 integer (HBRUSH_T), value :: hbr
 end function FillRect

 function GetBkColor (hdc) bind (C, name= ’GetBkColor’)
 import :: COLORREF_T, HDC_T
 !GCC$ ATTRIBUTES STDCALL :: GetBkColor
 integer (COLORREF_T) :: GetBkColor
 integer (HDC_T), value :: hdc
 end function GetBkColor

 function GetClientRect (hWnd,lpRect) bind (C, name= ’GetClientRect’)
 import :: BOOL_T, HWND_T, RECT_T
 !GCC$ ATTRIBUTES STDCALL :: GetClientRect
 integer (BOOL_T) :: GetClientRect
 integer (HWND_T), value :: hWnd
 type(RECT_T) , intent (out) :: lpRect
 end function GetClientRect

 function GetCommandLine () bind (C, name= ’GetCommandLineA’)
 import :: C_PTR
 !GCC$ ATTRIBUTES STDCALL :: GetCommandLine
 type(C_PTR) :: GetCommandLine ! LPCTSTR
 end function GetCommandLine

 function GetDC(hWnd) bind (C, name= ’GetDC’)
 import :: HDC_T, HWND_T
 !GCC$ ATTRIBUTES STDCALL :: GetDC
 integer (HDC_T) :: GetDC
 integer (HWND_T), value :: hWnd
 end function GetDC

 function GetDCBrushColor (hdc) bind (C, name= ’GetDCBrushColor’)
 import :: COLORREF_T, HDC_T
 !GCC$ ATTRIBUTES STDCALL :: GetDCBrushColor
 integer (COLORREF_T) :: GetDCBrushColor
 integer (HDC_T), value :: hdc
 end function GetDCBrushColor

 function GetDeviceCaps (hdc,nIndex) bind (C, name= ’GetDeviceCaps’)
 import :: HDC_T, INT_T
 !GCC$ ATTRIBUTES STDCALL :: GetDeviceCaps
 integer (INT_T) :: GetDeviceCaps
 integer (HDC_T), value :: hdc
 integer (INT_T), value :: nIndex
 end function GetDeviceCaps

 function GetDlgItemText (hDlg,nIDDlgItem,lpString,nMaxCount) &
 bind (C, name= ’GetDlgItemTextA’)
 import :: C_CHAR, HWND_T, INT_T, UINT_T
 !GCC$ ATTRIBUTES STDCALL :: GetDlgItemText
 integer (UINT_T) :: GetDlgItemText
 integer (HWND_T), value :: hDlg
 integer (INT_T), value :: nIDDlgItem
 character (C_CHAR), intent (out) :: lpString(*) ! LPTSTR
 ! This works too... but it is more complicated :−(
 ! Notice that the C string pointer is of type value:
 ! it is the content to which it points that is an ’output’
 !
 !type(C_PTR), value :: lpString
 integer (INT_T), value :: nMaxCount
 end function GetDlgItemText

 function GetKeyState (nVirtKey) bind (C, name= ’GetKeyState’)
 import :: INT_T, SHORT_T
 !GCC$ ATTRIBUTES STDCALL :: GetKeyState
 integer (SHORT_T) :: GetKeyState
 integer (INT_T), value :: nVirtKey
 end function GetKeyState

win32.f90
c:/msys64/home/angelo/programming/win32−fortran/

9/15
07/06/2015

 function GetLastError () bind (C, name= ’GetLastError’)
 import :: DWORD_T
 !GCC$ ATTRIBUTES STDCALL :: GetLastError
 integer (DWORD_T) :: GetLastError
 end function GetLastError

 function GetMessage (lpMsg,hWnd,wMsgFilterMin,wMsgFilterMax) &
 bind (C, name= ’GetMessageA’)
 import :: BOOL_T, HWND_T, MSG_T, UINT_T
 !GCC$ ATTRIBUTES STDCALL :: GetMessage
 integer (BOOL_T) :: GetMessage
 type(MSG_T) , intent (out) :: lpMsg
 integer (HWND_T), value :: hWnd
 integer (UINT_T), value :: wMsgFilterMin
 integer (UINT_T), value :: wMsgFilterMax
 end function GetMessage

 function GetModuleHandle (lpModuleName) bind (C, name= ’GetModuleHandleA’)
 import :: C_CHAR, HMODULE_T
 !GCC$ ATTRIBUTES STDCALL :: GetModuleHandle
 integer (HMODULE_T) :: GetModuleHandle
 character (C_CHAR), intent (in) :: lpModuleName(*) ! LPCTSTR
 end function GetModuleHandle

 function GetMonitorInfo (hMonitor,lpmi) bind (C, name= ’GetMonitorInfoA’)
 import :: BOOL_T, HMONITOR_T, MONITORINFO_T
 !GCC$ ATTRIBUTES STDCALL :: GetMonitorInfo
 integer (BOOL_T) :: GetMonitorInfo
 integer (HMONITOR_T), value :: hMonitor
 type(MONITORINFO_T) , intent (out) :: lpmi
 end function GetMonitorInfo

 function GetStockObject (fnObject) bind (C, name= ’GetStockObject’)
 import :: HGDIOBJ_T, INT_T
 !GCC$ ATTRIBUTES STDCALL :: GetStockObject
 integer (HGDIOBJ_T) :: GetStockObject
 integer (INT_T), value :: fnObject
 end function GetStockObject

 function GetTextColor (hdc) bind (C, name= ’GetTextColor’)
 import :: COLORREF_T, HDC_T
 !GCC$ ATTRIBUTES STDCALL :: GetTextColor
 integer (COLORREF_T) :: GetTextColor
 integer (HDC_T), value :: hdc
 end function GetTextColor

 function InvalidateRect (hWnd,lpRect,bErase) bind (C, name= ’InvalidateRect’)
 import :: BOOL_T, HWND_T, RECT_T
 !GCC$ ATTRIBUTES STDCALL :: InvalidateRect
 integer (BOOL_T) :: InvalidateRect
 integer (HWND_T), value :: hWnd
 type(RECT_T) , intent (in) :: lpRect
 integer (BOOL_T), value :: bErase
 end function InvalidateRect

 function KillTimer (hWnd,uIDEvent) bind (C, name= ’KillTimer’)
 import :: BOOL_T, HWND_T, UINT_PTR_T
 !GCC$ ATTRIBUTES STDCALL :: KillTimer
 integer (BOOL_T) :: KillTimer
 integer (HWND_T), value :: hWnd
 integer (UINT_PTR_T), value :: uIDEvent
 end function KillTimer

 function LineTo (hdc,nXEnd,nYEnd) bind (C, name= ’LineTo’)
 import :: BOOL_T, HDC_T, INT_T
 !GCC$ ATTRIBUTES STDCALL :: LineTo
 integer (BOOL_T) :: LineTo
 integer (HDC_T), value :: hdc
 integer (INT_T), value :: nXEnd
 integer (INT_T), value :: nYEnd
 end function LineTo

 function LoadCursor (hInstance,lpCursorName) bind (C, name= ’LoadCursorA’)
 import :: C_CHAR, HCURSOR_T, HINSTANCE_T
 !GCC$ ATTRIBUTES STDCALL :: LoadCursor
 integer (HCURSOR_T) :: LoadCursor
 integer (HINSTANCE_T), value :: hInstance
 character (C_CHAR), intent (in) :: lpCursorName(*) ! LPCTSTR

win32.f90
c:/msys64/home/angelo/programming/win32−fortran/

10/15
07/06/2015

 end function LoadCursor

 function LoadIcon (hInstance,lpIconName) bind (C, name= ’LoadIconA’)
 import :: C_CHAR, HICON_T, HINSTANCE_T
 !GCC$ ATTRIBUTES STDCALL :: LoadIcon
 integer (HICON_T) :: LoadIcon
 integer (HINSTANCE_T), value :: hInstance
 character (C_CHAR), intent (in) :: lpIconName(*) ! LPCTSTR
 end function LoadIcon

 function MessageBeep (uType) bind (C, name= ’MessageBeep’)
 import :: BOOL_T, UINT_T
 !GCC$ ATTRIBUTES STDCALL :: MessageBeep
 integer (BOOL_T) :: MessageBeep
 integer (UINT_T), value :: uType
 end function MessageBeep

 function MessageBox (hWnd,lpText,lpCaption,uType) &
 bind (C, name= ’MessageBoxA’)
 import :: C_CHAR, HWND_T, INT_T, UINT_T
 !GCC$ ATTRIBUTES STDCALL :: MessageBox
 integer (INT_T) :: MessageBox
 integer (HWND_T), value :: hWnd
 character (C_CHAR), intent (in) :: lpText(*) ! LPCTSTR
 character (C_CHAR), intent (in) :: lpCaption(*) ! LPCTSTR
 integer (UINT_T), value :: uType
 end function MessageBox

 function MonitorFromPoint (pt,dwFlags) bind (C, name= ’MonitorFromPoint’)
 import :: DWORD_T, HMONITOR_T, POINT_T
 !GCC$ ATTRIBUTES STDCALL :: MonitorFromPoint
 integer (HMONITOR_T) :: MonitorFromPoint
 type(POINT_T) , value :: pt
 integer (DWORD_T), value :: dwFlags
 end function MonitorFromPoint

 function MoveToEx(hdc,X,Y,lpPoint) bind (C, name= ’MoveToEx’)
 import :: BOOL_T, HDC_T, INT_T, POINT_T
 !GCC$ ATTRIBUTES STDCALL :: MoveToEx
 integer (BOOL_T) :: MoveToEx
 integer (HDC_T), value :: hdc
 integer (INT_T), value :: X
 integer (INT_T), value :: Y
 type(POINT_T) , intent (out) :: lpPoint
 end function MoveToEx

 function PlaySound (pszSound,hmod,fdwSound) bind (C, name= ’PlaySoundA’)
 import :: BOOL_T, C_CHAR, DWORD_T, HMODULE_T
 !GCC$ ATTRIBUTES STDCALL :: PlaySound
 integer (BOOL_T) :: PlaySound
 character (C_CHAR), intent (in) :: pszSound(*) ! LPCTSTR
 integer (HMODULE_T), value :: hmod
 integer (DWORD_T), value :: fdwSound
 end function PlaySound

 function PeekMessage (lpMsg,hWnd,wMsgFilterMin,wMsgFilterMax,wRemoveMsg) &
 bind (C, name= ’PeekMessageA’)
 import :: BOOL_T, HWND_T, MSG_T, UINT_T
 !GCC$ ATTRIBUTES STDCALL :: PeekMessage
 integer (BOOL_T) :: PeekMessage
 type(MSG_T) , intent (out) :: lpMsg
 integer (HWND_T), value :: hWnd
 integer (UINT_T), value :: wMsgFilterMin
 integer (UINT_T), value :: wMsgFilterMax
 integer (UINT_T), value :: wRemoveMsg
 end function PeekMessage

 function Polygon (hdc,lpPoints,nCount) bind (C, name= ’Polygon’)
 import :: BOOL_T, HDC_T, INT_T, POINT_T
 !GCC$ ATTRIBUTES STDCALL :: Polygon
 integer (BOOL_T) :: Polygon
 integer (HDC_T), value :: hdc
 type(POINT_T) , intent (in) :: lpPoints(*)
 integer (INT_T), value :: nCount
 end function Polygon

 function PostMessage (hWnd,Msg,wParam,lParam) bind (C, name= ’PostMessageA’)
 import :: BOOL_T, HWND_T, LPARAM_T, UINT_T, WPARAM_T

win32.f90
c:/msys64/home/angelo/programming/win32−fortran/

11/15
07/06/2015

 !GCC$ ATTRIBUTES STDCALL :: PostMessage
 integer (BOOL_T) :: PostMessage
 integer (HWND_T), value :: hWnd
 integer (UINT_T), value :: Msg
 integer (WPARAM_T), value :: wParam
 integer (LPARAM_T), value :: lParam
 end function PostMessage

 subroutine PostQuitMessage (nExitCode) bind (C, name= ’PostQuitMessage’)
 import :: INT_T
 !GCC$ ATTRIBUTES STDCALL :: PostQuitMessage
 integer (INT_T), value :: nExitCode
 end subroutine PostQuitMessage

 function Rectangle (hdc,nLeftRect,nTopRect,nRightRect,nBottomRect) &
 bind (C, name= ’Rectangle’)
 import :: BOOL_T, HDC_T, INT_T
 !GCC$ ATTRIBUTES STDCALL :: Rectangle
 integer (BOOL_T) :: Rectangle
 integer (HDC_T), value :: hdc
 integer (INT_T), value :: nLeftRect
 integer (INT_T), value :: nTopRect
 integer (INT_T), value :: nRightRect
 integer (INT_T), value :: nBottomRect
 end function Rectangle

 function RegisterClassEx (WndClass) bind (C, name= ’RegisterClassExA’)
 import :: ATOM_T, WNDCLASSEX_T
 !GCC$ ATTRIBUTES STDCALL :: RegisterClassEx
 integer (ATOM_T) :: RegisterClassEx
 type(WNDCLASSEX_T), intent (in) :: WndClass
 end function RegisterClassEx

 function ReleaseDC (hWnd,hdc) bind (C, name= ’ReleaseDC’)
 import :: HDC_T, HWND_T, INT_T
 !GCC$ ATTRIBUTES STDCALL :: ReleaseDC
 integer (INT_T) :: ReleaseDC
 integer (HWND_T), value :: hWnd
 integer (HDC_T), value :: hdc
 end function ReleaseDC

 function SelectObject (hdc,hgdiobj) bind (C, name= ’SelectObject’)
 import :: HDC_T, HGDIOBJ_T
 !GCC$ ATTRIBUTES STDCALL :: SelectObject
 integer (HGDIOBJ_T) :: SelectObject
 integer (HDC_T), value :: hdc
 integer (HGDIOBJ_T), value :: hgdiobj
 end function SelectObject

 function SendMessage (hWnd,Msg,wParam,lParam) bind (C, name= ’SendMessageA’)
 import :: HWND_T, LPARAM_T, LRESULT_T, UINT_T, WPARAM_T
 !GCC$ ATTRIBUTES STDCALL :: SendMessage
 integer (LRESULT_T) :: SendMessage
 integer (HWND_T), value :: hWnd
 integer (UINT_T), value :: Msg
 integer (WPARAM_T), value :: wParam
 integer (LPARAM_T), value :: lParam
 end function SendMessage

 function SendNotifyMessage (hWnd,Msg,wParam,lParam) &
 bind (C, name= ’SendNotifyMessageA’)
 import :: HWND_T, LPARAM_T, LRESULT_T, UINT_T, WPARAM_T
 !GCC$ ATTRIBUTES STDCALL :: SendNotifyMessage
 integer (LRESULT_T) :: SendNotifyMessage
 integer (HWND_T), value :: hWnd
 integer (UINT_T), value :: Msg
 integer (WPARAM_T), value :: wParam
 integer (LPARAM_T), value :: lParam
 end function SendNotifyMessage

 function SetBkColor (hdc,crColor) bind (C, name= ’SetBkColor’)
 import :: COLORREF_T, HDC_T
 !GCC$ ATTRIBUTES STDCALL :: SetBkColor
 integer (COLORREF_T) :: SetBkColor
 integer (HDC_T), value :: hdc
 integer (COLORREF_T), value :: crColor
 end function SetBkColor

win32.f90
c:/msys64/home/angelo/programming/win32−fortran/

12/15
07/06/2015

 function SetBkMode (hdc,iBkMode) bind (C, name= ’SetBkMode’)
 import :: HDC_T, INT_T
 !GCC$ ATTRIBUTES STDCALL :: SetBkMode
 integer (INT_T) :: SetBkMode
 integer (HDC_T), value :: hdc
 integer (INT_T), value :: iBkMode
 end function SetBkMode

 function SetCursor (hCursor) bind (C, name= ’SetCursor’)
 import :: HCURSOR_T
 !GCC$ ATTRIBUTES STDCALL :: SetCursor
 integer (HCURSOR_T) :: SetCursor
 integer (HCURSOR_T), value :: hCursor
 end function SetCursor

 function SetDCBrushColor (hdc,crColor) bind (C, name= ’SetDCBrushColor’)
 import :: COLORREF_T, HDC_T
 !GCC$ ATTRIBUTES STDCALL :: SetDCBrushColor
 integer (COLORREF_T) :: SetDCBrushColor
 integer (HDC_T), value :: hdc
 integer (COLORREF_T), value :: crColor
 end function SetDCBrushColor

 function SetDlgItemText (hDlg,nIDDlgItem,lpString) &
 bind (C, name= ’SetDlgItemTextA’)
 import :: BOOL_T, C_CHAR, HWND_T, INT_T
 !GCC$ ATTRIBUTES STDCALL :: SetDlgItemText
 integer (BOOL_T) :: SetDlgItemText
 integer (HWND_T), value :: hDlg
 integer (INT_T), value :: nIDDlgItem
 character (C_CHAR), intent (in) :: lpString(*) ! LPCTSTR
 end function SetDlgItemText

 function SetPixel (hdc,X,Y,crColor) bind (C, name= ’SetPixel’)
 import :: COLORREF_T, HDC_T, INT_T
 !GCC$ ATTRIBUTES STDCALL :: SetPixel
 integer (COLORREF_T) :: SetPixel
 integer (HDC_T), value :: hdc
 integer (INT_T), value :: X
 integer (INT_T), value :: Y
 integer (COLORREF_T), value :: crColor
 end function SetPixel

 function SetROP2(hdc,fnDrawMode) bind (C, name= ’SetROP2’)
 import :: HDC_T, INT_T
 !GCC$ ATTRIBUTES STDCALL :: SetROP2
 integer (INT_T) :: SetROP2
 integer (HDC_T), value :: hdc
 integer (INT_T), value :: fnDrawMode
 end function SetROP2

 function SetTextAlign (hdc,fMode) bind (C, name= ’SetTextAlign’)
 import :: HDC_T, UINT_T
 !GCC$ ATTRIBUTES STDCALL :: SetTextAlign
 integer (UINT_T) :: SetTextAlign
 integer (HDC_T), value :: hdc
 integer (UINT_T), value :: fMode
 end function SetTextAlign

 function SetTextColor (hdc,crColor) bind (C, name= ’SetTextColor’)
 import :: COLORREF_T, HDC_T
 !GCC$ ATTRIBUTES STDCALL :: SetTextColor
 integer (COLORREF_T) :: SetTextColor
 integer (HDC_T), value :: hdc
 integer (COLORREF_T), value :: crColor
 end function SetTextColor

 function SetTimer (hWnd,nIDEvent,uElapse,lpTimerFunc) &
 bind (C,name= ’SetTimer’)
 import :: C_FUNPTR, HWND_T, UINT_T, UINT_PTR_T
 !GCC$ ATTRIBUTES STDCALL :: SetTimer
 integer (UINT_PTR_T) :: SetTimer
 integer (HWND_T), value :: hWnd
 integer (UINT_PTR_T), value :: nIDEvent
 integer (UINT_T), value :: uElapse
 type(C_FUNPTR) , value :: lpTimerFunc ! TIMERPROC
 end function SetTimer

win32.f90
c:/msys64/home/angelo/programming/win32−fortran/

13/15
07/06/2015

 function ShowWindow(hWnd,nCmdShow) bind (C, name= ’ShowWindow’)
 import :: BOOL_T, HWND_T, INT_T
 !GCC$ ATTRIBUTES STDCALL :: ShowWindow
 integer (BOOL_T) :: ShowWindow
 integer (HWND_T), value :: hWnd
 integer (INT_T), value :: nCmdShow
 end function ShowWindow

 function TextOut (hdc,nXStart,nYStart,lpString,cchString) &
 bind (C, name= ’TextOutA’)
 import :: BOOL_T, C_CHAR, HDC_T, INT_T
 !GCC$ ATTRIBUTES STDCALL :: TextOut
 integer (BOOL_T) :: TextOut
 integer (HDC_T), value :: hdc
 integer (INT_T), value :: nXStart
 integer (INT_T), value :: nYStart
 character (C_CHAR), intent (in) :: lpString(*) ! LPCTSTR
 integer (INT_T), value :: cchString
 end function TextOut

 function TranslateMessage (lpMsg) bind (C, name= ’TranslateMessage’)
 import :: BOOL_T, MSG_T
 !GCC$ ATTRIBUTES STDCALL :: TranslateMessage
 integer (BOOL_T) :: TranslateMessage
 type(MSG_T) , intent (in) :: lpMsg
 end function TranslateMessage

 function UpdateWindow (hWnd) bind (C, name= ’UpdateWindow’)
 import :: BOOL_T, HWND_T
 !GCC$ ATTRIBUTES STDCALL :: UpdateWindow
 integer (BOOL_T) :: UpdateWindow
 integer (HWND_T), value :: hWnd
 end function UpdateWindow
 end interface

 ! Interface routines
 public :: BeginPaint, BitBlt, CheckRadioButton, CreateCompatibleBitmap, &
 CreateCompatibleDC, CreatePen, CreateSolidBrush, CreateHatchBrush, &
 CreateWindowEx, DeleteDC, DeleteObject, DestroyWindow, DefWindowProc, &
 DialogBoxParam, DispatchMessage, DrawText, Ellipse, EndDialog, &
 EndPaint, Exit Process , FillRect, GetBkColor, GetClientRect, &
 GetCommandLine, GetDC, GetDCBrushColor, GetDeviceCaps, GetDlgItemText, &
 GetKeyState, GetLastError, GetMessage, GetModuleHandle, &
 GetMonitorInfo, GetStockObject, GetTextColor, InvalidateRect, &
 KillTimer, LineTo, LoadCursor, LoadIcon, MessageBeep, MessageBox, &
 MonitorFromPoint, MoveToEx, PlaySound, PeekMessage, Polygon, &
 PostMessage, PostQuitMessage, Rectangle, RegisterClassEx, ReleaseDC, &
 SelectObject, SendMessage, SendNotifyMessage, SetBkColor, SetBkMode, &
 SetCursor, SetDCBrushColor, SetDlgItemText, SetPixel, SetROP2, &
 SetTextAlign, SetTextColor, SetTimer, ShowWindow, TextOut, &
 TranslateMessage, UpdateWindow

 ! Auxiliary routines
 public :: arrow_cursor, cross_cursor, hand_cursor, wait_cursor, &
 application_icon, asterisk_icon, error_icon, exclamation_icon, &
 hand_icon, information_icon, question_icon, warning_icon, winlogo_icon, &
 ask_confirmation, dialog_box, hi_word, lo_word, make_int_resource, &
 make_int_resource_C_PTR, null_p, RGB, error_msg

contains

 function arrow_cursor () result (s)
 character (C_CHAR), pointer :: s(:)
 s => make_int_resource(IDC_ARROW)
 end function arrow_cursor

 function cross_cursor () result (s)
 character (C_CHAR), pointer :: s(:)
 s => make_int_resource(IDC_CROSS)
 end function cross_cursor

 function hand_cursor () result (s)
 character (C_CHAR), pointer :: s(:)
 s => make_int_resource(IDC_HAND)
 end function hand_cursor

 function wait_cursor () result (s)
 character (C_CHAR), pointer :: s(:)

win32.f90
c:/msys64/home/angelo/programming/win32−fortran/

14/15
07/06/2015

 s => make_int_resource(IDC_WAIT)
 end function wait_cursor

 function application_icon () result (s)
 character (C_CHAR), pointer :: s(:)
 s => make_int_resource(IDI_APPLICATION)
 end function application_icon

 function asterisk_icon () result (s)
 character (C_CHAR), pointer :: s(:)
 s => make_int_resource(IDI_ASTERISK)
 end function asterisk_icon

 function error_icon () result (s)
 character (C_CHAR), pointer :: s(:)
 s => make_int_resource(IDI_ERROR)
 end function error_icon

 function exclamation_icon () result (s)
 character (C_CHAR), pointer :: s(:)
 s => make_int_resource(IDI_EXCLAMATION)
 end function exclamation_icon

 function hand_icon () result (s)
 character (C_CHAR), pointer :: s(:)
 s => make_int_resource(IDI_HAND)
 end function hand_icon

 function information_icon () result (s)
 character (C_CHAR), pointer :: s(:)
 s => make_int_resource(IDI_INFORMATION)
 end function information_icon

 function question_icon () result (s)
 character (C_CHAR), pointer :: s(:)
 s => make_int_resource(IDI_QUESTION)
 end function question_icon

 function warning_icon () result (s)
 character (C_CHAR), pointer :: s(:)
 s => make_int_resource(IDI_WARNING)
 end function warning_icon

 function winlogo_icon () result (s)
 character (C_CHAR), pointer :: s(:)
 s => make_int_resource(IDI_WINLOGO)
 end function winlogo_icon

 function ask_confirmation (hWnd,lpText,lpCaption)
 integer (INT_T) :: ask_confirmation
 integer (HWND_T), intent (in) :: hWnd
 character (C_CHAR), intent (in) :: lpText(*) ! LPCTSTR
 character (C_CHAR), intent (in) :: lpCaption(*) ! LPCTSTR
 ask_confirmation = MessageBox(hWnd,lpText,lpCaption, &
 ior (MB_YESNO,MB_ICONQUESTION))
 end function ask_confirmation

 function dialog_box (hInstance,lpTemplate,hWndParent,lpDialogFunc)
 integer (INT_PTR_T) :: dialog_box
 integer (HINSTANCE_T), intent (in) :: hInstance
 character (C_CHAR), intent (in) :: lpTemplate(*) ! LPCTSTR
 !type(C_PTR), intent(in) :: lpTemplate ! LPCTSTR
 integer (HWND_T), intent (in) :: hWndParent
 type(C_FUNPTR) , intent (in) :: lpDialogFunc ! DLGPROC
 dialog_box = DialogBoxParam(hInstance,lpTemplate,hWndParent, &
 lpDialogFunc,NULL_T)
 end function dialog_box

 function hi_word (dwValue)
 integer (WORD_T) :: hi_word
 integer (DWORD_T), intent (in) :: dwValue
 ! (/usr/include/w32api/windef.h)
 hi_word = int (ishft (dwValue,−16),WORD_T)
 end function hi_word

 function lo_word (dwValue)
 integer (WORD_T) :: lo_word
 integer (DWORD_T), intent (in) :: dwValue

win32.f90
c:/msys64/home/angelo/programming/win32−fortran/

15/15
07/06/2015

 ! (/usr/include/w32api/windef.h)
 lo_word = int (iand (dwValue,65535),WORD_T) ! iand(dwValue,Z’0000FFFF’)
 end function lo_word

 function make_int_resource (i) result (s)
 integer (WORD_T), intent (in) :: i
 character (C_CHAR), pointer :: s(:) ! LPTSTR
 call c_f_pointer (make_int_resource_C_PTR(i),s,[0])
 end function make_int_resource

 function make_int_resource_C_PTR (i) result (s)
 integer (WORD_T), intent (in) :: i
 type(C_PTR) :: s
 s = transfer (int (i,HANDLE_T),NULL_PTR_T)
 end function make_int_resource_C_PTR

 function null_p () result (s)
 character (C_CHAR), pointer :: s(:) ! LPTSTR
 s => make_int_resource(0_WORD_T)
 end function null_p

 function RGB(r,g,b)
 integer (COLORREF_T) :: RGB
 integer (INT_T), intent (in) :: r, g, b
 RGB = (ior (ior ((r), ishft ((g),8)), ishft ((b),16)))
 end function RGB

 subroutine error_msg (lpText)
 character (C_CHAR), intent (in) :: lpText(*) ! LPCTSTR
 integer :: dummy
 dummy = MessageBox(NULL_T,lpText,NULL_LPSTR, ior (MB_ICONEXCLAMATION,MB_OK))
 end subroutine error_msg
end module win32

win32boxes.f90
c:/msys64/home/angelo/programming/win32−fortran/

1/9
07/06/2015

!
! (Partial) Fortran Interface to the Windows API Library
! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi
!
! It is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
!
! DESCRIPTION
! win32 boxes (aka, dialogues) modules...
! Just to start with Windows applications...
!
! From: my C++ Windows Applications and Borland C++ 2.0 examples
!
! Notice that:
!
! int(0,UINT_T) −−> 0_UINT_T
! int(0,WPARAM_T) −−> 0_WPARAM_T
! int(0,LPARAM_T) −−> 0_LPARAM_T
! ...
!

module AboutBox_class
 use , intrinsic :: iso_c_binding , only : c_funloc
 use win32 , only : BOOL_T, DWORD_T, FALSE_T, HWND_T, IDCANCEL, IDOK, &
 INT_PTR_T, LPARAM_T, NULL_LPSTR, TRUE_T, UINT_T, WM_COMMAND, &
 WM_INITDIALOG, WORD_T, WPARAM_T, &
 dialog_box, EndDialog, GetModuleHandle, lo_word, make_int_resource
 implicit none
 private

 type , public :: AboutBox
 private
 integer (HWND_T) :: hDlg
 integer (WORD_T) :: idd_about
 end type AboutBox

 ! TRUE_T if OK button is pressed, otherwise it is FALSE_T
 integer (BOOL_T) :: dialog_result = FALSE_T

 interface new_box
 module procedure AboutBox_init
 end interface new_box

 interface run
 module procedure AboutBox_run
 end interface run

 public :: new_box, run

contains

 subroutine AboutBox_init (this,hhDlg,idd_ab)
 type(AboutBox) , intent (out) :: this
 integer (HWND_T), intent (in) :: hhDlg
 integer (WORD_T), intent (in) :: idd_ab

 this%hDlg = hhDlg
 this%idd_about = idd_ab
 end subroutine AboutBox_init

 function AboutBox_run (this)
 integer (BOOL_T) :: AboutBox_run
 type(AboutBox) , intent (in) :: this
 integer (INT_PTR_T) :: dummy

 dummy = dialog_box(GetModuleHandle(NULL_LPSTR), &
 make_int_resource(this%idd_about),this%hDlg, c_funloc (AboutDlgProc))

 AboutBox_run = dialog_result
 end function AboutBox_run

 function AboutDlgProc (hDlg,iMsg,wParam,lParam) bind (C)
 !GCC$ ATTRIBUTES STDCALL :: AboutDlgProc
 integer (BOOL_T) :: AboutDlgProc
 integer (HWND_T), intent (in), value :: hDlg
 integer (UINT_T), intent (in), value :: iMsg

win32boxes.f90
c:/msys64/home/angelo/programming/win32−fortran/

2/9
07/06/2015

 integer (WPARAM_T), intent (in), value :: wParam
 integer (LPARAM_T), intent (in), value :: lParam
 integer :: dummy

 ! To avoid some annoying warnings...
 integer (LPARAM_T) :: not_used_lParam
 not_used_lParam = lParam

 select case (iMsg)
 case (WM_INITDIALOG)
 dialog_result = FALSE_T
 AboutDlgProc = TRUE_T
 return

 case (WM_COMMAND)
 select case (lo_word(int (wParam,DWORD_T)))
 case (IDOK)
 dummy = EndDialog(hDlg, int (IDOK,INT_PTR_T))
 dialog_result = TRUE_T
 AboutDlgProc = TRUE_T
 return

 case (IDCANCEL)
 dummy = EndDialog(hDlg, int (IDCANCEL,INT_PTR_T))
 AboutDlgProc = TRUE_T
 return

 end select
 end select

 AboutDlgProc = FALSE_T
 return
 end function AboutDlgProc
end module AboutBox_class

module XBox_class
 use , intrinsic :: iso_c_binding , only : c_funloc
 use kind_consts , only : DP
 use win32 , only : BOOL_T, DWORD_T, FALSE_T, HWND_T, IDCANCEL, IDOK, INT_T, &
 INT_PTR_T, LPARAM_T, MAX_FMT, MAX_LEN, MB_ICONINFORMATION, MB_OK, &
 NUL, NULL_LPSTR, TRUE_T, UINT_T, WM_COMMAND, WM_INITDIALOG, WORD_T, &
 WPARAM_T, &
 dialog_box, EndDialog, GetDlgItemText, GetModuleHandle, lo_word, &
 make_int_resource, MessageBox, PostQuitMessage, SetDlgItemText
 implicit none
 private

 type , public :: XBox
 private
 integer (HWND_T) :: hDlg
 integer (WORD_T) :: idd_data
 integer (INT_T) :: idc_x
 character (len=MAX_FMT) :: fmt_str
 real (DP) :: x
 end type XBox

 type(XBox) :: xb

 ! TRUE_T if OK button is pressed, otherwise it is FALSE_T
 integer (BOOL_T) :: dialog_result = FALSE_T

 interface new_box
 module procedure XBox_init
 end interface new_box

 interface run
 module procedure XBox_run
 end interface run

 public :: new_box, run, get

contains

 subroutine XBox_init (this,hhDlg,idd_data_xx,idc_xx,fmt,xx)
 type(XBox) , intent (out) :: this
 integer (HWND_T), intent (in) :: hhDlg
 integer (WORD_T), intent (in) :: idd_data_xx
 integer (INT_T), intent (in) :: idc_xx

win32boxes.f90
c:/msys64/home/angelo/programming/win32−fortran/

3/9
07/06/2015

 character (len=MAX_FMT), intent (in) :: fmt
 real (DP), intent (in) :: xx

 this%hDlg = hhDlg
 this%idd_data = idd_data_xx
 this%idc_x = idc_xx
 this%fmt_str = fmt
 this%x = xx
 end subroutine XBox_init

 function XBox_run (this)
 integer (BOOL_T) :: XBox_run
 type(XBox) , intent (inout) :: this
 integer (INT_PTR_T) :: dummy

 ! Input
 xb = this

 dummy = dialog_box(GetModuleHandle(NULL_LPSTR), &
 make_int_resource(xb%idd_data),xb%hDlg, c_funloc (XDlgProc))

 ! Output
 this = xb

 XBox_run = dialog_result
 end function XBox_run

 function get (this)
 real (DP) :: get
 type(XBox) , intent (in) :: this
 get = this%x
 end function get

 function XDlgProc (hDlg,iMsg,wParam,lParam) bind (C)
 !GCC$ ATTRIBUTES STDCALL :: XDlgProc
 integer (BOOL_T) :: XDlgProc
 integer (HWND_T), intent (in), value :: hDlg
 integer (UINT_T), intent (in), value :: iMsg
 integer (WPARAM_T), intent (in), value :: wParam
 integer (LPARAM_T), intent (in), value :: lParam

 ! To avoid some annoying warnings...
 integer (LPARAM_T) :: not_used_lParam
 not_used_lParam = lParam

 select case (iMsg)
 case (WM_INITDIALOG)
 call init_dialog (hDlg)
 dialog_result = FALSE_T
 XDlgProc = TRUE_T
 return

 case (WM_COMMAND)
 select case (lo_word(int (wParam,DWORD_T)))
 case (IDOK)
 call ok_command(hDlg)
 dialog_result = TRUE_T
 XDlgProc = TRUE_T
 return

 case (IDCANCEL)
 call cancel_command (hDlg)
 XDlgProc = TRUE_T
 return

 end select
 end select

 XDlgProc = FALSE_T
 return
 end function XDlgProc

 subroutine init_dialog (hDlg)
 integer (HWND_T), intent (in) :: hDlg
 character (len=MAX_LEN) :: buffer
 integer :: dummy

 buffer = ’’

win32boxes.f90
c:/msys64/home/angelo/programming/win32−fortran/

4/9
07/06/2015

 write (buffer,xb%fmt_str) xb%x
 dummy = SetDlgItemText(hDlg,xb%idc_x, trim (adjustl (buffer))//NUL)
 end subroutine init_dialog

 subroutine ok_command(hDlg)
 integer (HWND_T), intent (in) :: hDlg
 character (len=MAX_LEN) :: buffer
 integer :: dummy, ierr
 real (DP) :: x_try = 0.0_DP

 buffer = ’’
 dummy = GetDlgItemText(hDlg,xb%idc_x,buffer,MAX_LEN)
 if (dummy > 0) then
 dummy = index (buffer,NUL)
 read (buffer(1:dummy−1),*,iostat = ierr) x_try
 if (ierr /= 0) then
 write (*,*) ’IERR, X = ’ , ierr, x_try
 else
 xb%x = x_try
 end if
 else
 dummy = MessageBox(hDlg, ’Failure reading X data!’ //NUL, &
 ’Fatal Error!!!’ //NUL, &
 ior (MB_OK,MB_ICONINFORMATION))
 call PostQuitMessage (1) ! Exit code 1 to flag an error occured
 end if

 dummy = EndDialog(hDlg, int (IDOK,INT_PTR_T))
 end subroutine ok_command

 subroutine cancel_command (hDlg)
 integer (HWND_T), intent (in) :: hDlg
 integer :: dummy
 dummy = EndDialog(hDlg, int (IDCANCEL,INT_PTR_T))
 end subroutine cancel_command
end module XBox_class

module XYBox_class
 use , intrinsic :: iso_c_binding , only : c_funloc
 use kind_consts , only : DP
 use win32 , only : BOOL_T, DWORD_T, FALSE_T, HWND_T, IDCANCEL, IDOK, INT_T, &
 INT_PTR_T, LPARAM_T, MAX_FMT, MAX_LEN, MB_ICONINFORMATION, MB_OK, &
 NUL, NULL_LPSTR, TRUE_T, UINT_T, WM_COMMAND, WM_INITDIALOG, WORD_T, &
 WPARAM_T, &
 dialog_box, EndDialog, GetDlgItemText, GetModuleHandle, lo_word, &
 make_int_resource, MessageBox, PostQuitMessage, SetDlgItemText
 implicit none
 private

 type , public :: XYBox
 private
 integer (HWND_T) :: hDlg
 integer (WORD_T) :: idd_data
 integer (INT_T) :: idc_x, idc_y
 character (len=MAX_FMT) :: fmt_str
 real (DP) :: x, y
 end type XYBox

 type(XYBox) :: xyb

 ! TRUE_T if OK button is pressed, otherwise it is FALSE_T
 integer (BOOL_T) :: dialog_result = FALSE_T

 interface new_box
 module procedure XYBox_init
 end interface new_box

 interface run
 module procedure XYBox_run
 end interface run

 public :: new_box, run, get_x, get_y

contains

 subroutine XYBox_init (this,hhDlg,idd_data_xy,idc_xx,idc_yy,fmt,xx,yy)
 type(XYBox) , intent (out) :: this
 integer (HWND_T), intent (in) :: hhDlg

win32boxes.f90
c:/msys64/home/angelo/programming/win32−fortran/

5/9
07/06/2015

 integer (WORD_T), intent (in) :: idd_data_xy
 integer (INT_T), intent (in) :: idc_xx, idc_yy
 character (len=MAX_FMT), intent (in) :: fmt
 real (DP), intent (in) :: xx, yy

 this%hDlg = hhDlg
 this%idd_data = idd_data_xy
 this%idc_x = idc_xx
 this%idc_y = idc_yy
 this%fmt_str = fmt
 this%x = xx
 this%y = yy
 end subroutine XYBox_init

 function XYBox_run (this)
 integer (BOOL_T) :: XYBox_run
 type(XYBox) , intent (inout) :: this
 integer (INT_PTR_T) :: dummy

 ! Input
 xyb = this

 dummy = dialog_box(GetModuleHandle(NULL_LPSTR), &
 make_int_resource(xyb%idd_data),xyb%hDlg, c_funloc (XYDlgProc))

 ! Output
 this = xyb

 XYBox_run = dialog_result
 end function XYBox_run

 function get_x (this)
 real (DP) :: get_x
 type(XYBox) , intent (in) :: this
 get_x = this%x
 end function get_x

 function get_y (this)
 real (DP) :: get_y
 type(XYBox) , intent (in) :: this
 get_y = this%y
 end function get_y

 function XYDlgProc (hDlg,iMsg,wParam,lParam) bind (C)
 !GCC$ ATTRIBUTES STDCALL :: XYDlgProc
 integer (BOOL_T) :: XYDlgProc
 integer (HWND_T), intent (in), value :: hDlg
 integer (UINT_T), intent (in), value :: iMsg
 integer (WPARAM_T), intent (in), value :: wParam
 integer (LPARAM_T), intent (in), value :: lParam

 ! To avoid some annoying warnings...
 integer (LPARAM_T) :: not_used_lParam
 not_used_lParam = lParam

 select case (iMsg)
 case (WM_INITDIALOG)
 call init_dialog (hDlg)
 dialog_result = FALSE_T
 XYDlgProc = TRUE_T
 return

 case (WM_COMMAND)
 select case (lo_word(int (wParam,DWORD_T)))
 case (IDOK)
 call ok_command(hDlg)
 dialog_result = TRUE_T
 XYDlgProc = TRUE_T
 return

 case (IDCANCEL)
 call cancel_command (hDlg)
 XYDlgProc = TRUE_T
 return

 end select
 end select

win32boxes.f90
c:/msys64/home/angelo/programming/win32−fortran/

6/9
07/06/2015

 XYDlgProc = FALSE_T
 return
 end function XYDlgProc

 subroutine init_dialog (hDlg)
 integer (HWND_T), intent (in) :: hDlg
 character (len=MAX_LEN) :: buffer
 integer :: dummy

 buffer = ’’
 write (buffer,xyb%fmt_str) xyb%x
 dummy = SetDlgItemText(hDlg,xyb%idc_x, trim (adjustl (buffer))//NUL)

 buffer = ’’
 write (buffer,xyb%fmt_str) xyb%y
 dummy = SetDlgItemText(hDlg,xyb%idc_y, trim (adjustl (buffer))//NUL)
 end subroutine init_dialog

 subroutine ok_command(hDlg)
 integer (HWND_T), intent (in) :: hDlg
 character (len=MAX_LEN) :: buffer
 integer :: dummy, ierr
 real (DP) :: x_try = 0.0_DP, y_try = 0.0_DP

 buffer = ’’
 dummy = GetDlgItemText(hDlg,xyb%idc_x,buffer,MAX_LEN)
 if (dummy > 0) then
 dummy = index (buffer,NUL)
 read (buffer(1:dummy−1),*,iostat = ierr) x_try
 if (ierr /= 0) then
 write (*,*) ’IERR, X = ’ , ierr, x_try
 else
 xyb%x = x_try
 end if
 else
 dummy = MessageBox(hDlg, ’Failure reading X data!’ //NUL, &
 ’Fatal Error!!!’ //NUL, &
 ior (MB_OK,MB_ICONINFORMATION))
 call PostQuitMessage (1) ! Exit code 1 to flag an error occured
 end if

 buffer = ’’
 dummy = GetDlgItemText(hDlg,xyb%idc_y,buffer,MAX_LEN)
 if (dummy > 0) then
 dummy = index (buffer,NUL)
 read (buffer(1:dummy−1),*,iostat = ierr) y_try
 if (ierr /= 0) then
 write (*,*) ’IERR, Y = ’ , ierr, y_try
 else
 xyb%y = y_try
 end if
 else
 dummy = MessageBox(hDlg, ’Failure reading Y data!’ //NUL, &
 ’Fatal Error!!!’ //NUL, &
 ior (MB_OK,MB_ICONINFORMATION))
 call PostQuitMessage (1) ! Exit code 1 to flag an error occured
 end if

 dummy = EndDialog(hDlg, int (IDOK,INT_PTR_T))
 end subroutine ok_command

 subroutine cancel_command (hDlg)
 integer (HWND_T), intent (in) :: hDlg
 integer :: dummy
 dummy = EndDialog(hDlg, int (IDCANCEL,INT_PTR_T))
 end subroutine cancel_command
end module XYBox_class

module RadioBox_class
 use , intrinsic :: iso_c_binding , only : c_funloc
 use win32 , only : BOOL_T, DWORD_T, FALSE_T, HWND_T, IDCANCEL, IDOK, INT_T, &
 INT_PTR_T, LPARAM_T, MAX_LEN, NUL, NULL_LPSTR, TRUE_T, UINT_T, &
 WM_COMMAND, WM_INITDIALOG, WORD_T, WPARAM_T, &
 CheckRadioButton, dialog_box, EndDialog, GetModuleHandle, lo_word, &
 make_int_resource, SetDlgItemText
 implicit none
 private

win32boxes.f90
c:/msys64/home/angelo/programming/win32−fortran/

7/9
07/06/2015

 integer , parameter :: MAX_RADIO_BUTTONS = 10

 type , public :: RadioBox
 private
 integer (HWND_T) :: hDlg
 integer (WORD_T) :: idd_radio
 integer (INT_T) :: idc_first_button, idc_last_button, idc_current_button
 character (len=MAX_LEN) :: button_names(MAX_RADIO_BUTTONS)
 integer :: num_buttons
 integer :: current_button
 end type RadioBox

 type(RadioBox) :: rb

 ! TRUE_T if OK button is pressed, otherwise it is FALSE_T
 integer (BOOL_T) :: dialog_result = FALSE_T

 interface new_box
 module procedure RadioBox_init
 end interface new_box

 interface run
 module procedure RadioBox_run
 end interface run

 public :: new_box, run, get_current_button

contains

 subroutine RadioBox_init (this,hDlg,idd_radio,idc_first_button, &
 button_names,num_buttons,current_button)
 type(RadioBox) , intent (out) :: this
 integer (HWND_T), intent (in) :: hDlg
 integer (WORD_T), intent (in) :: idd_radio
 integer (INT_T), intent (in) :: idc_first_button
 character (len=*), intent (in) :: button_names(:)
 integer , intent (in) :: num_buttons
 integer , intent (in) :: current_button
 integer :: i

 if (num_buttons > MAX_RADIO_BUTTONS) then
 write (*,*) ’*** FATAL ERROR ***’
 write (*,*) ’NUM_BUTTONS > ’ , MAX_RADIO_BUTTONS, ’ NOT ALLOWED!!!’
 write (*,*) ’Program terminates...’
 stop
 end if

 this%hDlg = hDlg
 this%idd_radio = idd_radio
 this%idc_first_button = idc_first_button
 this%idc_last_button = idc_first_button+(num_buttons−1)

 do i = 1, num_buttons
 this%button_names(i) = trim (adjustl (button_names(i)))
 end do

 this%num_buttons = num_buttons
 this%current_button = current_button
 end subroutine RadioBox_init

 function RadioBox_run (this)
 integer (BOOL_T) :: RadioBox_run
 type(RadioBox) , intent (inout) :: this
 integer (INT_PTR_T) :: dummy

 ! Input
 rb = this

 dummy = dialog_box(GetModuleHandle(NULL_LPSTR), &
 make_int_resource(rb%idd_radio),rb%hDlg, c_funloc (RadioDlgProc))

 ! Output
 this = rb

 RadioBox_run = dialog_result
 end function RadioBox_run

 function get_current_button (this)

win32boxes.f90
c:/msys64/home/angelo/programming/win32−fortran/

8/9
07/06/2015

 integer :: get_current_button
 type(RadioBox) , intent (in) :: this
 get_current_button = this%current_button
 end function get_current_button

 function RadioDlgProc (hDlg,iMsg,wParam,lParam) bind (C)
 !GCC$ ATTRIBUTES STDCALL :: RadioDlgProc
 integer (BOOL_T) :: RadioDlgProc
 integer (HWND_T), intent (in), value :: hDlg
 integer (UINT_T), intent (in), value :: iMsg
 integer (WPARAM_T), intent (in), value :: wParam
 integer (LPARAM_T), intent (in), value :: lParam
 integer :: dummy

 ! To avoid some annoying warnings...
 integer (LPARAM_T) :: not_used_lParam
 not_used_lParam = lParam

 ! Now we use dummy to store the current button if it is valid. Se below...
 dummy = lo_word(int (wParam,DWORD_T))

 select case (iMsg)
 case (WM_INITDIALOG)
 call init_dialog (hDlg)
 dialog_result = FALSE_T
 RadioDlgProc = TRUE_T
 return

 case (WM_COMMAND)
 ! We test if the current button is valid...
 if ((rb%idc_first_button <= dummy) .and. &
 (dummy <= rb%idc_last_button)) then

 ! ...being valid, we save it...
 rb%idc_current_button = dummy

 ! Now dumy is "free" and can be reused... :−)
 dummy = CheckRadioButton(hDlg, &
 rb%idc_first_button,rb%idc_last_button,rb%idc_current_button)
 RadioDlgProc = TRUE_T
 return

 end if

 ! ...if it is not valid, it could be something else...
 select case (dummy)
 case (IDOK)
 call ok_command(hDlg)
 dialog_result = TRUE_T
 RadioDlgProc = TRUE_T
 return

 case (IDCANCEL)
 call cancel_command (hDlg)
 RadioDlgProc = TRUE_T
 return

 end select
 end select

 RadioDlgProc = FALSE_T
 return
 end function RadioDlgProc

 subroutine init_dialog (hDlg)
 integer (HWND_T), intent (in) :: hDlg
 integer :: i, dummy

 do i = 1, rb%num_buttons
 dummy = SetDlgItemText(hDlg,rb%idc_first_button+(i−1), &
 trim (adjustl (rb%button_names(i)))//NUL)
 end do

 rb%idc_current_button = rb%idc_first_button+(rb%current_button−1)
 dummy = CheckRadioButton(hDlg, &
 rb%idc_first_button,rb%idc_last_button,rb%idc_current_button)
 end subroutine init_dialog

win32boxes.f90
c:/msys64/home/angelo/programming/win32−fortran/

9/9
07/06/2015

 subroutine ok_command(hDlg)
 integer (HWND_T), intent (in) :: hDlg
 integer :: dummy
 rb%current_button = (rb%idc_current_button−rb%idc_first_button)+1
 dummy = EndDialog(hDlg, int (IDOK,INT_PTR_T))
 end subroutine ok_command

 subroutine cancel_command (hDlg)
 integer (HWND_T), intent (in) :: hDlg
 integer :: dummy
 dummy = EndDialog(hDlg, int (IDCANCEL,INT_PTR_T))
 end subroutine cancel_command
end module RadioBox_class

win32app.f90
c:/msys64/home/angelo/programming/win32−fortran/

1/4
07/06/2015

!
! (Partial) Fortran Interface to the Windows API Library
! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi
!
! It is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
!
! DESCRIPTION
! win32app module
! Just to start with Windows applications in World Coordinete System...
!
! Notice that:
!
! int(0,UINT_T) −−> 0_UINT_T
! int(0,WPARAM_T) −−> 0_WPARAM_T
! int(0,LPARAM_T) −−> 0_LPARAM_T
! ...
!

module win32app
 use kind_consts , only : DP
 use win32 , only : BOOL_T, DWORD_T, HBITMAP_T, HBRUSH_T, HDC_T, HWND_T, INT_T, &
 LPARAM_T, MAX_FMT, NUL, SRCCOPY, WORD_T, &
 RECT_T, &
 BitBlt, CreateCompatibleBitmap, Ellipse, FillRect, hi_word, lo_word, &
 Rectangle, TextOut
 use XYBox_class
 implicit none
 private

 character (len=MAX_FMT), parameter :: FMT = ’(1pg12.5)’

 integer :: client_width = 0, client_height = 0

 type , public :: box_type
 real (DP) :: x1, x2
 real (DP) :: y1, y2
 end type box_type

 ! Output view region in WC
 real (DP) :: x_min = −1.0_DP, x_max = 1.0_DP, &
 y_min = −1.0_DP, y_max = 1.0_DP, &
 dx = 1.0_DP, dy = 1.0_DP

 public :: win32app_BitBlt, win32app_clearDC, &
 win32app_CreateCompatibleBitmap, win32app_ellipse, win32app_fillbox, &
 win32app_setup, win32app_textout, &
 win32app_xbounds, win32app_ybounds, &
 win32app_xmin, win32app_xmax, win32app_ymin, win32app_ymax, &
 win32app_height, win32app_width

contains

 subroutine win32app_setup (lParam,x1,x2,y1,y2)
 integer (LPARAM_T), intent (in) :: lParam
 real (DP), intent (in), optional :: x1, x2, y1, y2
 real (DP) :: cx, cy

 ! Initializing with defaults values...
 if (present (x1)) x_min = x1
 if (present (x2)) x_max = x2
 if (present (y1)) y_min = y1
 if (present (y2)) y_max = y2

 ! The true width and height of client area
 client_width = lo_word(int (lParam,DWORD_T)) + 1
 client_height = hi_word(int (lParam,DWORD_T)) + 1

 dx = x_max−x_min
 dy = y_max−y_min

 cx = x_min+0.5_DP*dx
 cy = y_min+0.5_DP*dy

 ! First, adjusts WC region...
 if (client_width > client_height) then

win32app.f90
c:/msys64/home/angelo/programming/win32−fortran/

2/4
07/06/2015

 dy = (dx*client_height)/client_width
 y_min = cy−0.5_DP*dy
 y_max = y_min+dy
 else
 dx = (dy*client_width)/client_height
 x_min = cx−0.5_DP*dx
 x_max = x_min+dx
 end if

 ! ...then, calculates the size of the mesh that represents each pixel
 dx = (x_max−x_min)/client_width
 dy = (y_max−y_min)/client_height

 ! Many Windows routines expect a "virtual" width and height,
 ! more precisely the client area bottom−right point coordinates
 client_width = client_width − 1
 client_height = client_height − 1
 end subroutine win32app_setup

 function xs (x)
 integer :: xs
 real (DP), intent (in) :: x
 xs = 0+ int ((x−x_min)/dx)
 end function xs

 function ys (y)
 integer :: ys
 real (DP), intent (in) :: y
 ys = 0+ int ((y_max−y)/dy)
 end function ys

 function win32app_xmin () result (r)
 real (DP) :: r
 r = x_min
 end function win32app_xmin

 function win32app_xmax () result (r)
 real (DP) :: r
 r = x_max
 end function win32app_xmax

 function win32app_ymin () result (r)
 real (DP) :: r
 r = y_min
 end function win32app_ymin

 function win32app_ymax () result (r)
 real (DP) :: r
 r = y_max
 end function win32app_ymax

 function win32app_width () result (r)
 integer :: r
 r = client_width !+1 ?
 end function win32app_width

 function win32app_height () result (r)
 integer :: r
 r = client_height !+1 ?
 end function win32app_height

 subroutine win32app_xbounds (hWnd,idd_data_xlimits,idc_xmin,idc_xmax)
 integer (HWND_T), intent (in) :: hWnd
 integer (WORD_T), intent (in) :: idd_data_xlimits
 integer (INT_T), intent (in) :: idc_xmin, idc_xmax
 type(XYBox) :: xyb
 real (DP) :: u_min, u_max, du, c_params

 ! The current Y view center
 c_params = 0.5_DP*(y_max+y_min)

 call new_box (xyb,hWnd,idd_data_xlimits,idc_xmin,idc_xmax,FMT,x_min,x_max)

 if (run(xyb) > 0) then
 u_min = get_x(xyb)
 u_max = get_y(xyb)

 ! The assumed new intervall size

win32app.f90
c:/msys64/home/angelo/programming/win32−fortran/

3/4
07/06/2015

 du = u_max−u_min

 ! If it is too small
 if (abs (du) <= 0.0_DP) then
 u_min = −2.0_DP
 u_max = 2.0_DP
 du = 4.0_DP
 else
 ! if u_max < u_min
 if (du < 0.0_DP) then
 ! swap u_min/max using du as temp
 du = u_max
 u_max = u_min
 u_min = du
 du = u_max−u_min
 end if
 end if

 ! The new Y height (with the same aspect ratio)
 du = du*(y_max−y_min)/(x_max−x_min)

 ! The X limits just inserted
 x_min = u_min
 x_max = u_max

 ! Adjusting the Y limits accordingly
 y_min = c_params−0.5_DP*du
 y_max = y_min+du

 ! We need to recompute the size of the mesh that represents each pixel
 dx = (x_max−x_min)/(client_width+1)
 dy = (y_max−y_min)/(client_height+1)
 end if
 end subroutine win32app_xbounds

 subroutine win32app_ybounds (hWnd,idd_data_ylimits,idc_ymin,idc_ymax)
 integer (HWND_T), intent (in) :: hWnd
 integer (WORD_T), intent (in) :: idd_data_ylimits
 integer (INT_T), intent (in) :: idc_ymin, idc_ymax
 type(XYBox) :: xyb
 real (DP) :: u_min, u_max, du, c_params

 ! The current X view center
 c_params = 0.5_DP*(x_max+x_min)

 call new_box (xyb,hWnd,idd_data_ylimits,idc_ymin,idc_ymax,FMT,y_min,y_max)

 if (run(xyb) > 0) then
 u_min = get_x(xyb)
 u_max = get_y(xyb)

 ! The assumed new intervall size
 du = u_max−u_min

 ! If it is too small
 if (abs (du) <= 0.0_DP) then
 u_min = −2.0_DP
 u_max = 2.0_DP
 du = 4.0_DP
 else
 ! if u_max < u_min
 if (du < 0.0_DP) then
 ! swap u_min/max using du as temp
 du = u_max
 u_max = u_min
 u_min = du
 du = u_max−u_min
 end if
 end if

 ! The new X width (with the same aspect ratio)
 du = du*(x_max−x_min)/(y_max−y_min)

 ! The Y limits just inserted
 y_min = u_min
 y_max = u_max

 ! Adjusting the X limits accordingly

win32app.f90
c:/msys64/home/angelo/programming/win32−fortran/

4/4
07/06/2015

 x_min = c_params−0.5_DP*du
 x_max = x_min+du

 ! We need to recompute the size of the mesh that represents each pixel
 dx = (x_max−x_min)/(client_width+1)
 dy = (y_max−y_min)/(client_height+1)
 end if
 end subroutine win32app_ybounds

 function win32app_BitBlt (hdc,hdcMem) result (r)
 integer (BOOL_T) :: r
 integer (HDC_T), intent (in) :: hdc, hdcMem
 r = BitBlt(hdc,0,0,client_width,client_height,hdcMem,0,0,SRCCOPY)
 end function win32app_BitBlt

 function win32app_clearDC (hdc,dwRop) result (r)
 integer (BOOL_T) :: r
 integer (HDC_T), intent (in) :: hdc
 integer (DWORD_T), intent (in) :: dwRop
 ! dwRop = BLACKNESS or WHITENESS?
 r = BitBlt(hdc,0,0,client_width,client_height,0_HDC_T,0,0,dwRop)
 !r = Rectangle(hdc,−1,−1,client_width+1,client_height+1)
 end function win32app_clearDC

 function win32app_CreateCompatibleBitmap (hdc) result (r)
 integer (HBITMAP_T) :: r
 integer (HDC_T), intent (in) :: hdc
 r = CreateCompatibleBitmap(hdc,client_width,client_height)
 end function win32app_CreateCompatibleBitmap

 function win32app_ellipse (hdc,left,top,right,bottom) result (r)
 integer (BOOL_T) :: r
 integer (HDC_T), intent (in) :: hdc
 real (DP), intent (in) :: left,top,right,bottom
 r = Ellipse(hdc,xs(left),ys(top),xs(right),ys(bottom))
 end function win32app_ellipse

 function win32app_fillbox (hdc,box,hBrush) result (r)
 integer (INT_T) :: r
 integer (HDC_T), intent (in) :: hdc
 type(box_type) , intent (in) :: box
 integer (HBRUSH_T), intent (in) :: hBrush
 type(RECT_T) , save :: rect

 rect%left = xs(box%x1)
 rect%right = xs(box%x2)
 rect%bottom = ys(box%y1)
 rect%top = ys(box%y2)

 r = FillRect(hdc,rect,hBrush)
 end function win32app_fillbox

 function win32app_textout (hdc,x,y,text) result (r)
 integer (INT_T) :: r
 integer (HDC_T), intent (in) :: hdc
 real (DP), intent (in) :: x, y
 character (len=*), intent (in) :: text

 r = index (text,NUL)
 r = TextOut(hdc,xs(x),ys(y),text(1:r),r−1)
 end function win32app_textout
end module win32app

bounce.f90
c:/msys64/home/angelo/programming/win32−fortran/bounce/

1/8
07/06/2015

!
! (Partial) Fortran Interface to the Windows API Library
! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi
!
! It is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
!
! HOW TO BUILD (MSYS2/MINGW32/MINGW64 shell)
!
! cd ~/programming/win32−fortran/bounce
!
! rm −rf {*.mod,*.res,~/programming/modules/*} && \
! windres bounce.rc −O coff −o bounce.res && \
! gfortran −O3 −Wall −mwindows −J ~/programming/modules \
! ~/programming/basic−modules/basic_mods.f90 \
! ../{win32.f90,win32boxes.f90,win32app.f90} bounce.f90 \
! bounce.res −o bounce.out && \
! rm −rf {*.mod,*.res,~/programming/modules/*}
!
! In MINGW32/MINGW64, add ’−static’ and:
!
! bounce.out ==> bounce−mingw32/mingw64
!
!
! Remember that:
!
! int(0,UINT_T) −−> 0_UINT_T
! int(0,WPARAM_T) −−> 0_WPARAM_T
! int(0,LPARAM_T) −−> 0_LPARAM_T
! ...
!

module the_app
 use kind_consts , only : DP
 use AboutBox_class
 use XBox_class
 use XYBox_class
 use win32 , only : BLACK_COLOR, BOOL_T, DWORD_T, FALSE_T, HBITMAP_T, &
 HBRUSH_T, HDC_T, HINSTANCE_T, HS_DIAGCROSS, HWND_T, IDYES, INT_T, &
 LPARAM_T, LRESULT_T, MAX_FMT, MAX_LEN, NL, NUL, NULL_T, TRUE_T, &
 UINT_T, WHITENESS, WM_CLOSE, WM_COMMAND, WM_DESTROY, WM_SIZE, WORD_T, &
 WPARAM_T, &
 ask_confirmation, CreateCompatibleDC, CreateHatchBrush, &
 DefWindowProc, DeleteDC, DeleteObject, DestroyWindow, error_msg, &
 GetDC, lo_word, MessageBeep, PostMessage, PostQuitMessage, ReleaseDC, &
 RGB, SelectObject, SetBkColor, TextOut
 use win32app , only : win32app_BitBlt, win32app_clearDC, &
 win32app_CreateCompatibleBitmap, win32app_ellipse, win32app_setup, &
 win32app_xbounds, win32app_ybounds, &
 win32app_xmin, win32app_xmax, win32app_ymin, win32app_ymax
 implicit none
 private

 integer (WORD_T), parameter , public :: IDI_BOUNCE = 1
 integer (WORD_T), parameter , public :: IDM_MAINMENU = 9000

 integer (WORD_T), parameter :: IDM_FILE_EXIT = 9010
 integer (WORD_T), parameter :: IDM_DATA_RADIUS = 9020
 integer (WORD_T), parameter :: IDM_DATA_SPEED = 9021
 integer (WORD_T), parameter :: IDM_DATA_TTOT = 9022
 integer (WORD_T), parameter :: IDM_DATA_TSTEP = 9023
 integer (WORD_T), parameter :: IDM_DATA_XBOUNDS = 9024
 integer (WORD_T), parameter :: IDM_DATA_YBOUNDS = 9025
 integer (WORD_T), parameter :: IDM_RUNAPP = 9030
 integer (WORD_T), parameter :: IDM_HELP_ABOUT = 9999

 !integer(WORD_T), parameter :: IDC_STATIC = −1

 integer (WORD_T), parameter :: IDD_DATA_RADIUS = 100
 integer (INT_T), parameter :: IDC_RADIUS = 101

 integer (WORD_T), parameter :: IDD_DATA_SPEED = 150
 integer (INT_T), parameter :: IDC_SPEED = 151

 integer (WORD_T), parameter :: IDD_DATA_TTOT = 200
 integer (INT_T), parameter :: IDC_TMIN = 201

bounce.f90
c:/msys64/home/angelo/programming/win32−fortran/bounce/

2/8
07/06/2015

 integer (INT_T), parameter :: IDC_TMAX = 202

 integer (WORD_T), parameter :: IDD_DATA_TSTEP = 300
 integer (INT_T), parameter :: IDC_TSTEP = 301

 integer (WORD_T), parameter :: IDD_DATA_XBOUNDS = 400
 integer (INT_T), parameter :: IDC_XMIN = 401
 integer (INT_T), parameter :: IDC_XMAX = 402

 integer (WORD_T), parameter :: IDD_DATA_YBOUNDS = 500
 integer (INT_T), parameter :: IDC_YMIN = 501
 integer (INT_T), parameter :: IDC_YMAX = 502

 integer (WORD_T), parameter :: IDD_ABOUT = 999

 ! COMMON data
 integer (HBITMAP_T) :: hBitmap = NULL_T
 logical :: run_flag = .true.
 real (DP) :: box_xmin, box_xmax, box_ymin, box_ymax

 ! Application data, strictly speaking...
 real (DP) :: p(2) = 0.0_DP, v(2) = 0.0_DP, radius = 10.0_DP, speed = 10.0_DP

 real (DP) :: t0 = 0.0_DP, t1 = 900.0_DP, &
 tstep = 1.0_DP/16 ! 0.0625 = 0.0001_2

 real (DP) :: t = 0.0_DP

 public :: paint_screen, WndProc

contains

 subroutine setup_ball ()
 use math_consts , only : DEG2RAD, PI
 real (DP) :: u, phi

 ! Time initialization
 t = t0

 ! The initial ball position (of its center)
 p = [0.5_DP*(box_xmin+box_xmax), 0.5_DP*(box_ymin+box_ymax)]

 ! Initial moving (random) direction
 call random_number (u)

 phi = (u*360.0_DP)*DEG2RAD
 v = speed*[cos (phi), sin (phi)]
 end subroutine setup_ball

 subroutine draw_ball (hdc,t)
 integer (HDC_T), intent (in) :: hdc
 real (DP), intent (in) :: t
 ! We use SAVE just to save something at each call
 ! (draw_ball() is called intensively, at each iteration)
 character (len=MAX_LEN), save :: buffer = ’’
 integer (HBRUSH_T), save :: hBrush = NULL_T
 integer , save :: dummy

 buffer = ’’
 write (buffer,*) ’Time : ’ ,t
 buffer = trim (adjustl (buffer))// ’ ’ //NUL
 dummy = index (buffer,NUL)
 dummy = TextOut(hdc,0,0,buffer(1:dummy),dummy−1)

 hBrush = CreateHatchBrush(HS_DIAGCROSS,BLACK_COLOR)
 !hBrush = CreateHatchBrush(HS_DIAGCROSS,YELLOW_COLOR)

 dummy = int (SelectObject(hdc,hBrush),INT_T)
 dummy = SetBkColor(hdc,RGB(255,0,255))
 dummy = win32app_ellipse(hdc,p(1)−radius,p(2)+radius, &
 p(1)+radius,p(2)−radius)
 dummy = DeleteObject(hBrush)
 end subroutine draw_ball

 subroutine painting_setup (hWnd)
 integer (HWND_T), intent (in) :: hWnd

 logical , save :: first = .true.

bounce.f90
c:/msys64/home/angelo/programming/win32−fortran/bounce/

3/8
07/06/2015

 integer (HDC_T) :: hdc, hdcMem
 integer :: dummy

 if (first) then
 call setup_ball ()
 first = .false.
 end if

 if (hBitmap /= NULL_T) then
 dummy = DeleteObject(hBitmap)
 end if

 hdc = GetDC(hWnd)
 hdcMem = CreateCompatibleDC(hdc)
 hBitmap = win32app_CreateCompatibleBitmap(hdc)
 dummy = ReleaseDC(hWnd,hdc)

 dummy = int (SelectObject(hdcMem,hBitmap),INT_T)

 ! Clear the off−screen DC (hdcMem) for the next drawing
 dummy = win32app_clearDC(hdcMem,WHITENESS)

 call draw_ball (hdcMem,t)

 dummy = DeleteDC(hdcMem)
 end subroutine painting_setup

 subroutine set_radius (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 character (len=MAX_FMT), parameter :: FMT = ’(1pg12.5)’
 type(XBox) :: xb

 call new_box (xb,hWnd,IDD_DATA_RADIUS,IDC_RADIUS,FMT,radius)

 if (run(xb) > 0) then
 radius = get(xb)

 if (radius < 0) then
 call error_msg (’Radius < 0 !!!’ //NL &
 // ’Taking its absolute value... ’ //NUL)
 radius = abs (radius)
 end if
 end if
 end subroutine set_radius

 subroutine set_speed (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 character (len=MAX_FMT), parameter :: FMT = ’(1pg12.5)’
 type(XBox) :: xb

 call new_box (xb,hWnd,IDD_DATA_SPEED,IDC_SPEED,FMT,speed)

 if (run(xb) > 0) then
 speed = get(xb)

 if (speed < 0) then
 call error_msg (’Speed < 0 !!!’ //NL &
 // ’Taking its absolute value... ’ //NUL)
 speed = abs (speed)
 end if
 end if
 end subroutine set_speed

 subroutine set_timebounds (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 character (len=MAX_FMT), parameter :: FMT = ’(1pg12.5)’
 type(XYBox) :: xyb

 call new_box (xyb,hWnd,IDD_DATA_TTOT,IDC_TMIN,IDC_TMAX,FMT,t0,t1)

 if (run(xyb) > 0) then
 t0 = min (get_x(xyb),get_y(xyb))
 t1 = max(get_x(xyb),get_y(xyb))
 end if
 end subroutine set_timebounds

 subroutine set_tstep (hWnd)
 integer (HWND_T), intent (in) :: hWnd

bounce.f90
c:/msys64/home/angelo/programming/win32−fortran/bounce/

4/8
07/06/2015

 character (len=MAX_FMT), parameter :: FMT = ’(1pg12.5)’
 type(XBox) :: xb

 call new_box (xb,hWnd,IDD_DATA_TSTEP,IDC_TSTEP,FMT,tstep)

 if (run(xb) > 0) then
 tstep = get(xb)

 if (tstep < 0) then
 call error_msg (’TStep < 0 !!!’ //NL &
 // ’Taking its absolute value... ’ //NUL)
 tstep = abs (tstep)
 end if
 end if
 end subroutine set_tstep

 subroutine help_dlg (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 type(AboutBox) :: ab
 integer :: dummy
 call new_box (ab,hWnd,IDD_ABOUT)
 dummy = run(ab)
 end subroutine help_dlg

 function process_command (hWnd,wParam)
 integer (BOOL_T) :: process_command
 integer (HWND_T), intent (in) :: hWnd
 integer (WPARAM_T), intent (in) :: wParam
 integer :: dummy

 run_flag = .false.

 select case (lo_word(int (wParam,DWORD_T)))
 case (IDM_FILE_EXIT)
 dummy = MessageBeep(64)
 if (ask_confirmation(hWnd, ’Sure you want to exit? ’ //NUL, &
 ’Exit?’ //NUL) == IDYES) then
 dummy = PostMessage(hWnd,WM_CLOSE,0_WPARAM_T,0_LPARAM_T)
 end if
 process_command = TRUE_T
 return

 case (IDM_DATA_RADIUS)
 call set_radius (hWnd)
 process_command = TRUE_T
 return

 case (IDM_DATA_SPEED)
 call set_speed (hWnd)
 process_command = TRUE_T
 return

 case (IDM_DATA_TTOT)
 call set_timebounds (hWnd)
 process_command = TRUE_T
 return

 case (IDM_DATA_TSTEP)
 call set_tstep (hWnd)
 process_command = TRUE_T
 return

 case (IDM_DATA_XBOUNDS)
 call win32app_xbounds (hWnd,IDD_DATA_XBOUNDS,IDC_XMIN,IDC_XMAX)
 process_command = TRUE_T
 return

 case (IDM_DATA_YBOUNDS)
 call win32app_ybounds (hWnd,IDD_DATA_YBOUNDS,IDC_YMIN,IDC_YMAX)
 process_command = TRUE_T
 return

 case (IDM_RUNAPP)
 run_flag = .true.
 call setup_ball ()
 process_command = TRUE_T
 return

bounce.f90
c:/msys64/home/angelo/programming/win32−fortran/bounce/

5/8
07/06/2015

 case (IDM_HELP_ABOUT)
 call help_dlg (hWnd)
 process_command = TRUE_T
 return

 case default
 process_command = FALSE_T
 return
 end select
 end function process_command

 function WndProc(hWnd,iMsg,wParam,lParam) bind (C)
 !GCC$ ATTRIBUTES STDCALL :: WndProc
 integer (LRESULT_T) :: WndProc
 integer (HWND_T), value :: hWnd
 integer (UINT_T), value :: iMsg
 integer (WPARAM_T), value :: wParam
 integer (LPARAM_T), value :: lParam

 logical , save :: first = .true.
 integer :: dummy

 select case (iMsg)
 case (WM_SIZE)
 if (first) then
 call win32app_setup (lParam,−300.0_DP,300.0_DP)
 first = .false.
 else
 call win32app_setup (lParam)
 end if

 ! Getting the box boundaries... each time, maybe, the mapping changed...
 box_xmin = win32app_xmin()
 box_xmax = win32app_xmax()
 box_ymin = win32app_ymin()
 box_ymax = win32app_ymax()

 ! Now that the mapping has been defined, we can initialize the painting
 call painting_setup (hWnd)

 WndProc = 0
 return

 case (WM_COMMAND)
 if (process_command(hWnd,wParam) == TRUE_T) then
 WndProc = 0
 return
 end if
 ! ...else it continues with DefWindowProc

 case (WM_CLOSE)
 dummy = DestroyWindow(hWnd)
 WndProc = 0
 return

 case (WM_DESTROY)
 if (hBitmap /= NULL_T) then
 dummy = DeleteObject(hBitmap)
 end if

 call PostQuitMessage (0)
 ! Commenting out the next two statements, it continues
 ! with DefWindowProc()
 WndProc = 0
 return
 end select

 WndProc = DefWindowProc(hWnd,iMsg,wParam,lParam)
 end function WndProc

 subroutine update_ball_position ()
 integer , save :: dummy

 ! Computing position at current time. Trial position...
 p = p+v*tstep

 ! ...and correction to keep balls inside the box

bounce.f90
c:/msys64/home/angelo/programming/win32−fortran/bounce/

6/8
07/06/2015

 ! Right
 if (p(1) > box_xmax−radius) then
 v(1) = 0.0_DP−v(1)
 p(1) = box_xmax−radius
 !print *, C_ALERT
 dummy = MessageBeep(0)
 end if

 ! Left
 if (p(1) < box_xmin+radius) then
 v(1) = 0.0_DP−v(1)
 p(1) = box_xmin+radius
 !print *, C_ALERT
 dummy = MessageBeep(0)
 end if

 ! bottom
 if (p(2) < box_ymin+radius) then
 v(2) = 0.0_DP−v(2)
 p(2) = box_ymin+radius
 !print *, C_ALERT
 dummy = MessageBeep(0)
 end if

 ! top
 if (p(2) > box_ymax−radius) then
 v(2) = 0.0_DP−v(2)
 p(2) = box_ymax−radius
 !print *, C_ALERT
 dummy = MessageBeep(0)
 end if
 end subroutine update_ball_position

 subroutine paint_screen (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 ! We use SAVE just to save something at each call
 ! (paint_screen() is called intensively, at each iteration)
 integer (HDC_T), save :: hdc, hdcMem
 integer , save :: dummy

 if (hBitmap /= NULL_T) then
 hdc = GetDC(hWnd)
 hdcMem = CreateCompatibleDC(hdc)
 dummy = int (SelectObject(hdcMem,hBitmap),INT_T)

 ! Transfer the off−screen DC to the screen
 dummy = win32app_BitBlt(hdc,hdcMem)
 dummy = ReleaseDC(hWnd,hdc)

 if (t < t1 .and. run_flag) then
 t = t+tstep
 call update_ball_position ()
 end if

 ! Clear the off−screen DC (hdcMem) for the next drawing
 dummy = win32app_clearDC(hdcMem,WHITENESS)

 call draw_ball (hdcMem,t)

 dummy = DeleteDC(hdcMem)
 end if
 end subroutine paint_screen
end module the_app

function WinMain (hInstance,hPrevInstance,lpCmdLine,nCmdShow) &
 bind (C, name= ’WinMain’)
 use randoms , only : init_random_seed
 use , intrinsic :: iso_c_binding , only : C_PTR, C_CHAR, c_sizeof, c_funloc, &
 C_FUNPTR, c_loc
 use win32 , only : CS_HREDRAW, CS_VREDRAW, CW_USEDEFAULT, DWORD_T, &
 HINSTANCE_T, HWND_T, INT_T, NUL, NULL_PTR_T, NULL_T, PM_REMOVE, &
 WM_QUIT, WS_OVERLAPPEDWINDOW, UINT_T, WHITE_BRUSH, &
 MSG_T, WNDCLASSEX_T, &
 arrow_cursor, CreateWindowEx, DispatchMessage, error_msg, Exit Process , &
 GetStockObject, LoadCursor, LoadIcon, make_int_resource, &
 make_int_resource_C_PTR, PeekMessage, RegisterClassEx, ShowWindow, &
 TranslateMessage, UpdateWindow
 use the_app , only : IDI_BOUNCE, IDM_MAINMENU, &

bounce.f90
c:/msys64/home/angelo/programming/win32−fortran/bounce/

7/8
07/06/2015

 paint_screen, WndProc
 implicit none
 !GCC$ ATTRIBUTES STDCALL :: WinMain
 integer (INT_T) :: WinMain
 integer (HINSTANCE_T), value :: hInstance
 integer (HINSTANCE_T), value :: hPrevInstance
 type(C_PTR) , value :: lpCmdLine ! LPSTR
 integer (INT_T), value :: nCmdShow

 character (kind= C_CHAR,len=128), target :: app_name = &
 ’Bounce’ //NUL
 character (kind= C_CHAR,len=*), parameter :: WINDOW_CAPTION = &
 ’Bouncing Ball’ //NUL
 type(WNDCLASSEX_T) :: WndClass
 integer (HWND_T) :: hWnd
 type(MSG_T) :: msg
 integer :: dummy

 ! To avoid some annoying warnings...
 integer (HINSTANCE_T) :: not_used_hPrevInstance
 type(C_PTR) :: not_used_lpCmdLine
 not_used_hPrevInstance = hPrevInstance
 not_used_lpCmdLine = lpCmdLine

 call init_random_seed ()

 WndClass%cbSize = int (c_sizeof (Wndclass),UINT_T)
 WndClass%style = ior (CS_HREDRAW,CS_VREDRAW)
 WndClass%lpfnWndProc = c_funloc (WndProc)
 WndClass%cbClsExtra = 0
 WndClass%cbWndExtra = 0
 WndClass%hInstance = hInstance
 WndClass%hIcon = LoadIcon(hInstance,make_int_resource(IDI_BOUNCE))
 WndClass%hCursor = LoadCursor(NULL_T,arrow_cursor())
 WndClass%hbrBackground = GetStockObject(WHITE_BRUSH)
 !WndClass%hbrBackground = GetStockObject(BLACK_BRUSH)
 WndClass%lpszMenuName = make_int_resource_C_PTR(IDM_MAINMENU)
 WndClass%lpszClassName = c_loc (app_name(1:1))
 WndClass%hIconSm = LoadIcon(hInstance,make_int_resource(IDI_BOUNCE))

 if (RegisterClassEx(WndClass) == 0) then
 call error_msg (’Window Registration Failure! ’ //NUL)
 call ExitProcess (0_UINT_T)
 WinMain = 0
 !return
 end if

 hWnd = CreateWindowEx(0_DWORD_T, &
 app_name, &
 WINDOW_CAPTION, &
 WS_OVERLAPPEDWINDOW, &
 CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT, &
 NULL_T,NULL_T,hInstance,NULL_PTR_T)

 if (hWnd == NULL_T) then
 call error_msg (’Window Creation Failure! ’ //NUL)
 call ExitProcess (0_UINT_T)
 WinMain = 0
 !return
 end if

 dummy = ShowWindow(hWnd,nCmdShow)
 dummy = UpdateWindow(hWnd)

 ! See: Charles Petzold "Programming Windows", 5th ed., pag. 162
 ! ’Random Rectangles’
 do
 if (PeekMessage(msg,NULL_T,0,0,PM_REMOVE) /= 0) then
 if (msg%message == WM_QUIT) exit
 dummy = TranslateMessage(msg)
 dummy = int (DispatchMessage(msg),INT_T)
 else
 call paint_screen (hWnd)
 end if
 end do

 call ExitProcess (int (msg%wParam,UINT_T))
 WinMain = 0

bounce.f90
c:/msys64/home/angelo/programming/win32−fortran/bounce/

8/8
07/06/2015

end function WinMain

bounce.rc
c:/msys64/home/angelo/programming/win32−fortran/bounce/

1/3
07/06/2015

//
// (Partial) Fortran Interface to the Windows API Library
// by Angelo Graziosi (firstname.lastnameATalice.it)
// Copyright Angelo Graziosi
//
// It is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
//
// RC file for "bounce" app
//

#define IDI_BOUNCE 1

IDI_BOUNCE ICON DISCARDABLE "../common_icons/smiling_sun.ico"

#define IDM_MAINMENU 9000
#define IDM_FILE_EXIT 9010
#define IDM_DATA_RADIUS 9020
#define IDM_DATA_SPEED 9021
#define IDM_DATA_TTOT 9022
#define IDM_DATA_TSTEP 9023
#define IDM_DATA_XBOUNDS 9024
#define IDM_DATA_YBOUNDS 9025
#define IDM_RUNAPP 9030
#define IDM_HELP_ABOUT 9999

IDM_MAINMENU MENU DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "E&xit...", IDM_FILE_EXIT
 END

 POPUP "&Data"
 BEGIN
 MENUITEM "Ball &Radius...", IDM_DATA_RADIUS

MENUITEM "Ball &Speed...", IDM_DATA_SPEED
MENUITEM SEPARATOR
MENUITEM "Time &Interval...", IDM_DATA_TTOT
MENUITEM "Time Ste&p...", IDM_DATA_TSTEP
MENUITEM SEPARATOR
MENUITEM "&X bounds...", IDM_DATA_XBOUNDS
MENUITEM "&Y bounds...", IDM_DATA_YBOUNDS

 END

 POPUP "&Run Application"
 BEGIN
 MENUITEM "R&un", IDM_RUNAPP
 END

 POPUP "&Help"
 BEGIN
 MENUITEM "&About...", IDM_HELP_ABOUT
 END
END

#include <windows.h>

#define IDC_STATIC −1

#define IDD_DATA_RADIUS 100
#define IDC_RADIUS 101

IDD_DATA_RADIUS DIALOG DISCARDABLE 0, 0, 284, 77
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Ball Radius"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
 CTEXT "This program will shows a ball bouncing in a rectangle.",
 IDC_STATIC, 7, 7, 153, 18
 GROUPBOX "Ball &Radius", IDC_STATIC, 13, 30, 186, 34
 EDITTEXT IDC_RADIUS, 35, 43, 60, 14, ES_AUTOHSCROLL
 LTEXT " cm", IDC_STATIC, 97, 45, 20, 8
END

bounce.rc
c:/msys64/home/angelo/programming/win32−fortran/bounce/

2/3
07/06/2015

#define IDD_DATA_SPEED 150
#define IDC_SPEED 151

IDD_DATA_SPEED DIALOG DISCARDABLE 0, 0, 284, 77
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Ball Radius"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
 CTEXT "This program will shows a ball bouncing in a rectangle.",
 IDC_STATIC, 7, 7, 153, 18
 GROUPBOX "Ball &Speed", IDC_STATIC, 13, 30, 186, 34
 EDITTEXT IDC_SPEED, 35, 43, 60, 14, ES_AUTOHSCROLL
 LTEXT " cm/s", IDC_STATIC, 97, 45, 20, 8
END

#define IDD_DATA_TTOT 200
#define IDC_TMIN 201
#define IDC_TMAX 202

IDD_DATA_TTOT DIALOG DISCARDABLE 0, 0, 284, 97
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Time Interval"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
 CTEXT "This program will shows a ball bouncing in a rectangle.",
 IDC_STATIC, 7, 7, 153, 18
 GROUPBOX "Time &Interval", IDC_STATIC, 13, 30, 186, 54
 LTEXT "TM&IN : ", IDC_STATIC, 35, 45, 30, 8
 EDITTEXT IDC_TMIN, 85, 43, 60, 14, ES_AUTOHSCROLL
 LTEXT " s", IDC_STATIC, 147, 45, 20, 8
 LTEXT "TM&AX : ", IDC_STATIC, 35, 65, 30, 8
 EDITTEXT IDC_TMAX, 85, 63, 60, 14, ES_AUTOHSCROLL
 LTEXT " s", IDC_STATIC, 147, 65, 20, 8
END

#define IDD_DATA_TSTEP 300
#define IDC_TSTEP 301

IDD_DATA_TSTEP DIALOG DISCARDABLE 0, 0, 284, 77
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Time Step"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
 CTEXT "This program will shows a ball bouncing in a rectangle.",
 IDC_STATIC, 7, 7, 153, 18
 GROUPBOX "Time &Step", IDC_STATIC, 13, 30, 186, 34
 EDITTEXT IDC_TSTEP, 35, 43, 60, 14, ES_AUTOHSCROLL
 LTEXT " s", IDC_STATIC, 97, 45, 20, 8
END

#define IDD_DATA_XBOUNDS 400
#define IDC_XMIN 401
#define IDC_XMAX 402

IDD_DATA_XBOUNDS DIALOG DISCARDABLE 0, 0, 284, 97
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "X bounds"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
 CTEXT "This program will shows a ball bouncing in a rectangle.",
 IDC_STATIC, 7, 7, 153, 18
 GROUPBOX "&X Bounds", IDC_STATIC, 13, 30, 186, 54
 LTEXT "XM&IN : ", IDC_STATIC, 35, 45, 30, 8
 EDITTEXT IDC_XMIN, 85, 43, 60, 14, ES_AUTOHSCROLL
 LTEXT " cm", IDC_STATIC, 147, 45, 20, 8
 LTEXT "XM&AX : ", IDC_STATIC, 35, 65, 30, 8
 EDITTEXT IDC_XMAX, 85, 63, 60, 14, ES_AUTOHSCROLL
 LTEXT " cm", IDC_STATIC, 147, 65, 20, 8
END

bounce.rc
c:/msys64/home/angelo/programming/win32−fortran/bounce/

3/3
07/06/2015

#define IDD_DATA_YBOUNDS 500
#define IDC_YMIN 501
#define IDC_YMAX 502

IDD_DATA_YBOUNDS DIALOG DISCARDABLE 0, 0, 284, 97
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Y bounds"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
 CTEXT "This program will shows a ball bouncing in a rectangle.",
 IDC_STATIC, 7, 7, 153, 18
 GROUPBOX "&Y Bounds", IDC_STATIC, 13, 30, 186, 54
 LTEXT "YM&IN : ", IDC_STATIC, 35, 45, 30, 8
 EDITTEXT IDC_YMIN, 85, 43, 60, 14, ES_AUTOHSCROLL
 LTEXT " cm", IDC_STATIC, 147, 45, 20, 8
 LTEXT "YM&AX : ", IDC_STATIC, 35, 65, 30, 8
 EDITTEXT IDC_YMAX, 85, 63, 60, 14, ES_AUTOHSCROLL
 LTEXT " cm", IDC_STATIC, 147, 65, 20, 8
END

#define IDD_ABOUT 999

IDD_ABOUT DIALOG DISCARDABLE 0, 0, 239, 66
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "About Box"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 174, 18, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 174, 35, 50, 14
 GROUPBOX "About this program...", IDC_STATIC, 7, 7, 225, 52
 CTEXT "A Double Buffering Method Demo\n\nby Angelo Graziosi",
 IDC_STATIC, 16, 18, 144, 33
END

bounce_plus.f90
c:/msys64/home/angelo/programming/win32−fortran/bounce_plus/

1/10
07/06/2015

!
! (Partial) Fortran Interface to the Windows API Library
! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi
!
! It is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
!
! HOW TO BUILD (MSYS2/MINGW32/MINGW64 shell)
!
! cd ~/programming/win32−fortran/bounce_plus
!
! rm −rf {*.mod,*.res,~/programming/modules/*} && \
! windres bounce_plus.rc −O coff −o bounce_plus.res && \
! gfortran −O3 −Wall −mwindows −J ~/programming/modules \
! ~/programming/basic−modules/basic_mods.f90 \
! ../{win32.f90,win32boxes.f90,win32app.f90} rseed_rand.f90 \
! bounce_plus.f90 bounce_plus.res −o bounce_plus.out && \
! rm −rf {*.mod,*.res,~/programming/modules/*}
!
! In MINGW32/MINGW64, add ’−static’ and:
!
! bounce_plus.out ==> bounce_plus−mingw32/mingw64
!
!
! Remember that:
!
! int(0,UINT_T) −−> 0_UINT_T
! int(0,WPARAM_T) −−> 0_WPARAM_T
! int(0,LPARAM_T) −−> 0_LPARAM_T
!

module the_app
 use kind_consts , only : DP
 use AboutBox_class
 use XBox_class
 use XYBox_class
 use RadioBox_class
 use win32 , only : BLACK_COLOR, BLACKNESS, COLORREF_T, CYAN_COLOR, BOOL_T, &
 DWORD_T, FALSE_T, HBITMAP_T, HBRUSH_T, HDC_T, HINSTANCE_T, &
 HOLLOW_BRUSH, HPEN_T, HWND_T, IDYES, INT_T, LPARAM_T, LRESULT_T, &
 MAX_FMT, MAX_LEN, NL, NUL, NULL_T, PS_SOLID, TRUE_T, UINT_T, &
 WHITE_COLOR, WM_CLOSE, WM_COMMAND, WM_CREATE, WM_DESTROY, WM_SIZE, &
 WORD_T, WPARAM_T, YELLOW_COLOR, &
 ask_confirmation, CreateCompatibleDC, CreateHatchBrush, CreatePen, &
 DefWindowProc, DeleteDC, DeleteObject, DestroyWindow, error_msg, &
 GetDC, GetStockObject, lo_word, MessageBeep, PostMessage, &
 PostQuitMessage, ReleaseDC, &
 RGB, SelectObject, SetBkColor, SetTextColor, TextOut
 use win32app , only : win32app_BitBlt, win32app_clearDC, &
 win32app_CreateCompatibleBitmap, win32app_ellipse, win32app_setup, &
 win32app_xbounds, win32app_ybounds, &
 win32app_xmin, win32app_xmax, win32app_ymin, win32app_ymax
 implicit none
 private

 integer (WORD_T), parameter , public :: IDI_BOUNCE_PLUS = 1
 integer (WORD_T), parameter , public :: IDM_MAINMENU = 9000

 integer (WORD_T), parameter :: IDM_FILE_EXIT = 9010
 integer (WORD_T), parameter :: IDM_DATA_NBALLS = 9020
 integer (WORD_T), parameter :: IDM_DATA_DENSITY = 9021
 integer (WORD_T), parameter :: IDM_DATA_STIFFNES = 9022
 integer (WORD_T), parameter :: IDM_DATA_MBOUNDS = 9023
 integer (WORD_T), parameter :: IDM_DATA_TTOT = 9024
 integer (WORD_T), parameter :: IDM_DATA_TSTEP = 9025
 integer (WORD_T), parameter :: IDM_DATA_XBOUNDS = 9026
 integer (WORD_T), parameter :: IDM_DATA_YBOUNDS = 9027
 integer (WORD_T), parameter :: IDM_OPTIONS_TCOLOR = 9030
 integer (WORD_T), parameter :: IDM_RUNAPP = 9040
 integer (WORD_T), parameter :: IDM_HELP_ABOUT = 9999

 !integer(WORD_T), parameter :: IDC_STATIC = −1

 integer (WORD_T), parameter :: IDD_DATA_NBALLS = 100
 integer (INT_T), parameter :: IDC_NBALLS = 101

bounce_plus.f90
c:/msys64/home/angelo/programming/win32−fortran/bounce_plus/

2/10
07/06/2015

 integer (WORD_T), parameter :: IDD_DATA_DENSITY = 200
 integer (INT_T), parameter :: IDC_DENSITY = 201

 integer (WORD_T), parameter :: IDD_DATA_STIFFNES = 300
 integer (INT_T), parameter :: IDC_STIFFNES = 301

 integer (WORD_T), parameter :: IDD_DATA_MBOUNDS = 400
 integer (INT_T), parameter :: IDC_MMIN = 401
 integer (INT_T), parameter :: IDC_MMAX = 402

 integer (WORD_T), parameter :: IDD_DATA_TTOT = 500
 integer (INT_T), parameter :: IDC_TMIN = 501
 integer (INT_T), parameter :: IDC_TMAX = 502

 integer (WORD_T), parameter :: IDD_DATA_TSTEP = 600
 integer (INT_T), parameter :: IDC_TSTEP = 601

 integer (WORD_T), parameter :: IDD_DATA_XBOUNDS = 700
 integer (INT_T), parameter :: IDC_XMIN = 701
 integer (INT_T), parameter :: IDC_XMAX = 702

 integer (WORD_T), parameter :: IDD_DATA_YBOUNDS = 800
 integer (INT_T), parameter :: IDC_YMIN = 801
 integer (INT_T), parameter :: IDC_YMAX = 802

 integer (WORD_T), parameter :: IDD_OPTIONS_TCOLOR = 900
 integer (INT_T), parameter :: IDC_CYAN = 901
 integer (INT_T), parameter :: IDC_WHITE = 902
 integer (INT_T), parameter :: IDC_YELLOW = 903

 integer (WORD_T), parameter :: IDD_ABOUT = 999

 type ball_type
 integer (COLORREF_T) :: col = BLACK_COLOR
 real (DP) :: mass = 0.0_DP, &
 density = 0.0_DP, &
 radius = 0.0_DP
 real (DP), dimension (2) :: frc = 0.0_DP, &
 acc = 0.0_DP, &
 vel = 0.0_DP, &
 pos = 0.0_DP
 end type ball_type

 ! COMMON data
 integer (HBITMAP_T) :: hBitmap = NULL_T
 logical :: run_flag = .true.
 real (DP) :: box_xmin, box_xmax, box_ymin, box_ymax

 ! Application data, strictly speaking...
 integer :: nballs = 12
 real (DP) :: density = 0.01_DP, stiffnes = 5E5_DP
 real (DP) :: m0 = 400.0_DP, m1 = 8000.0_DP
 type(ball_type) , allocatable :: ball(:)

 real (DP) :: t = 0.0_DP, t0 = 0.0_DP, t1 = 900.0_DP, &
 tstep = 1.0_DP/512 ! 1.953125E−03 = 0.000000001_2

 integer :: tcolor = 2 ! WHITE

 public :: paint_screen, WndProc

contains

 subroutine balls_on ()
 integer :: ierr
 allocate (ball(nballs),stat=ierr)
 if (ierr /= 0) then
 write (*,*) ’*** FATAL ERROR ***’
 write (*,*) ’BALL: Allocation request denied’
 stop
 end if
 end subroutine balls_on

 subroutine balls_off ()
 integer :: ierr
 if (allocated (ball)) deallocate (ball,stat=ierr)
 if (ierr /= 0) then
 write (*,*) ’*** FATAL ERROR ***’

bounce_plus.f90
c:/msys64/home/angelo/programming/win32−fortran/bounce_plus/

3/10
07/06/2015

 write (*,*) ’BALL: Deallocation request denied’
 stop
 end if
 end subroutine balls_off

 subroutine setup_balls ()
 use math_consts , only : PI
 real (DP), parameter :: Z3 = 1.0_DP/3, Z43PI = 4*Z3*PI
 real (DP) :: u(9)
 integer :: i

 ! Time initialization
 t = t0

 ! Set startup conditions of elastic balls
 do i = 1, nballs
 call random_number (u)
 ball(i)%col = RGB(int (64+u(1)*192), int (64+u(2)*192), int (64+u(3)*192))
 ball(i)%mass = m0+(i−1)*(m1−m0)/(nballs−1)
 ball(i)%density = density
 ball(i)%radius = ((ball(i)%mass/ball(i)%density)/(Z43PI))**Z3
 ball(i)%pos = [(1.0_DP−u(4))*(box_xmin+ball(i)%radius) &
 +u(4)*(box_xmax−ball(i)%radius), &
 (1.0_DP−u(5))*(box_ymin+ball(i)%radius) &
 +u(5)*(box_ymax−ball(i)%radius)]
 ball(i)%vel = 200*[u(6)−u(7), u(8)−u(9)]
 end do
 end subroutine setup_balls

 subroutine draw_time (hdc,t)
 integer (HDC_T), intent (in) :: hdc
 real (DP), intent (in) :: t
 integer (COLORREF_T), parameter :: TXT_COLOR(3) = &
 [CYAN_COLOR, WHITE_COLOR, YELLOW_COLOR]
 ! We use SAVE just to save something at each call
 ! (draw_time() is called intensively, at each iteration)
 integer (COLORREF_T), save :: old_bk_color, old_text_color
 character (len=MAX_LEN), save :: buffer = ’’
 integer , save :: dummy

 old_bk_color = SetBkColor(hdc,BLACK_COLOR)
 old_text_color = SetTextColor(hdc,TXT_COLOR(tcolor))

 buffer = ’’
 write (buffer,*) ’Time : ’ ,t
 buffer = trim (adjustl (buffer))// ’ ’ //NUL
 dummy = index (buffer,NUL)
 !dummy = TextOut(hdc,xs(x_min),ys(y_max),buffer(1:dummy),dummy−1)
 dummy = TextOut(hdc,0,0,buffer(1:dummy),dummy−1)

 ! Restore previous text colors...
 dummy = SetBkColor(hdc,old_bk_color)
 dummy = SetTextColor(hdc,old_text_color)
 end subroutine draw_time

 subroutine draw_ball (hdc,p,r,col)
 integer (HDC_T), intent (in) :: hdc
 real (DP), intent (in) :: p(:), r
 integer (COLORREF_T), intent (in) :: col
 ! We use SAVE just to save something at each call
 ! (draw_ball() is called intensively, at each iteration)
 integer (HPEN_T), save :: hPen
 integer , save :: dummy

 ! Set the fill style
 dummy = int (SelectObject(hdc,GetStockObject(HOLLOW_BRUSH)),INT_T)

 hPen = CreatePen(PS_SOLID,1,col)
 dummy = int (SelectObject(hdc,hPen),INT_T)

 dummy = win32app_ellipse(hdc,p(1)−r,p(2)+r,p(1)+r,p(2)−r)

 dummy = win32app_ellipse(hdc,p(1)−(r−0.5_DP),p(2)+(r−0.5_DP), &
 p(1)+(r−0.5_DP),p(2)−(r−0.5_DP))

 dummy = win32app_ellipse(hdc,p(1)−(r−1.0_DP),p(2)+(r−1.0_DP), &
 p(1)+(r−1.0_DP),p(2)−(r−1.0_DP))

bounce_plus.f90
c:/msys64/home/angelo/programming/win32−fortran/bounce_plus/

4/10
07/06/2015

 dummy = DeleteObject(hPen)
 end subroutine draw_ball

 subroutine painting_setup (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 logical , save :: first = .true.
 integer (HDC_T) :: hdc, hdcMem
 integer :: dummy, i

 if (first) then
 call setup_balls ()
 first = .false.
 end if

 if (hBitmap /= NULL_T) then
 dummy = DeleteObject(hBitmap)
 end if

 hdc = GetDC(hWnd)
 hdcMem = CreateCompatibleDC(hdc)
 hBitmap = win32app_CreateCompatibleBitmap(hdc)
 dummy = ReleaseDC(hWnd,hdc)

 dummy = int (SelectObject(hdcMem,hBitmap),INT_T)

 ! Clear the off−screen DC (hdcMem) for the next drawing
 dummy = win32app_clearDC(hdcMem,BLACKNESS)

 ! Draw (on the off−screen DC) time and elastic balls at time t
 call draw_time (hdcMem,t)
 do i = 1, nballs
 call draw_ball (hdcMem,ball(i)%pos,ball(i)%radius,ball(i)%col)
 end do

 dummy = DeleteDC(hdcMem)
 end subroutine painting_setup

 subroutine set_nballs (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 character (len=MAX_FMT), parameter :: FMT = ’(f12.0)’
 type(XBox) :: xb

 call new_box (xb,hWnd,IDD_DATA_NBALLS,IDC_NBALLS,FMT, real (nballs,DP))

 if (run(xb) > 0) then

 ! Destroying the current balls...
 call balls_off ()

 ! We need nballs > 0, at least...
 nballs = int (abs (get(xb)))

 if (nballs < 2) then
 call error_msg (’NBalls < 2 !!!’ //NL &
 // ’You need at least 2 balls... ’ //NUL)
 nballs = 2
 end if

 ! Creating the new balls...
 call balls_on ()

 ! If you prefer to see something, uncomment the following...
 !call setup_balls()
 end if
 end subroutine set_nballs

 subroutine set_density (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 character (len=MAX_FMT), parameter :: FMT = ’(1pg12.5)’
 type(XBox) :: xb

 call new_box (xb,hWnd,IDD_DATA_DENSITY,IDC_DENSITY,FMT,density)

 if (run(xb) > 0) then
 density = get(xb)

 if (density < 0) then
 call error_msg (’Density < 0 !!!’ //NL &

bounce_plus.f90
c:/msys64/home/angelo/programming/win32−fortran/bounce_plus/

5/10
07/06/2015

 // ’Taking its absolute value... ’ //NUL)
 density = abs (density)
 end if
 end if
 end subroutine set_density

 subroutine set_stiffnes (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 character (len=MAX_FMT), parameter :: FMT = ’(1pg12.5)’
 type(XBox) :: xb

 call new_box (xb,hWnd,IDD_DATA_STIFFNES,IDC_STIFFNES,FMT,stiffnes)

 if (run(xb) > 0) then
 stiffnes = get(xb)

 if (stiffnes < 0) then
 call error_msg (’Stiffnes < 0 !!!’ //NL &
 // ’Taking its absolute value... ’ //NUL)
 stiffnes = abs (stiffnes)
 end if
 end if
 end subroutine set_stiffnes

 subroutine set_massbounds (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 character (len=MAX_FMT), parameter :: FMT = ’(1pg12.5)’
 type(XYBox) :: xyb

 call new_box (xyb,hWnd,IDD_DATA_MBOUNDS,IDC_MMIN,IDC_MMAX,FMT,m0,m1)

 if (run(xyb) > 0) then
 m0 = min (abs (get_x(xyb)), abs (get_y(xyb)))
 m1 = max(abs (get_x(xyb)), abs (get_y(xyb)))
 end if
 end subroutine set_massbounds

 subroutine set_timebounds (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 character (len=MAX_FMT), parameter :: FMT = ’(1pg12.5)’
 type(XYBox) :: xyb

 call new_box (xyb,hWnd,IDD_DATA_TTOT,IDC_TMIN,IDC_TMAX,FMT,t0,t1)

 if (run(xyb) > 0) then
 t0 = min (get_x(xyb),get_y(xyb))
 t1 = max(get_x(xyb),get_y(xyb))
 end if
 end subroutine set_timebounds

 subroutine set_tstep (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 character (len=MAX_FMT), parameter :: FMT = ’(1pg12.5)’
 type(XBox) :: xb

 call new_box (xb,hWnd,IDD_DATA_TSTEP,IDC_TSTEP,FMT,tstep)

 if (run(xb) > 0) then
 tstep = get(xb)

 if (tstep < 0) then
 call error_msg (’TStep < 0 !!!’ //NL &
 // ’Taking its absolute value... ’ //NUL)
 tstep = abs (tstep)
 end if
 end if
 end subroutine set_tstep

 subroutine set_tcolor (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 integer , parameter :: NUM_BUTTONS = 3
 character (len=*), parameter :: BUTTON_NAMES(NUM_BUTTONS) = [&
 ’&Cyan ’ , &
 ’&White ’ , &
 ’&Yellow’]
 type(RadioBox) :: rb

 call new_box (rb,hWnd,IDD_OPTIONS_TCOLOR,IDC_CYAN,BUTTON_NAMES, &

bounce_plus.f90
c:/msys64/home/angelo/programming/win32−fortran/bounce_plus/

6/10
07/06/2015

 NUM_BUTTONS,tcolor)

 if (run(rb) > 0) tcolor = get_current_button(rb)
 !print *, ’TCOLOR = ’,tcolor
 end subroutine set_tcolor

 subroutine help_dlg (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 type(AboutBox) :: ab
 integer :: dummy
 call new_box (ab,hWnd,IDD_ABOUT)
 dummy = run(ab)
 end subroutine help_dlg

 function process_command (hWnd,wParam)
 integer (BOOL_T) :: process_command
 integer (HWND_T), intent (in) :: hWnd
 integer (WPARAM_T), intent (in) :: wParam
 integer :: dummy

 run_flag = .false.

 select case (lo_word(int (wParam,DWORD_T)))
 case (IDM_FILE_EXIT)
 dummy = MessageBeep(64)
 if (ask_confirmation(hWnd, ’Sure you want to exit? ’ //NUL, &
 ’Exit?’ //NUL) == IDYES) then
 dummy = PostMessage(hWnd,WM_CLOSE,0_WPARAM_T,0_LPARAM_T)
 end if
 process_command = TRUE_T
 return

 case (IDM_DATA_NBALLS)
 call set_nballs (hWnd)
 process_command = TRUE_T
 return

 case (IDM_DATA_DENSITY)
 call set_density (hWnd)
 process_command = TRUE_T
 return

 case (IDM_DATA_STIFFNES)
 call set_stiffnes (hWnd)
 process_command = TRUE_T
 return

 case (IDM_DATA_MBOUNDS)
 call set_massbounds (hWnd)
 process_command = TRUE_T
 return

 case (IDM_DATA_TTOT)
 call set_timebounds (hWnd)
 process_command = TRUE_T
 return

 case (IDM_DATA_TSTEP)
 call set_tstep (hWnd)
 process_command = TRUE_T
 return

 case (IDM_DATA_XBOUNDS)
 call win32app_xbounds (hWnd,IDD_DATA_XBOUNDS,IDC_XMIN,IDC_XMAX)
 process_command = TRUE_T
 return

 case (IDM_DATA_YBOUNDS)
 call win32app_ybounds (hWnd,IDD_DATA_YBOUNDS,IDC_YMIN,IDC_YMAX)
 process_command = TRUE_T
 return

 case (IDM_OPTIONS_TCOLOR)
 call set_tcolor (hWnd)
 process_command = TRUE_T
 return

 case (IDM_RUNAPP)

bounce_plus.f90
c:/msys64/home/angelo/programming/win32−fortran/bounce_plus/

7/10
07/06/2015

 run_flag = .true.
 call setup_balls ()
 process_command = TRUE_T
 return

 case (IDM_HELP_ABOUT)
 call help_dlg (hWnd)
 process_command = TRUE_T
 return

 case default
 process_command = FALSE_T
 return
 end select
 end function process_command

 function WndProc(hWnd,iMsg,wParam,lParam) bind (C)
 !GCC$ ATTRIBUTES STDCALL :: WndProc
 integer (LRESULT_T) :: WndProc
 integer (HWND_T), value :: hWnd
 integer (UINT_T), value :: iMsg
 integer (WPARAM_T), value :: wParam
 integer (LPARAM_T), value :: lParam

 logical , save :: first = .true.
 integer :: dummy

 select case (iMsg)
 case (WM_CREATE)
 ! Creating the balls...
 call balls_on ()

 WndProc = 0
 return

 case (WM_SIZE)
 if (first) then
 call win32app_setup (lParam,−600.0_DP,600.0_DP)
 first = .false.
 else
 call win32app_setup (lParam)
 end if

 ! Getting the box boundaries... each time, maybe, the mapping changed...
 box_xmin = win32app_xmin()
 box_xmax = win32app_xmax()
 box_ymin = win32app_ymin()
 box_ymax = win32app_ymax()

 ! Now that the mapping has been defined, we can initialize the painting
 call painting_setup (hWnd)

 WndProc = 0
 return

 case (WM_COMMAND)
 if (process_command(hWnd,wParam) == TRUE_T) then
 WndProc = 0
 return
 end if
 ! ...else it continues with DefWindowProc

 case (WM_CLOSE)
 dummy = DestroyWindow(hWnd)
 WndProc = 0
 return

 case (WM_DESTROY)
 if (hBitmap /= NULL_T) then
 dummy = DeleteObject(hBitmap)
 end if

 ! Destroying the balls...
 call balls_off ()

 call PostQuitMessage (0)
 ! Commenting out the next two statements, it continues
 ! with DefWindowProc()

bounce_plus.f90
c:/msys64/home/angelo/programming/win32−fortran/bounce_plus/

8/10
07/06/2015

 WndProc = 0
 return
 end select

 WndProc = DefWindowProc(hWnd,iMsg,wParam,lParam)
 end function WndProc

 subroutine update_ball_position ()
 ! We use SAVE just to save something at each call
 ! (update_ball_position() is called intensively, at each iteration)
 real (DP), save :: force(2), ball_distance, dist_min, dst(2)
 integer , save :: i, j

 ! Test all elastic balls against each other.
 ! Calculate forces if they touch.
 do i = 1, nballs−1
 do j = i+1, nballs
 ! Distance between elastic balls (Pythagoras’ theorem)
 dst = ball(j)%pos−ball(i)%pos
 ball_distance = norm2 (dst)
 dist_min = ball(i)%radius+ball(j)%radius
 if (ball_distance < dist_min) then

 ! Cosine and sine to the angle between ball i and j
 ! (trigonometry): here ’force’ is a unit vector!
 force = dst/ball_distance

 ! Spring force (Hooke’s law of elasticity)
 ! Here ’force’ is the total force of ’i’ on ’j’ :
 ! (All capital letters are vectors)
 !
 ! F(i −> j) = −k * S = −k*(Bd−Dm) = −k*(|Bd|−|Dm|)*U
 ! U = Bd/|Bd|
 force = −stiffnes*(ball_distance−dist_min)*force

 ! F(i) = F(i)+F(j,i) = F(i)−F(i,j), F(j) = F(j)+F(i,j)
 ! being F(i,j) the force of ’i’ on ’j’
 ball(i)%frc = ball(i)%frc−force
 ball(j)%frc = ball(j)%frc+force
 end if
 end do
 end do

 ! Update acceleration, velocity, and position of elastic balls
 ! (using the Euler−Cromer 1st order integration algorithm)
 do i = 1, nballs
 ! Accelerate balls (acceleration = force / mass)
 ball(i)%acc = ball(i)%frc/ball(i)%mass

 ! Reset force vector
 ball(i)%frc = 0.0_DP

 ! Update velocity
 ! delta velocity = acceleration * delta time
 ! new velocity = old velocity + delta velocity
 ball(i)%vel = ball(i)%vel+ball(i)%acc*tstep

 ! Update position
 ! delta position = velocity * delta time
 ! new position = old position + delta position
 ball(i)%pos = ball(i)%pos+ball(i)%vel*tstep
 end do

 ! Keep elastic balls within screen boundaries
 do i = 1, nballs
 ! Right
 if (ball(i)%pos(1) > box_xmax−ball(i)%radius) then
 ball(i)%vel(1) = −ball(i)%vel(1)
 ball(i)%pos(1) = box_xmax−ball(i)%radius
 end if

 ! Left
 if (ball(i)%pos(1) < box_xmin+ball(i)%radius) then
 ball(i)%vel(1) = −ball(i)%vel(1)
 ball(i)%pos(1) = box_xmin+ball(i)%radius
 end if

 ! Top

bounce_plus.f90
c:/msys64/home/angelo/programming/win32−fortran/bounce_plus/

9/10
07/06/2015

 if (ball(i)%pos(2) > box_ymax−ball(i)%radius) then
 ball(i)%vel(2) = −ball(i)%vel(2)
 ball(i)%pos(2) = box_ymax−ball(i)%radius
 end if

 ! Bottom
 if (ball(i)%pos(2) < box_ymin+ball(i)%radius) then
 ball(i)%vel(2) = −ball(i)%vel(2)
 ball(i)%pos(2) = box_ymin+ball(i)%radius
 end if
 end do
 end subroutine update_ball_position

 subroutine paint_screen (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 ! We use SAVE just to save something at each call
 ! (paint_screen() is called intensively, at each iteration)
 integer (HDC_T), save :: hdc, hdcMem
 integer , save :: dummy, i

 if (hBitmap /= NULL_T) then
 hdc = GetDC(hWnd)
 hdcMem = CreateCompatibleDC(hdc)
 dummy = int (SelectObject(hdcMem,hBitmap),INT_T)

 ! Transfer the off−screen DC to the screen
 dummy = win32app_BitBlt(hdc,hdcMem)
 dummy = ReleaseDC(hWnd,hdc)

 if (t < t1 .and. run_flag) then
 t = t+tstep
 call update_ball_position ()
 end if

 ! Clear the off−screen DC (hdcMem) for the next drawing
 dummy = win32app_clearDC(hdcMem,BLACKNESS)

 ! Draw (on the off−screen DC) time and elastic balls at time t
 call draw_time (hdcMem,t)
 do i = 1, nballs
 call draw_ball (hdcMem,ball(i)%pos,ball(i)%radius,ball(i)%col)
 end do

 dummy = DeleteDC(hdcMem)
 end if
 end subroutine paint_screen
end module the_app

function WinMain (hInstance,hPrevInstance,lpCmdLine,nCmdShow) &
 bind (C, name= ’WinMain’)
 use rseed_rand
 use , intrinsic :: iso_c_binding , only : C_PTR, C_CHAR, c_sizeof, c_funloc, &
 C_FUNPTR, c_loc
 use win32 , only : BLACK_BRUSH, CS_HREDRAW, CS_VREDRAW, CW_USEDEFAULT, &
 DWORD_T, HINSTANCE_T, HWND_T, INT_T, NUL, NULL_PTR_T, NULL_T, &
 PM_REMOVE, WM_QUIT, WS_OVERLAPPEDWINDOW, UINT_T, &
 MSG_T, WNDCLASSEX_T, &
 arrow_cursor, CreateWindowEx, DispatchMessage, error_msg, Exit Process , &
 GetStockObject, LoadCursor, LoadIcon, make_int_resource, &
 make_int_resource_C_PTR, PeekMessage, RegisterClassEx, ShowWindow, &
 TranslateMessage, UpdateWindow
 use the_app , only : IDI_BOUNCE_PLUS, IDM_MAINMENU, &
 paint_screen, WndProc
 use rseed_rand
 implicit none
 !GCC$ ATTRIBUTES STDCALL :: WinMain
 integer (INT_T) :: WinMain
 integer (HINSTANCE_T), value :: hInstance
 integer (HINSTANCE_T), value :: hPrevInstance
 type(C_PTR) , value :: lpCmdLine ! LPSTR
 integer (INT_T), value :: nCmdShow

 character (kind= C_CHAR, len=128), target :: app_name = &
 ’Bounce_Plus’ //NUL
 character (kind= C_CHAR, len=*), parameter :: WINDOW_CAPTION = &
 ’Bouncing Balls’ //NUL
 type(WNDCLASSEX_T) :: WndClass
 integer (HWND_T) :: hWnd

bounce_plus.f90
c:/msys64/home/angelo/programming/win32−fortran/bounce_plus/

10/10
07/06/2015

 type(MSG_T) :: msg
 integer :: dummy

 ! To avoid some annoying warnings...
 integer (HINSTANCE_T) :: not_used_hPrevInstance
 type(C_PTR) :: not_used_lpCmdLine
 not_used_hPrevInstance = hPrevInstance
 not_used_lpCmdLine = lpCmdLine

 call rseed ()

 WndClass%cbSize = int (c_sizeof (Wndclass),UINT_T)
 WndClass%style = ior (CS_HREDRAW,CS_VREDRAW)
 WndClass%lpfnWndProc = c_funloc (WndProc)
 WndClass%cbClsExtra = 0
 WndClass%cbWndExtra = 0
 WndClass%hInstance = hInstance
 WndClass%hIcon = LoadIcon(hInstance,make_int_resource(IDI_BOUNCE_PLUS))
 WndClass%hCursor = LoadCursor(NULL_T,arrow_cursor())
 WndClass%hbrBackground = GetStockObject(BLACK_BRUSH)
 WndClass%lpszMenuName = make_int_resource_C_PTR(IDM_MAINMENU)
 WndClass%lpszClassName = c_loc (app_name(1:1))
 WndClass%hIconSm = LoadIcon(hInstance,make_int_resource(IDI_BOUNCE_PLUS))

 if (RegisterClassEx(WndClass) == 0) then
 call error_msg (’Window Registration Failure! ’ //NUL)
 call ExitProcess (0_UINT_T)
 WinMain = 0
 !return
 end if

 hWnd = CreateWindowEx(0_DWORD_T, &
 app_name, &
 WINDOW_CAPTION, &
 WS_OVERLAPPEDWINDOW, &
 CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT, &
 NULL_T,NULL_T,hInstance,NULL_PTR_T)

 if (hWnd == NULL_T) then
 call error_msg (’Window Creation Failure! ’ //NUL)
 call ExitProcess (0_UINT_T)
 WinMain = 0
 !return
 end if

 dummy = ShowWindow(hWnd,nCmdShow)
 dummy = UpdateWindow(hWnd)

 ! See: Charles Petzold "Programming Windows", 5th ed., pag. 162
 ! ’Random Rectangles’
 do
 if (PeekMessage(msg,NULL_T,0,0,PM_REMOVE) /= 0) then
 if (msg%message == WM_QUIT) exit
 dummy = TranslateMessage(msg)
 dummy = int (DispatchMessage(msg),INT_T)
 else
 call paint_screen (hWnd)
 end if
 end do

 call ExitProcess (int (msg%wParam,UINT_T))
 WinMain = 0
end function WinMain

bounce_plus.rc
c:/msys64/home/angelo/programming/win32−fortran/bounce_plus/

1/4
07/06/2015

//
// (Partial) Fortran Interface to the Windows API Library
// by Angelo Graziosi (firstname.lastnameATalice.it)
// Copyright Angelo Graziosi
//
// It is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
//
// RC file for "bounce_plus" app
//

#define IDI_BOUNCE_PLUS 1

IDI_BOUNCE_PLUS ICON DISCARDABLE "../common_icons/smiling_sun.ico"

#define IDM_MAINMENU 9000
#define IDM_FILE_EXIT 9010
#define IDM_DATA_NBALLS 9020
#define IDM_DATA_DENSITY 9021
#define IDM_DATA_STIFFNES 9022
#define IDM_DATA_MBOUNDS 9023
#define IDM_DATA_TTOT 9024
#define IDM_DATA_TSTEP 9025
#define IDM_DATA_XBOUNDS 9026
#define IDM_DATA_YBOUNDS 9027
#define IDM_OPTIONS_TCOLOR 9030
#define IDM_RUNAPP 9040
#define IDM_HELP_ABOUT 9999

IDM_MAINMENU MENU DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "E&xit...", IDM_FILE_EXIT
 END

 POPUP "&Data"
 BEGIN
 MENUITEM "&Number Of Balls...", IDM_DATA_NBALLS

MENUITEM SEPARATOR
MENUITEM "Ball &Density...", IDM_DATA_DENSITY
MENUITEM "Spring Sti&ffnes...", IDM_DATA_STIFFNES
MENUITEM "&Mass bounds...", IDM_DATA_MBOUNDS
MENUITEM SEPARATOR
MENUITEM "Time &Interval...", IDM_DATA_TTOT
MENUITEM "Time &Step...", IDM_DATA_TSTEP
MENUITEM SEPARATOR
MENUITEM "&X bounds...", IDM_DATA_XBOUNDS
MENUITEM "&Y bounds...", IDM_DATA_YBOUNDS

 END

 POPUP "&Options"
 BEGIN
 MENUITEM "Time &Color...", IDM_OPTIONS_TCOLOR
 END

 POPUP "&Run Application"
 BEGIN
 MENUITEM "R&un", IDM_RUNAPP
 END

 POPUP "&Help"
 BEGIN
 MENUITEM "&About...", IDM_HELP_ABOUT
 END
END

#include <windows.h>

#define IDC_STATIC −1

#define IDD_DATA_NBALLS 100
#define IDC_NBALLS 101

IDD_DATA_NBALLS DIALOG DISCARDABLE 0, 0, 284, 77
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Number Of Balls"

bounce_plus.rc
c:/msys64/home/angelo/programming/win32−fortran/bounce_plus/

2/4
07/06/2015

FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
 CTEXT "This program will shows bouncing balls in a box.",
 IDC_STATIC, 7, 7, 153, 18
 GROUPBOX "&Number Of Balls", IDC_STATIC, 13, 30, 186, 34
 EDITTEXT IDC_NBALLS, 35, 43, 60, 14, ES_AUTOHSCROLL
 LTEXT " ;−) ", IDC_STATIC, 97, 45, 20, 8
END

#define IDD_DATA_DENSITY 200
#define IDC_DENSITY 201

IDD_DATA_DENSITY DIALOG DISCARDABLE 0, 0, 284, 77
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Ball Density"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
 CTEXT "This program will shows bouncing balls in a box.",
 IDC_STATIC, 7, 7, 153, 18
 GROUPBOX "Ball &Density", IDC_STATIC, 13, 30, 186, 34
 EDITTEXT IDC_DENSITY, 35, 43, 60, 14, ES_AUTOHSCROLL
 LTEXT " g/cm**3", IDC_STATIC, 97, 45, 60, 8
END

#define IDD_DATA_STIFFNES 300
#define IDC_STIFFNES 301

IDD_DATA_STIFFNES DIALOG DISCARDABLE 0, 0, 284, 77
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Spring Stiffnes"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
 CTEXT "This program will shows bouncing balls in a box.",
 IDC_STATIC, 7, 7, 153, 18
 GROUPBOX "Spring Sti&ffnes", IDC_STATIC, 13, 30, 186, 34
 EDITTEXT IDC_STIFFNES, 35, 43, 60, 14, ES_AUTOHSCROLL
 LTEXT " dyn/cm", IDC_STATIC, 97, 45, 60, 8
END

#define IDD_DATA_MBOUNDS 400
#define IDC_MMIN 401
#define IDC_MMAX 402

IDD_DATA_MBOUNDS DIALOG DISCARDABLE 0, 0, 284, 97
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Mass bounds"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
 CTEXT "This program will shows bouncing balls in a box.",
 IDC_STATIC, 7, 7, 153, 18
 GROUPBOX "&Mass bounds", IDC_STATIC, 13, 30, 186, 54
 LTEXT "MM&IN : ", IDC_STATIC, 35, 45, 30, 8
 EDITTEXT IDC_MMIN, 85, 43, 60, 14, ES_AUTOHSCROLL
 LTEXT " g", IDC_STATIC, 147, 45, 20, 8
 LTEXT "MM&AX : ", IDC_STATIC, 35, 65, 30, 8
 EDITTEXT IDC_MMAX, 85, 63, 60, 14, ES_AUTOHSCROLL
 LTEXT " g", IDC_STATIC, 147, 65, 20, 8
END

#define IDD_DATA_TTOT 500
#define IDC_TMIN 501
#define IDC_TMAX 502

IDD_DATA_TTOT DIALOG DISCARDABLE 0, 0, 284, 97
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Time Interval"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14

bounce_plus.rc
c:/msys64/home/angelo/programming/win32−fortran/bounce_plus/

3/4
07/06/2015

 CTEXT "This program will shows a ball bouncing in a rectangle.",
 IDC_STATIC, 7, 7, 153, 18
 GROUPBOX "Time &Interval", IDC_STATIC, 13, 30, 186, 54
 LTEXT "TM&IN : ", IDC_STATIC, 35, 45, 30, 8
 EDITTEXT IDC_TMIN, 85, 43, 60, 14, ES_AUTOHSCROLL
 LTEXT " s", IDC_STATIC, 147, 45, 20, 8
 LTEXT "TM&AX : ", IDC_STATIC, 35, 65, 30, 8
 EDITTEXT IDC_TMAX, 85, 63, 60, 14, ES_AUTOHSCROLL
 LTEXT " s", IDC_STATIC, 147, 65, 20, 8
END

#define IDD_DATA_TSTEP 600
#define IDC_TSTEP 601

IDD_DATA_TSTEP DIALOG DISCARDABLE 0, 0, 284, 77
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Time Step"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
 CTEXT "This program will shows a ball bouncing in a rectangle.",
 IDC_STATIC, 7, 7, 153, 18
 GROUPBOX "Time &Step", IDC_STATIC, 13, 30, 186, 34
 EDITTEXT IDC_TSTEP, 35, 43, 60, 14, ES_AUTOHSCROLL
 LTEXT " s", IDC_STATIC, 97, 45, 20, 8
END

#define IDD_DATA_XBOUNDS 700
#define IDC_XMIN 701
#define IDC_XMAX 702

IDD_DATA_XBOUNDS DIALOG DISCARDABLE 0, 0, 284, 97
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "X bounds"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
 CTEXT "This program will shows a ball bouncing in a rectangle.",
 IDC_STATIC, 7, 7, 153, 18
 GROUPBOX "&X Bounds", IDC_STATIC, 13, 30, 186, 54
 LTEXT "XM&IN : ", IDC_STATIC, 35, 45, 30, 8
 EDITTEXT IDC_XMIN, 85, 43, 60, 14, ES_AUTOHSCROLL
 LTEXT " cm", IDC_STATIC, 147, 45, 20, 8
 LTEXT "XM&AX : ", IDC_STATIC, 35, 65, 30, 8
 EDITTEXT IDC_XMAX, 85, 63, 60, 14, ES_AUTOHSCROLL
 LTEXT " cm", IDC_STATIC, 147, 65, 20, 8
END

#define IDD_DATA_YBOUNDS 800
#define IDC_YMIN 801
#define IDC_YMAX 802

IDD_DATA_YBOUNDS DIALOG DISCARDABLE 0, 0, 284, 97
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Y bounds"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
 CTEXT "This program will shows a ball bouncing in a rectangle.",
 IDC_STATIC, 7, 7, 153, 18
 GROUPBOX "&Y Bounds", IDC_STATIC, 13, 30, 186, 54
 LTEXT "YM&IN : ", IDC_STATIC, 35, 45, 30, 8
 EDITTEXT IDC_YMIN, 85, 43, 60, 14, ES_AUTOHSCROLL
 LTEXT " cm", IDC_STATIC, 147, 45, 20, 8
 LTEXT "YM&AX : ", IDC_STATIC, 35, 65, 30, 8
 EDITTEXT IDC_YMAX, 85, 63, 60, 14, ES_AUTOHSCROLL
 LTEXT " cm", IDC_STATIC, 147, 65, 20, 8
END

#define IDD_OPTIONS_TCOLOR 900
#define IDC_CYAN 901
#define IDC_WHITE 902
#define IDC_YELLOW 903

IDD_OPTIONS_TCOLOR DIALOG DISCARDABLE 0, 0, 284, 117

bounce_plus.rc
c:/msys64/home/angelo/programming/win32−fortran/bounce_plus/

4/4
07/06/2015

STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Time Color"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
 CTEXT "This program will shows bouncing balls in a box.",
 IDC_STATIC, 7, 7, 153, 18
 GROUPBOX "Time &Color", IDC_STATIC, 13, 30, 186, 74
 RADIOBUTTON "&Cyan", IDC_CYAN, 35, 45, 60, 8
 RADIOBUTTON "&White", IDC_WHITE, 35, 65, 60, 8
 RADIOBUTTON "&Yellow", IDC_YELLOW, 35, 85, 60, 8
END

#define IDD_ABOUT 999

IDD_ABOUT DIALOG DISCARDABLE 0, 0, 239, 66
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "About Box"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 174, 18, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 174, 35, 50, 14
 GROUPBOX "About this program...", IDC_STATIC, 7, 7, 225, 52
 CTEXT "A Double Buffering Method Demo\n\nby Angelo Graziosi",
 IDC_STATIC, 16, 18, 144, 33
END

poisson2D.f90
c:/msys64/home/angelo/programming/win32−fortran/poisson2D/

1/17
07/06/2015

!
! (Partial) Fortran Interface to the Windows API Library
! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi
!
! It is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
!
! HOW TO BUILD (MSYS2/MINGW32/MINGW64 shell)
!
! cd ~/programming/win32−fortran/poisson2D
!
! rm −rf {*.mod,*.res,~/programming/modules/*} && \
! windres poisson2D.rc −O coff −o poisson2D.res && \
! gfortran −O3 −Wall −mwindows −J ~/programming/modules \
! ~/programming/basic−modules/basic_mods.f90 \
! ../{win32.f90,win32boxes.f90,win32app.f90} \
! poisson2D.f90 poisson2D.res −o poisson2D.out && \
! rm −rf {*.mod,*.res,~/programming/modules/*}
!
! In MINGW32/MINGW64, add ’−static’ and:
!
! poisson2D.out ==> poisson2D−mingw32/mingw64
!
!
! DESCRIPTION
! Boundary Value Problem for Poisson Equation.
! We solve the Dirichlet problem for Poisson equation in two
! dimension with overrelaxation of Gauss−Seidel method.
! The equation is
!
! Uxx+Uyy = −S(x,y)
!
! where Uxx (Uyy) is the 2nd partial derivative w.r.t. x (y) of U(x,y),
! the potential. −S(x,y) is the charge density.
!
! References
! Press W.H., Numerical Recipes, C.U.P
! Karlen D., Computational Physics, Carleton University
! Koonin S.E., Computational Physics, Addison−Wesley
!
! Remember that:
!
! int(0,UINT_T) −−> 0_UINT_T
! int(0,WPARAM_T) −−> 0_WPARAM_T
! int(0,LPARAM_T) −−> 0_LPARAM_T
!

! A new implementation of shade.kumac PAW macro. See
! http://paw.web.cern.ch/paw/allfaqs.html
module color_map
 use win32 , only : COLORREF_T, RGB
 implicit none
 private

 integer , parameter :: NMXPT = 20

 integer , parameter , public :: MAXCOLOURINDEX = 255
 integer , parameter , public :: MAXCOLOURS = MAXCOLOURINDEX+1

 integer (COLORREF_T), public :: crColors(0:MAXCOLOURINDEX)

 integer :: npt, idx(NMXPT)
 integer :: r(NMXPT), g(NMXPT), b(NMXPT)

 public :: set_color_map

contains

 subroutine set_shade (idxi,ri,gi,bi)
 integer , intent (in) :: idxi, ri, gi, bi
 if (idxi < 0) then
 npt = 0
 return
 end if
 npt = npt+1
 if (npt > NMXPT) then

poisson2D.f90
c:/msys64/home/angelo/programming/win32−fortran/poisson2D/

2/17
07/06/2015

 write (*,*) ’Error: too many colours’
 stop
 endif
 idx(npt) = idxi
 r(npt) = ri
 g(npt) = gi
 b(npt) = bi
 end subroutine set_shade

 subroutine shade ()
 integer :: i, ii, i1, i2, j, n, rs, gs, bs, r1, g1, b1, r2, g2, b2
 real :: scale
 if (npt < 2) then
 write (*,*) ’Error: at least two colours are needed’
 stop
 endif
 do i = 2, npt
 j = i−1
 i1 = idx(j)
 i2 = idx(i)
 r1 = r(j)
 g1 = g(j)
 b1 = b(j)
 r2 = r(i)
 g2 = g(i)
 b2 = b(i)
 n = i2−i1+1
 do ii = i1, i2
 scale = (ii−i1)/(n−1.0)
 rs = int ((r2 − r1)*scale + r1)
 gs = int ((g2 − g1)*scale + g1)
 bs = int ((b2 − b1)*scale + b1)

 crColors(ii) = RGB(rs,gs,bs)
 enddo
 enddo
 end subroutine shade

 subroutine set_color_map ()
 !crColors(0) = RGB(0,0,0) ! BLACK
 !crColors(255) = RGB(255,255,255) ! WHITE

 ! The first call to set_shade() MUST be this INITIALIZATION
 call set_shade (−1,0,0,0)

 call set_shade (0, 0, 0,128)
 call set_shade (40, 0, 0,255)
 call set_shade (100, 0,255,255)
 call set_shade (120, 0,255,128)
 call set_shade (160,255,255, 0)
 call set_shade (255,128, 0, 0)
 call shade ()
 end subroutine set_color_map
end module color_map

module the_app
 use kind_consts , only : DP
 use color_map
 use AboutBox_class
 use XBox_class
 use XYBox_class
 use RadioBox_class
 use win32 , only : BLACK_COLOR, BLACKNESS, COLORREF_T, BOOL_T, DWORD_T, &
 FALSE_T, HBITMAP_T, HBRUSH_T, HDC_T, HINSTANCE_T, HWND_T, IDYES, &
 INT_T, LPARAM_T, LRESULT_T, MAX_FMT, MAX_LEN, NL, NUL, NULL_T, &
 TA_CENTER, TA_LEFT, TRUE_T, UINT_T, VK_ESCAPE, WHITE_COLOR, WM_CHAR, &
 WM_CLOSE, WM_COMMAND, WM_CREATE, WM_DESTROY, WM_SIZE, WORD_T, &
 WPARAM_T, &
 ask_confirmation, CreateCompatibleDC, CreateSolidBrush, &
 DefWindowProc, DeleteDC, DeleteObject, DestroyWindow, error_msg, &
 GetDC, GetStockObject, lo_word, MessageBeep, PostMessage, &
 PostQuitMessage, ReleaseDC, SelectObject, SetBkColor, SetTextAlign, &
 SetTextColor
 use win32app , only : box_type, win32app_BitBlt, win32app_clearDC, &
 win32app_CreateCompatibleBitmap, win32app_fillbox, win32app_setup, &
 win32app_textout, win32app_xmin, win32app_xmax, win32app_ymax
 implicit none
 private

poisson2D.f90
c:/msys64/home/angelo/programming/win32−fortran/poisson2D/

3/17
07/06/2015

 integer (WORD_T), parameter , public :: IDI_POISSON2D = 1
 integer (WORD_T), parameter , public :: IDM_MAINMENU = 9000

 integer (WORD_T), parameter :: IDM_FILE_EXIT = 9010
 integer (WORD_T), parameter :: IDM_DATA_NDIV = 9020
 integer (WORD_T), parameter :: IDM_DATA_MAXI = 9021
 integer (WORD_T), parameter :: IDM_DATA_EPS = 9022
 integer (WORD_T), parameter :: IDM_DATA_OMEGA = 9023
 integer (WORD_T), parameter :: IDM_DATA_XBOUNDS = 9024
 integer (WORD_T), parameter :: IDM_DATA_YBOUNDS = 9025
 integer (WORD_T), parameter :: IDM_DATA_NSOUT = 9026
 integer (WORD_T), parameter :: IDM_DATA_PHILIMITS = 9027
 integer (WORD_T), parameter :: IDM_OPTIONS_CFGTYPE = 9030
 integer (WORD_T), parameter :: IDM_OPTIONS_FLDTYPE = 9031
 integer (WORD_T), parameter :: IDM_RUNAPP = 9040
 integer (WORD_T), parameter :: IDM_HELP_DISCLAIMER = 9998
 integer (WORD_T), parameter :: IDM_HELP_ABOUT = 9999

 !integer(WORD_T), parameter, public :: IDC_STATIC = −1

 integer (WORD_T), parameter :: IDD_DATA_NDIV = 100
 integer (INT_T), parameter :: IDC_NDIV = 101

 integer (WORD_T), parameter :: IDD_DATA_MAXI = 200
 integer (INT_T), parameter :: IDC_MAXI = 201

 integer (WORD_T), parameter :: IDD_DATA_EPS = 300
 integer (INT_T), parameter :: IDC_EPS = 301

 integer (WORD_T), parameter :: IDD_DATA_OMEGA = 400
 integer (INT_T), parameter :: IDC_OMEGA = 401

 integer (WORD_T), parameter :: IDD_DATA_XBOUNDS = 500
 integer (INT_T), parameter :: IDC_ULEFT = 501
 integer (INT_T), parameter :: IDC_URIGHT = 502

 integer (WORD_T), parameter :: IDD_DATA_YBOUNDS = 600
 integer (INT_T), parameter :: IDC_UBOTTOM = 601
 integer (INT_T), parameter :: IDC_UTOP = 602

 integer (WORD_T), parameter :: IDD_DATA_NSOUT = 700
 integer (INT_T), parameter :: IDC_NSOUT = 701

 integer (WORD_T), parameter :: IDD_DATA_PHILIMITS = 800
 integer (INT_T), parameter :: IDC_PHIMIN = 801
 integer (INT_T), parameter :: IDC_PHIMAX = 802

 integer (WORD_T), parameter :: IDD_OPTIONS_CFGTYPE = 900
 integer (INT_T), parameter :: IDC_ONEBOX = 901
 integer (INT_T), parameter :: IDC_TWOBOX = 902
 integer (INT_T), parameter :: IDC_CONDENSER = 903
 integer (INT_T), parameter :: IDC_THREECHARGES = 904
 integer (INT_T), parameter :: IDC_CHARGEDLINE = 905
 integer (INT_T), parameter :: ONE_BOX = 1
 integer (INT_T), parameter :: TWO_BOX = 2
 integer (INT_T), parameter :: CONDENSER = 3
 integer (INT_T), parameter :: THREE_CHARGES = 4
 integer (INT_T), parameter :: CHARGED_LINE = 5

 integer (WORD_T), parameter :: IDD_OPTIONS_FLDTYPE = 950
 integer (INT_T), parameter :: IDC_POTENTIAL = 951
 integer (INT_T), parameter :: IDC_GRADIENT = 952
 integer (INT_T), parameter :: POTENTIAL_FLD = 1
 integer (INT_T), parameter :: GRADIENT_FLD = 2

 integer (WORD_T), parameter :: IDD_DISCLAIMER = 998
 integer (WORD_T), parameter :: IDD_ABOUT = 999

 ! COMMON data
 integer (HBITMAP_T) :: hBitmap = NULL_T
 logical :: run_flag = .true.
 real (DP) :: box_xmin, box_xmax, box_ymax

 ! Application data, strictly speaking...
 logical :: converg = .false., not_converg = .true.
 integer :: ndiv = 100, max_iter = 100, count_iter = 0, nsout = 10, &
 cfg_type = ONE_BOX, fld_type = POTENTIAL_FLD

poisson2D.f90
c:/msys64/home/angelo/programming/win32−fortran/poisson2D/

4/17
07/06/2015

 real (DP) :: eps = 0.0001_DP, omega = 1.8_DP
 real (DP) :: u_left = 1.0_DP, u_right = 0.0_DP, &
 u_bottom = 0.0_DP, u_top = 0.0_DP, &
 phi_min = 0.0_DP, phi_max = 1.0_DP
 real (DP) :: dphi = 0.0_DP, h = 0.0_DP, hq = 0.0_DP, h2 = 0.0_DP, &
 omega1 = 0.0_DP, omega4 = 0.0_DP, &
 energy = 0.0_DP, energy_old = 0.0_DP

 ! Dynamic memory...
 real (DP), target , allocatable :: u(:,:),f(:,:)
 real (DP), allocatable :: s(:,:)
 real (DP), pointer :: phi(:,:) => null()
 logical , allocatable :: b(:,:)

 public :: paint_screen, WndProc

contains

 subroutine grid_on ()
 integer :: ierr

 allocate (u(0:ndiv,0:ndiv),stat=ierr)
 if (ierr /= 0) then
 write (*,*) ’*** FATAL ERROR ***’
 write (*,*) ’U: Allocation request denied’
 stop
 end if

 allocate (s(0:ndiv,0:ndiv),stat=ierr)
 if (ierr /= 0) then
 write (*,*) ’*** FATAL ERROR ***’
 write (*,*) ’S: Allocation request denied’
 stop
 end if

 allocate (f(0:ndiv,0:ndiv),stat=ierr)
 if (ierr /= 0) then
 write (*,*) ’*** FATAL ERROR ***’
 write (*,*) ’F: Allocation request denied’
 stop
 end if

 allocate (b(0:ndiv,0:ndiv),stat=ierr)
 if (ierr /= 0) then
 write (*,*) ’*** FATAL ERROR ***’
 write (*,*) ’B: Allocation request denied’
 stop
 end if

 ! Now that all is allocated, we can associate the pointer
 if (fld_type == POTENTIAL_FLD) then
 phi => u
 else
 phi => f
 end if
 end subroutine grid_on

 subroutine grid_off ()
 integer :: ierr

 if (allocated (b)) deallocate (b,stat=ierr)
 if (ierr /= 0) then
 write (*,*) ’*** FATAL ERROR ***’
 write (*,*) ’B: Deallocation request denied’
 stop
 end if

 if (allocated (f)) deallocate (f,stat=ierr)
 if (ierr /= 0) then
 write (*,*) ’*** FATAL ERROR ***’
 write (*,*) ’F: Deallocation request denied’
 stop
 end if

 if (allocated (s)) deallocate (s,stat=ierr)
 if (ierr /= 0) then
 write (*,*) ’*** FATAL ERROR ***’
 write (*,*) ’S: Deallocation request denied’

poisson2D.f90
c:/msys64/home/angelo/programming/win32−fortran/poisson2D/

5/17
07/06/2015

 stop
 end if

 if (allocated (u)) deallocate (u,stat=ierr)
 if (ierr /= 0) then
 write (*,*) ’*** FATAL ERROR ***’
 write (*,*) ’U: Deallocation request denied’
 stop
 end if

 ! Now that all is deallocated, we can deassociate the pointer
 nullify (phi)
 end subroutine grid_off

 subroutine fcn_one_box (x,y,u,s,b)
 real (DP), intent (in) :: x, y
 real (DP), intent (out) :: u, s
 logical , intent (out) :: b
 real (DP) :: not_used_x, not_used_y
 not_used_x = x
 not_used_y = y
 u = 0.0_DP
 s = 0.0_DP
 b = .false.
 end subroutine fcn_one_box

 subroutine fcn_two_box (x,y,u,s,b)
 real (DP), intent (in) :: x, y
 real (DP), intent (out) :: u, s
 logical , intent (out) :: b
 ! A box inside a box without charge. The inner box is
 ! (0.25,0.25) − (0.75,0.75), but the boundary conditions are assigned
 ! ONLY on its perimeter, NOT on its inner points!!!
 ! (We have a kind of square ring...)
 integer :: i, i1, i2, j, j1, j2

 i1 = int (0.25_DP/h)
 i2 = int (0.75_DP/h)

 j1 = i1
 j2 = i2

 i = int (x/h)
 j = int (y/h)

 s = 0.0_DP

 if (((i == i1 .or. i == i2) .and. (j1 <= j .and. j <= j2)) .or. &
 ((j == j1 .or. j == j2) .and. (i1 <= i .and. i <= i2))) then
 u = 1.0_DP
 b = .true.
 else
 u = 0.0_DP
 b = .false.
 end if
 end subroutine fcn_two_box

 subroutine fcn_condenser (x,y,u,s,b)
 real (DP), intent (in) :: x, y
 real (DP), intent (out) :: u, s
 logical , intent (out) :: b
 ! A Condenser inside a box without charge
 ! The condenser plates are at 0.25 and 0.75
 integer :: i, i1, i2, j, j1, j2

 i1 = int (0.25_DP/h)
 i2 = int (0.75_DP/h)

 j1 = i1
 j2 = i2

 i = int (x/h)
 j = int (y/h)

 s = 0.0_DP

 if ((i == i1) .and. (j1 <= j .and. j <= j2)) then
 u = 1.0_DP

poisson2D.f90
c:/msys64/home/angelo/programming/win32−fortran/poisson2D/

6/17
07/06/2015

 b = .true.
 else if ((i == i2) .and. (j1 <= j .and. j <= j2)) then
 u = −1.0_DP
 b = .true.
 else
 u = 0.0_DP
 b = .false.
 end if
 end subroutine fcn_condenser

 function delta (x,hwhm)
 real (DP) :: delta
 real (DP), intent (in) :: x, hwhm
 real (DP), parameter :: PI = 3.14159265358979323846_DP
 delta = hwhm/(PI*(hwhm*hwhm+x*x))
 end function delta

 function theta (x)
 real (DP) :: theta
 real (DP), intent (in) :: x
 if (x > 0.0_DP) then
 theta = 1.0_DP
 else
 theta = 0.0_DP
 end if
 end function theta

 subroutine fcn_three_charges (x,y,u,s,b)
 real (DP), intent (in) :: x, y
 real (DP), intent (out) :: u, s
 logical , intent (out) :: b
 real (DP), parameter :: HWHM = 0.0005_DP

 u = 0.0_DP
 b = .false.
 s = 0.1_DP*(delta(x−0.25_DP,HWHM)*delta(y−0.25_DP,HWHM) &
 +delta(x−0.75_DP,HWHM)*delta(y−0.25_DP,HWHM) &
 −delta(x−0.5_DP,HWHM)*delta(y−0.75_DP,HWHM))
 end subroutine fcn_three_charges

 subroutine fcn_charged_line (x,y,u,s,b)
 real (DP), intent (in) :: x, y
 real (DP), intent (out) :: u, s
 logical , intent (out) :: b
 real (DP), parameter :: HWHM = 0.0005_DP
 real (DP) :: not_used_y

 not_used_y = y

 u = 0.0_DP
 b = .false.

 s = delta(x−0.5_DP,HWHM)*(theta(x−0.25_DP)−theta(x−0.75_DP))
 end subroutine fcn_charged_line

 function get_grid_energy ()
 real (DP) :: get_grid_energy
 integer , save :: i, j
 real (DP), save :: sum1, sum2, ff

 ! Koonin’s formula (6.7):
 !
 ! E = 0.5*Sum(i=1,N)Sum(j=1,N)[(u(i,j)−u(i−1,j))**2+(u(i,j)−u(i,j−1))**2]
 ! −h*h*Sum(i=1,N−1)Sum(j=1,N−1)[S(i,j)*u(i,j)]
 !

 sum1 = 0.0_DP
 sum2 = 0.0_DP

 do i = 1, ndiv
 do j = 1, ndiv

 ! The (length of the) gradient
 ff = hypot (u(i,j)−u(i−1,j),u(i,j)−u(i,j−1))

 f(i,j) = ff

 ! The total sum of the gradient squared

poisson2D.f90
c:/msys64/home/angelo/programming/win32−fortran/poisson2D/

7/17
07/06/2015

 sum1 = sum1+ff*ff

 ! On i == ndiv, j == ndiv we have s == 0: this means summing
 ! for i = 1,N−1, j = 1,N−1
 sum2 = sum2+s(i,j)*u(i,j)
 end do
 end do

 ! Completing the calculus of the field.
 ! We assume the continuity of the field
 f(1:ndiv,0) = f(1:ndiv,1)
 f(0,1:ndiv) = f(1,1:ndiv)
 f(0,0) = f(1,1)

 ! s(i,j) = hq*S(i*h,j*h)
 get_grid_energy = 0.5_DP*sum1−sum2
 end function get_grid_energy

 subroutine setup_grid ()
 real (DP) :: x, y
 integer :: i, j

 ! Iterations initialization
 count_iter = 0

 ! Grid initialization
 ! The method, as you can see, NEVER uses the values of density s(:,:) on
 ! boundaries! This is used as a trick in computing the energy: we
 ! set s(:,:) on boundary to ZERO.
 ! b(i,j) == true if in x = i*h, y = j*h there is a boundary condition
 !
 ! First the bottom and top side...
 do i = 0, ndiv
 u(i,0) = u_bottom
 u(i,ndiv) = u_top
 s(i,0) = 0.0_DP
 s(i,ndiv) = 0.0_DP
 f(i,0) = 0.0_DP
 f(i,ndiv) = 0.0_DP
 b(i,0) = .true.
 b(i,ndiv) = .true.
 end do

 ! ...then the left and right side...
 do j = 0, ndiv
 u(0,j) = u_left
 u(ndiv,j) = u_right
 s(0,j) = 0.0_DP
 s(ndiv,j) = 0.0_DP
 f(0,j) = 0.0_DP
 f(ndiv,j) = 0.0_DP
 b(0,j) = .true.
 b(ndiv,j) = .true.
 end do

 ! ...then the inner nodes
 do i = 1, ndiv−1
 x = i*h
 do j = 1, ndiv−1
 y = j*h
 select case (cfg_type)
 case (ONE_BOX)
 call fcn_one_box (x,y,u(i,j),s(i,j),b(i,j))
 case (TWO_BOX)
 call fcn_two_box (x,y,u(i,j),s(i,j),b(i,j))
 case (CONDENSER)
 call fcn_condenser (x,y,u(i,j),s(i,j),b(i,j))
 case (THREE_CHARGES)
 call fcn_three_charges (x,y,u(i,j),s(i,j),b(i,j))
 case (CHARGED_LINE)
 call fcn_charged_line (x,y,u(i,j),s(i,j),b(i,j))

 case default
 call fcn_one_box (x,y,u(i,j),s(i,j),b(i,j))
 end select

 s(i,j) = s(i,j)*hq
 f(i,j) = 0.0_DP

poisson2D.f90
c:/msys64/home/angelo/programming/win32−fortran/poisson2D/

8/17
07/06/2015

 end do
 end do

 ! Initialization of energy and convergence flags
 energy = get_grid_energy()
 converg = .false.
 not_converg = .true.
 end subroutine setup_grid

 subroutine draw_colorbar (hdc)
 integer (HDC_T), intent (in) :: hdc
 !
 ! A simple colour bar scale
 !
 character (len=*), parameter :: NAME_FLD(2) = [&
 ’Potential’ , &
 ’Gradient ’]
 integer , parameter :: SCALE_PTS = 5
 integer (COLORREF_T), save :: old_bk_color, old_text_color
 integer (UINT_T), save :: old_align
 integer (HBRUSH_T), save :: hBrush
 character (len=MAX_LEN), save :: buffer = ’’
 integer , save :: i
 real (DP), save :: bar_width, delta_y, phi, delta_phi
 type(box_type) , save :: bar_box
 integer , save :: dummy

 ! The space on the right of the grid is in [1,box_xmax], the bar width is
 ! 1/15
 bar_width = (box_xmax−1.0_DP)/15

 ! In X, the bar is in [1+7*bar_width,1+8*bar_width], i.e at position 8
 ! (7+1+7 = 15)
 bar_box%x1 = 1.0_DP+7.0_DP*bar_width
 bar_box%x2 = 1.0_DP+8.0_DP*bar_width

 ! In Y the bar is in [0,1] and composed of 0, 1,... MAXCOLOURINDEX
 ! filled slices
 delta_y = (1.0_DP−0.0_DP) / MAXCOLOURS

 bar_box%y2 = 0.0_DP
 do i = 0, MAXCOLOURINDEX
 bar_box%y1 = bar_box%y2
 bar_box%y2 = bar_box%y2+delta_y

 hBrush = CreateSolidBrush(crColors(i))
 dummy = int (SelectObject(hdc,hBrush),INT_T)

 dummy = win32app_fillbox(hdc,bar_box,hBrush)

 dummy = DeleteObject(hBrush)
 end do

 delta_phi = (phi_max−phi_min)/(SCALE_PTS−1)
 delta_y = (1.0_DP−0.0_DP)/(SCALE_PTS−1)

 old_bk_color = SetBkColor(hdc,BLACK_COLOR)
 old_text_color = SetTextColor(hdc,WHITE_COLOR)
 old_align = SetTextAlign(hdc,TA_LEFT)

 phi = phi_min ! U
 bar_box%x2 = bar_box%x2+0.2_DP*bar_width
 bar_box%y2 = 0.0_DP+0.2_DP*bar_width
 do i = 1, SCALE_PTS
 buffer = ’’
 write (buffer, ’(f10.4)’) phi
 buffer = trim (adjustl (buffer))// ’ ’ //NUL
 dummy = win32app_textout(hdc,bar_box%x2,bar_box%y2,buffer)

 phi = phi+delta_phi
 bar_box%y2 = bar_box%y2+delta_y
 end do

 bar_box%x2 = bar_box%x2+0.8_DP*bar_width
 bar_box%y2 = bar_box%y2−3*delta_y/2

 buffer = ’’
 write (buffer,*) NAME_FLD(fld_type)

poisson2D.f90
c:/msys64/home/angelo/programming/win32−fortran/poisson2D/

9/17
07/06/2015

 buffer = trim (adjustl (buffer))// ’ ’ //NUL
 dummy = win32app_textout(hdc,bar_box%x2,bar_box%y2,buffer)

 ! Restore previous text colors...
 dummy = SetTextAlign(hdc,old_align)
 dummy = SetTextColor(hdc,old_text_color)
 dummy = SetBkColor(hdc,old_bk_color)
 end subroutine draw_colorbar

 subroutine draw_grid (hdc)
 integer (HDC_T), intent (in) :: hdc
 character (len=*), parameter :: FMT = ’(a,i6,2(a,1pg14.7),a,i6,a,1pg14.7)’
 ! We use SAVE just to save something at each call
 ! (draw_time() is called intensively, at each iteration)
 integer (COLORREF_T), save :: old_bk_color, old_text_color
 integer (UINT_T), save :: old_align
 integer (HBRUSH_T), save :: hBrush
 character (len=MAX_LEN), save :: buffer = ’’
 type(box_type) , save :: box
 integer , save :: i, j, i_col
 real (DP), save :: x, y
 integer , save :: dummy

 old_bk_color = SetBkColor(hdc,BLACK_COLOR)
 old_text_color = SetTextColor(hdc,WHITE_COLOR)
 old_align = SetTextAlign(hdc,TA_CENTER)

 x = 0.5_DP
 y = 0.5_DP*(1.0_DP+box_ymax)
 buffer = ’’
 write (buffer,FMT) ’NDIV = ’ ,ndiv, ’ OMEGA = ’ ,omega, ’ EPS = ’ ,eps, &
 ’ COUNT = ’ ,count_iter, ’ E = ’ ,energy
 buffer = trim (adjustl (buffer))// ’ ’ //NUL
 dummy = win32app_textout(hdc,x,y,buffer)

 ! Restore previous text colors...
 dummy = SetTextAlign(hdc,old_align)
 dummy = SetTextColor(hdc,old_text_color)
 dummy = SetBkColor(hdc,old_bk_color)

 x = −h2
 box%x2 = x
 do i = 0, ndiv
 box%x1 = box%x2

 x = x+h
 box%x2 = x

 y = −h2
 box%y2 = y
 do j = 0, ndiv
 box%y1 = box%y2

 y = y+h
 box%y2 = y

 i_col = int ((phi(i,j)−phi_min)/dphi)

 if (i_col < 0) then
 i_col = 0
 else if (i_col > MAXCOLOURINDEX) then
 i_col = MAXCOLOURINDEX
 end if

 hBrush = CreateSolidBrush(crColors(i_col))
 dummy = int (SelectObject(hdc,hBrush),INT_T)

 dummy = win32app_fillbox(hdc,box,hBrush)

 dummy = DeleteObject(hBrush)
 end do
 end do
 end subroutine draw_grid

 subroutine painting_setup (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 logical , save :: first = .true.
 integer (HDC_T) :: hdc, hdcMem

poisson2D.f90
c:/msys64/home/angelo/programming/win32−fortran/poisson2D/

10/17
07/06/2015

 integer :: dummy

 if (first) then
 call set_color_map ()
 dphi = (phi_max−phi_min)/MAXCOLOURS
 h = 1.0_DP/ndiv
 hq = h*h
 h2 = 0.5_DP*h
 omega1 = 1.0_DP−omega
 omega4 = 0.25_DP*omega
 call setup_grid ()
 first = .false.
 end if

 if (hBitmap /= NULL_T) then
 dummy = DeleteObject(hBitmap)
 end if

 hdc = GetDC(hWnd)
 hdcMem = CreateCompatibleDC(hdc)
 hBitmap = win32app_CreateCompatibleBitmap(hdc)
 dummy = ReleaseDC(hWnd,hdc)

 dummy = int (SelectObject(hdcMem,hBitmap),INT_T)

 ! Clear the off−screen DC (hdcMem) for the next drawing
 dummy = win32app_clearDC(hdcMem,BLACKNESS)

 ! Draw (on the off−screen DC) the color scale
 call draw_colorbar (hdcMem)

 ! Draw (on the off−screen DC) grid at current iteration
 call draw_grid (hdcMem)

 dummy = DeleteDC(hdcMem)
 end subroutine painting_setup

 function process_char (hWnd,wParam)
 integer (BOOL_T) :: process_char
 integer (HWND_T), intent (in) :: hWnd
 integer (WPARAM_T), intent (in) :: wParam
 integer :: dummy

 select case (wParam)
 case (VK_ESCAPE)
 dummy = DestroyWindow(hWnd)

 process_char = TRUE_T
 return

 case default
 process_char = FALSE_T
 return
 end select
 end function process_char

 subroutine set_ndiv (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 character (len=MAX_FMT), parameter :: FMT = ’(f12.0)’
 type(XBox) :: xb
 real (DP) :: x

 x = real (ndiv,DP)

 call new_box (xb,hWnd,IDD_DATA_NDIV,IDC_NDIV,FMT,x)

 if (run(xb) > 0) then

 x = get(xb)

 if (x > 0.0_DP) then
 ! Destroy the current grid...
 call grid_off ()

 ! Get the new value
 ndiv = int (x)

 ! Readjust some params

poisson2D.f90
c:/msys64/home/angelo/programming/win32−fortran/poisson2D/

11/17
07/06/2015

 h = 1.0_DP/ndiv
 hq = h*h
 h2 = 0.5_DP*h

 ! Create the new grid...
 call grid_on ()

 ! If you prefer to see something, uncomment the following...
 !call setup_grid()
 else
 call error_msg (’NDIV <= 0 !!!’ //NL &
 // ’Must be NDIV > 0... ’ //NUL)
 end if
 end if
 end subroutine set_ndiv

 subroutine set_maxi (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 character (len=MAX_FMT), parameter :: FMT = ’(f12.0)’
 type(XBox) :: xb
 real (DP) :: x

 x = real (max_iter,DP)

 call new_box (xb,hWnd,IDD_DATA_MAXI,IDC_MAXI,FMT,x)

 if (run(xb) > 0) then

 x = get(xb)

 if (x > 0.0_DP) then
 max_iter = int (x)
 else
 call error_msg (’MAX_ITER <= 0 !!!’ //NL &
 // ’Must be MAX_ITER > 0... ’ //NUL)
 end if
 end if
 end subroutine set_maxi

 subroutine set_eps (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 character (len=MAX_FMT), parameter :: FMT = ’(1pg12.5)’
 type(XBox) :: xb
 real (DP) :: x

 x = eps

 call new_box (xb,hWnd,IDD_DATA_EPS,IDC_EPS,FMT,x)

 if (run(xb) > 0) then

 x = get(xb)

 if (0.0_DP < x .and. x < 1.0_DP) then
 eps = x
 else
 call error_msg (’EPS not in (0,1)!!!’ //NL &
 // ’Must be 0 < EPS < 1... ’ //NUL)
 end if
 end if
 end subroutine set_eps

 subroutine set_omega (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 character (len=MAX_FMT), parameter :: FMT = ’(1pg12.5)’
 type(XBox) :: xb
 real (DP) :: x

 x = omega

 call new_box (xb,hWnd,IDD_DATA_OMEGA,IDC_OMEGA,FMT,x)

 if (run(xb) > 0) then

 x = get(xb)

 if (0.0_DP < x .and. x < 2.0_DP) then
 omega = x

poisson2D.f90
c:/msys64/home/angelo/programming/win32−fortran/poisson2D/

12/17
07/06/2015

 ! Readjust some params
 omega1 = 1.0_DP−omega
 omega4 = 0.25_DP*omega
 else
 call error_msg (’OMEGA not in (0,2)!!!’ //NL &
 // ’Must be 0 < OMEGA < 2... ’ //NUL)
 end if
 end if
 end subroutine set_omega

 subroutine set_xbounds (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 character (len=MAX_FMT), parameter :: FMT = ’(1pg12.5)’
 type(XYBox) :: xyb

 call new_box (xyb,hWnd,IDD_DATA_XBOUNDS,IDC_ULEFT,IDC_URIGHT,FMT, &
 u_left,u_right)

 if (run(xyb) > 0) then
 u_left = get_x(xyb)
 u_right = get_y(xyb)
 end if
 end subroutine set_xbounds

 subroutine set_ybounds (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 character (len=MAX_FMT), parameter :: FMT = ’(1pg12.5)’
 type(XYBox) :: xyb

 call new_box (xyb,hWnd,IDD_DATA_YBOUNDS,IDC_UBOTTOM,IDC_UTOP,FMT, &
 u_bottom,u_top)

 if (run(xyb) > 0) then
 u_bottom = get_x(xyb)
 u_top = get_y(xyb)
 end if
 end subroutine set_ybounds

 subroutine set_nsout (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 character (len=MAX_FMT), parameter :: FMT = ’(f12.0)’
 type(XBox) :: xb
 real (DP) :: x

 x = real (nsout,DP)

 call new_box (xb,hWnd,IDD_DATA_NSOUT,IDC_NSOUT,FMT,x)

 if (run(xb) > 0) then

 x = get(xb)

 if (x > 0.0_DP) then
 nsout = int (x)
 else
 call error_msg (’NSOUT <= 0 !!!’ //NL &
 // ’Must be NSOUT > 0... ’ //NUL)
 end if
 end if
 end subroutine set_nsout

 subroutine set_phi_limits (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 character (len=MAX_FMT), parameter :: FMT = ’(1pg12.5)’
 type(XYBox) :: xyb
 real (DP) :: x, y

 x = phi_min
 y = phi_max

 call new_box (xyb,hWnd,IDD_DATA_PHILIMITS,IDC_PHIMIN,IDC_PHIMAX,FMT,x,y)

 if (run(xyb) > 0) then

 x = get_x(xyb)
 y = get_y(xyb)

poisson2D.f90
c:/msys64/home/angelo/programming/win32−fortran/poisson2D/

13/17
07/06/2015

 if (x < y) then
 phi_min = x
 phi_max = y

 ! Readjust some params
 dphi = (phi_max−phi_min)/MAXCOLOURS
 else
 call error_msg (’PHI_MIN >= PHI_MAX !!!’ //NL &
 // ’Must be PHI_MIN < PHI_MAX... ’ //NUL)
 end if
 end if
 end subroutine set_phi_limits

 subroutine set_cfgtype (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 integer , parameter :: NUM_BUTTONS = 5
 character (len=*), parameter :: BUTTON_NAMES(NUM_BUTTONS) = [&
 ’&One Box ’ , &
 ’&Two Box ’ , &
 ’&Condenser ’ , &
 ’T&hree Charges’ , &
 ’Charged &Line ’]
 type(RadioBox) :: rb

 call new_box (rb,hWnd,IDD_OPTIONS_CFGTYPE,IDC_ONEBOX,BUTTON_NAMES, &
 NUM_BUTTONS,cfg_type)

 if (run(rb) > 0) cfg_type = get_current_button(rb)
 end subroutine set_cfgtype

 subroutine set_fldtype (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 integer , parameter :: NUM_BUTTONS = 2
 character (len=*), parameter :: BUTTON_NAMES(NUM_BUTTONS) = [&
 ’&Potential’ , &
 ’&Gradient ’]
 type(RadioBox) :: rb

 call new_box (rb,hWnd,IDD_OPTIONS_FLDTYPE,IDC_POTENTIAL,BUTTON_NAMES, &
 NUM_BUTTONS,fld_type)

 if (run(rb) > 0) then
 fld_type = get_current_button(rb)

 ! Now we can re−associate the pointer
 if (fld_type == POTENTIAL_FLD) then
 phi => u
 else
 phi => f
 end if
 end if
 end subroutine set_fldtype

 subroutine disclaimer_dlg (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 type(AboutBox) :: ab
 integer :: dummy
 call new_box (ab,hWnd,IDD_DISCLAIMER)
 dummy = run(ab)
 end subroutine disclaimer_dlg

 subroutine about_dlg (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 type(AboutBox) :: ab
 integer :: dummy
 call new_box (ab,hWnd,IDD_ABOUT)
 dummy = run(ab)
 end subroutine about_dlg

 function process_command (hWnd,wParam)
 integer (BOOL_T) :: process_command
 integer (HWND_T), intent (in) :: hWnd
 integer (WPARAM_T), intent (in) :: wParam
 integer :: dummy

 run_flag = .false.

 select case (lo_word(int (wParam,DWORD_T)))

poisson2D.f90
c:/msys64/home/angelo/programming/win32−fortran/poisson2D/

14/17
07/06/2015

 case (IDM_FILE_EXIT)
 dummy = MessageBeep(64)
 if (ask_confirmation(hWnd, ’Sure you want to exit? ’ //NUL, &
 ’Exit?’ //NUL) == IDYES) then
 dummy = PostMessage(hWnd,WM_CLOSE,0_WPARAM_T,0_LPARAM_T)
 end if
 process_command = TRUE_T
 return

 case (IDM_DATA_NDIV)
 call set_ndiv (hWnd)
 process_command = TRUE_T
 return

 case (IDM_DATA_MAXI)
 call set_maxi (hWnd)
 process_command = TRUE_T
 return

 case (IDM_DATA_EPS)
 call set_eps (hWnd)
 process_command = TRUE_T
 return

 case (IDM_DATA_OMEGA)
 call set_omega (hWnd)
 process_command = TRUE_T
 return

 case (IDM_DATA_XBOUNDS)
 call set_xbounds (hWnd)
 process_command = TRUE_T
 return

 case (IDM_DATA_YBOUNDS)
 call set_ybounds (hWnd)
 process_command = TRUE_T
 return

 case (IDM_DATA_NSOUT)
 call set_nsout (hWnd)
 process_command = TRUE_T
 return

 case (IDM_DATA_PHILIMITS)
 call set_phi_limits (hWnd)
 process_command = TRUE_T
 return

 case (IDM_OPTIONS_CFGTYPE)
 call set_cfgtype (hWnd)
 process_command = TRUE_T
 return

 case (IDM_OPTIONS_FLDTYPE)
 call set_fldtype (hWnd)
 process_command = TRUE_T
 return

 case (IDM_RUNAPP)
 run_flag = .true.
 call setup_grid ()
 process_command = TRUE_T
 return

 case (IDM_HELP_DISCLAIMER)
 call disclaimer_dlg (hWnd)
 process_command = TRUE_T
 return

 case (IDM_HELP_ABOUT)
 call about_dlg (hWnd)
 process_command = TRUE_T
 return

 case default
 process_command = FALSE_T
 return

poisson2D.f90
c:/msys64/home/angelo/programming/win32−fortran/poisson2D/

15/17
07/06/2015

 end select
 end function process_command

 function WndProc(hWnd,iMsg,wParam,lParam) bind (C)
 !GCC$ ATTRIBUTES STDCALL :: WndProc
 integer (LRESULT_T) :: WndProc
 integer (HWND_T), value :: hWnd
 integer (UINT_T), value :: iMsg
 integer (WPARAM_T), value :: wParam
 integer (LPARAM_T), value :: lParam

 logical , save :: first = .true.
 integer :: dummy

 select case (iMsg)
 case (WM_CREATE)
 ! Creating the grid...
 call grid_on ()

 WndProc = 0
 return

 case (WM_SIZE)
 if (first) then
 call win32app_setup (lParam,−0.7_DP,1.7_DP,−0.5_DP,1.5_DP)
 first = .false.
 else
 call win32app_setup (lParam)
 end if

 ! Getting the box boundaries... each time, maybe, the mapping changed...
 box_xmin = win32app_xmin()
 box_xmax = win32app_xmax()
 box_ymax = win32app_ymax()

 ! ...and initialize the painting
 call painting_setup (hWnd)

 WndProc = 0
 return

 case (WM_CHAR)
 if (process_char(hWnd,wParam) == TRUE_T) then
 WndProc = 0
 return
 end if
 ! ...else it continues with DefWindowProc

 case (WM_COMMAND)
 if (process_command(hWnd,wParam) == TRUE_T) then
 WndProc = 0
 return
 end if
 ! ...else it continues with DefWindowProc

 case (WM_CLOSE)
 dummy = DestroyWindow(hWnd)
 WndProc = 0
 return

 case (WM_DESTROY)
 if (hBitmap /= NULL_T) then
 dummy = DeleteObject(hBitmap)
 end if

 ! Destroying the grid...
 call grid_off ()

 call PostQuitMessage (0)
 ! Commenting out the next two statements, it continues
 ! with DefWindowProc()
 WndProc = 0
 return
 end select

 WndProc = DefWindowProc(hWnd,iMsg,wParam,lParam)
 end function WndProc

poisson2D.f90
c:/msys64/home/angelo/programming/win32−fortran/poisson2D/

16/17
07/06/2015

 subroutine update_grid ()
 ! We use SAVE just to save something at each call
 ! (update_ball_position() is called intensively, at each iteration)
 integer , save :: i, j

 do i = 1, ndiv−1
 do j = 1, ndiv−1
 if (b(i,j)) cycle
 u(i,j) = omega1*u(i,j) &
 +omega4*(u(i+1,j)+u(i−1,j)+u(i,j+1)+u(i,j−1)+s(i,j))
 end do
 end do
 end subroutine update_grid

 subroutine paint_screen (hWnd)
 integer (HWND_T), intent (in) :: hWnd
 ! We use SAVE just to save something at each call
 ! (paint_screen() is called intensively, at each iteration)
 integer (HDC_T), save :: hdc, hdcMem
 integer , save :: dummy

 if (hBitmap /= NULL_T) then
 hdc = GetDC(hWnd)
 hdcMem = CreateCompatibleDC(hdc)
 dummy = int (SelectObject(hdcMem,hBitmap),INT_T)

 if ((mod(count_iter,nsout) == 0) .or. converg) then
 ! Transfer the off−screen DC to the screen
 dummy = win32app_BitBlt(hdc,hdcMem)
 end if

 dummy = ReleaseDC(hWnd,hdc)

 if (count_iter < max_iter .and. not_converg .and. run_flag) then
 energy_old = energy ! Save current energy
 count_iter = count_iter+1 ! Update iteration counter...

 call update_grid () ! ...then UPDATE the grid
 energy = get_grid_energy() ! Get the energy for the updated grid

 ! Set the convergence flags for the updated grid
 not_converg = abs (energy−energy_old) > eps
 converg = .not. not_converg
 end if

 if ((mod(count_iter,nsout) == 0) .or. converg) then
 ! Clear the off−screen DC (hdcMem) for the next drawing
 dummy = win32app_clearDC(hdcMem,BLACKNESS)

 ! Draw (on the off−screen DC) the color scale
 call draw_colorbar (hdcMem)

 ! Draw (on the off−screen DC) grid at current iteration
 call draw_grid (hdcMem)
 end if

 dummy = DeleteDC(hdcMem)
 end if
 end subroutine paint_screen
end module the_app

function WinMain (hInstance,hPrevInstance,lpCmdLine,nCmdShow) &
 bind (C, name= ’WinMain’)
 use , intrinsic :: iso_c_binding , only : C_PTR, C_CHAR, c_sizeof, c_funloc, &
 C_FUNPTR, c_loc
 use win32 , only : BLACK_BRUSH, CS_HREDRAW, CS_VREDRAW, CW_USEDEFAULT, &
 DWORD_T, HINSTANCE_T, HWND_T, INT_T, NUL, NULL_PTR_T, NULL_T, &
 PM_REMOVE, WM_QUIT, WS_OVERLAPPEDWINDOW, UINT_T, &
 MSG_T, WNDCLASSEX_T, &
 arrow_cursor, CreateWindowEx, DispatchMessage, error_msg, Exit Process , &
 GetStockObject, LoadCursor, LoadIcon, make_int_resource, &
 make_int_resource_C_PTR, PeekMessage, RegisterClassEx, ShowWindow, &
 TranslateMessage, UpdateWindow
 use the_app , only : IDI_POISSON2D, IDM_MAINMENU, &
 paint_screen, WndProc
 implicit none
 !GCC$ ATTRIBUTES STDCALL :: WinMain
 integer (INT_T) :: WinMain

poisson2D.f90
c:/msys64/home/angelo/programming/win32−fortran/poisson2D/

17/17
07/06/2015

 integer (HINSTANCE_T), value :: hInstance
 integer (HINSTANCE_T), value :: hPrevInstance
 type(C_PTR) , value :: lpCmdLine ! LPSTR
 integer (INT_T), value :: nCmdShow

 character (kind= C_CHAR,len=128), target :: app_name = &
 ’Poisson2D’ //NUL
 character (kind= C_CHAR,len=*), parameter :: WINDOW_CAPTION = &
 ’Poisson Equation in 2D’ //NUL
 type(WNDCLASSEX_T) :: WndClass
 integer (HWND_T) :: hWnd
 type(MSG_T) :: msg
 integer :: dummy

 ! To avoid some annoying warnings at compile time...
 integer (HINSTANCE_T) :: not_used_hPrevInstance
 type(C_PTR) :: not_used_lpCmdLine
 not_used_hPrevInstance = hPrevInstance
 not_used_lpCmdLine = lpCmdLine

 WndClass%cbSize = int (c_sizeof (Wndclass),UINT_T)
 WndClass%style = ior (CS_HREDRAW,CS_VREDRAW)
 WndClass%lpfnWndProc = c_funloc (WndProc)
 WndClass%cbClsExtra = 0
 WndClass%cbWndExtra = 0
 WndClass%hInstance = hInstance
 WndClass%hIcon = LoadIcon(hInstance,make_int_resource(IDI_POISSON2D))
 WndClass%hCursor = LoadCursor(NULL_T,arrow_cursor())
 WndClass%hbrBackground = GetStockObject(BLACK_BRUSH)
 WndClass%lpszMenuName = make_int_resource_C_PTR(IDM_MAINMENU)
 WndClass%lpszClassName = c_loc (app_name(1:1))
 WndClass%hIconSm = LoadIcon(hInstance,make_int_resource(IDI_POISSON2D))

 if (RegisterClassEx(WndClass) == 0) then
 call error_msg (’Window Registration Failure! ’ //NUL)
 call ExitProcess (0_UINT_T)
 WinMain = 0
 !return
 end if

 hWnd = CreateWindowEx(0_DWORD_T, &
 app_name, &
 WINDOW_CAPTION, &
 WS_OVERLAPPEDWINDOW, &
 CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT,CW_USEDEFAULT, &
 NULL_T,NULL_T,hInstance,NULL_PTR_T)

 if (hWnd == NULL_T) then
 call error_msg (’Window Creation Failure! ’ //NUL)
 call ExitProcess (0_UINT_T)
 WinMain = 0
 !return
 end if

 dummy = ShowWindow(hWnd,nCmdShow)
 dummy = UpdateWindow(hWnd)

 ! See: Charles Petzold "Programming Windows", 5th ed., pag. 162
 ! ’Random Rectangles’
 do
 if (PeekMessage(msg,NULL_T,0,0,PM_REMOVE) /= 0) then
 if (msg%message == WM_QUIT) exit
 dummy = TranslateMessage(msg)
 dummy = int (DispatchMessage(msg),INT_T)
 else
 call paint_screen (hWnd)
 end if
 end do

 call ExitProcess (int (msg%wParam,UINT_T))
 WinMain = 0
end function WinMain

poisson2D.rc
c:/msys64/home/angelo/programming/win32−fortran/poisson2D/

1/4
07/06/2015

//
// (Partial) Fortran Interface to the Windows API Library
// by Angelo Graziosi (firstname.lastnameATalice.it)
// Copyright Angelo Graziosi
//
// It is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
//
// RC file for "poisson2D" app
//

#define IDI_POISSON2D 1

IDI_POISSON2D ICON DISCARDABLE "../common_icons/smiling_sun.ico"

#define IDM_MAINMENU 9000
#define IDM_FILE_EXIT 9010
#define IDM_DATA_NDIV 9020
#define IDM_DATA_MAXI 9021
#define IDM_DATA_EPS 9022
#define IDM_DATA_OMEGA 9023
#define IDM_DATA_XBOUNDS 9024
#define IDM_DATA_YBOUNDS 9025
#define IDM_DATA_NSOUT 9026
#define IDM_DATA_PHILIMITS 9027
#define IDM_OPTIONS_CFGTYPE 9030
#define IDM_OPTIONS_FLDTYPE 9031
#define IDM_RUNAPP 9040
#define IDM_HELP_DISCLAIMER 9998
#define IDM_HELP_ABOUT 9999

IDM_MAINMENU MENU DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "E&xit...", IDM_FILE_EXIT
 END

 POPUP "&Data"
 BEGIN
 MENUITEM "Number of lattice &divisions...", IDM_DATA_NDIV
 MENUITEM "Maximum number of &iterations...", IDM_DATA_MAXI
 MENUITEM "&Precision for convergence...", IDM_DATA_EPS
 MENUITEM "&Relaxation parameter...", IDM_DATA_OMEGA
 MENUITEM SEPARATOR
 MENUITEM "&X−boundary conditions...", IDM_DATA_XBOUNDS
 MENUITEM "&Y−boundary conditions...", IDM_DATA_YBOUNDS

MENUITEM SEPARATOR
MENUITEM "Iteration steps for &output...", IDM_DATA_NSOUT
MENUITEM "Color &scale limits...", IDM_DATA_PHILIMITS

 END

 POPUP "&Options"
 BEGIN
 MENUITEM "&Problem solving...", IDM_OPTIONS_CFGTYPE

MENUITEM "Plotting &field...", IDM_OPTIONS_FLDTYPE
 END

 POPUP "&Run Application"
 BEGIN
 MENUITEM "R&un", IDM_RUNAPP
 END

 POPUP "&Help"
 BEGIN
 MENUITEM "&Disclaimer...", IDM_HELP_DISCLAIMER

MENUITEM "&About...", IDM_HELP_ABOUT
 END
END

#include <windows.h>

#define IDC_STATIC −1

#define IDC_CTEXT "The Dirichlet problem for Poisson equation in 2D."

#define IDD_DATA_NDIV 100

poisson2D.rc
c:/msys64/home/angelo/programming/win32−fortran/poisson2D/

2/4
07/06/2015

#define IDC_NDIV 101

IDD_DATA_NDIV DIALOG DISCARDABLE 0, 0, 284, 77
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Number of lattice divisions"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
 CTEXT IDC_CTEXT, IDC_STATIC, 7, 7, 153, 18
 GROUPBOX "Number of lattice &divisions", IDC_STATIC, 13, 30, 186, 34
 EDITTEXT IDC_NDIV, 35, 43, 60, 14, ES_AUTOHSCROLL
 LTEXT " ;−) ", IDC_STATIC, 97, 45, 20, 8
END

#define IDD_DATA_MAXI 200
#define IDC_MAXI 201

IDD_DATA_MAXI DIALOG DISCARDABLE 0, 0, 284, 77
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Maximum number of iterations"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
 CTEXT IDC_CTEXT, IDC_STATIC, 7, 7, 153, 18
 GROUPBOX "Maximum number of &iterations",
 IDC_STATIC, 13, 30, 186, 34
 EDITTEXT IDC_MAXI, 35, 43, 60, 14, ES_AUTOHSCROLL
 LTEXT " ;−) ", IDC_STATIC, 97, 45, 20, 8
END

#define IDD_DATA_EPS 300
#define IDC_EPS 301

IDD_DATA_EPS DIALOG DISCARDABLE 0, 0, 284, 77
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Precision for convergence"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
 CTEXT IDC_CTEXT, IDC_STATIC, 7, 7, 153, 18
 GROUPBOX "&Precision for convergence", IDC_STATIC, 13, 30, 186, 34
 EDITTEXT IDC_EPS, 35, 43, 60, 14, ES_AUTOHSCROLL
 LTEXT " ;−) ", IDC_STATIC, 97, 45, 20, 8
END

#define IDD_DATA_OMEGA 400
#define IDC_OMEGA 401

IDD_DATA_OMEGA DIALOG DISCARDABLE 0, 0, 284, 77
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Relaxation parameter"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
 CTEXT IDC_CTEXT, IDC_STATIC, 7, 7, 153, 18
 GROUPBOX "&Relaxation parameter", IDC_STATIC, 13, 30, 186, 34
 EDITTEXT IDC_OMEGA, 35, 43, 60, 14, ES_AUTOHSCROLL
 LTEXT " ;−) ", IDC_STATIC, 97, 45, 20, 8
END

#define IDD_DATA_XBOUNDS 500
#define IDC_ULEFT 501
#define IDC_URIGHT 502

IDD_DATA_XBOUNDS DIALOG DISCARDABLE 0, 0, 284, 97
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "X−boundary conditions"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
 CTEXT IDC_CTEXT, IDC_STATIC, 7, 7, 153, 18
 GROUPBOX "&X−boundary conditions", IDC_STATIC, 13, 30, 186, 54
 LTEXT "U(&L) : ", IDC_STATIC, 35, 45, 30, 8

poisson2D.rc
c:/msys64/home/angelo/programming/win32−fortran/poisson2D/

3/4
07/06/2015

 EDITTEXT IDC_ULEFT, 85, 43, 60, 14, ES_AUTOHSCROLL
 LTEXT " ;−) ", IDC_STATIC, 147, 45, 20, 8
 LTEXT "U(&R) : ", IDC_STATIC, 35, 65, 30, 8
 EDITTEXT IDC_URIGHT, 85, 63, 60, 14, ES_AUTOHSCROLL
 LTEXT " ;−) ", IDC_STATIC, 147, 65, 20, 8
END

#define IDD_DATA_YBOUNDS 600
#define IDC_UBOTTOM 601
#define IDC_UTOP 602

IDD_DATA_YBOUNDS DIALOG DISCARDABLE 0, 0, 284, 97
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Y−boundary conditions"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
 CTEXT IDC_CTEXT, IDC_STATIC, 7, 7, 153, 18
 GROUPBOX "&Y−boundary conditions", IDC_STATIC, 13, 30, 186, 54
 LTEXT "U(&B) : ", IDC_STATIC, 35, 45, 30, 8
 EDITTEXT IDC_UBOTTOM, 85, 43, 60, 14, ES_AUTOHSCROLL
 LTEXT " ;−) ", IDC_STATIC, 147, 45, 20, 8
 LTEXT "U(&T) : ", IDC_STATIC, 35, 65, 30, 8
 EDITTEXT IDC_UTOP, 85, 63, 60, 14, ES_AUTOHSCROLL
 LTEXT " ;−) ", IDC_STATIC, 147, 65, 20, 8
END

#define IDD_DATA_NSOUT 700
#define IDC_NSOUT 701

IDD_DATA_NSOUT DIALOG DISCARDABLE 0, 0, 284, 77
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Iteration steps for output"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
 CTEXT IDC_CTEXT, IDC_STATIC, 7, 7, 153, 18
 GROUPBOX "Iteration steps for &output", IDC_STATIC, 13, 30, 186, 34
 EDITTEXT IDC_NSOUT, 35, 43, 60, 14, ES_AUTOHSCROLL
 LTEXT " ;−) ", IDC_STATIC, 97, 45, 20, 8
END

#define IDD_DATA_PHILIMITS 800
#define IDC_PHIMIN 801
#define IDC_PHIMAX 802

IDD_DATA_PHILIMITS DIALOG DISCARDABLE 0, 0, 284, 97
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Color scale limits"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
 CTEXT IDC_CTEXT, IDC_STATIC, 7, 7, 153, 18
 GROUPBOX "Color &scale limits", IDC_STATIC, 13, 30, 186, 54
 LTEXT "M&IN : ", IDC_STATIC, 35, 45, 30, 8
 EDITTEXT IDC_PHIMIN, 85, 43, 60, 14, ES_AUTOHSCROLL
 LTEXT " ;−) ", IDC_STATIC, 147, 45, 20, 8
 LTEXT "M&AX : ", IDC_STATIC, 35, 65, 30, 8
 EDITTEXT IDC_PHIMAX, 85, 63, 60, 14, ES_AUTOHSCROLL
 LTEXT " ;−) ", IDC_STATIC, 147, 65, 20, 8
END

#define IDD_OPTIONS_CFGTYPE 900
#define IDC_ONEBOX 901
#define IDC_TWOBOX 902
#define IDC_CONDENSER 903
#define IDC_THREECHARGES 904
#define IDC_CHARGEDLINE 905

IDD_OPTIONS_CFGTYPE DIALOG DISCARDABLE 0, 0, 284, 157
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Problem solving"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14

poisson2D.rc
c:/msys64/home/angelo/programming/win32−fortran/poisson2D/

4/4
07/06/2015

 PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
 CTEXT IDC_CTEXT, IDC_STATIC, 7, 7, 153, 18
 GROUPBOX "&Problem solving", IDC_STATIC, 13, 30, 186, 114
 RADIOBUTTON "&One Box", IDC_ONEBOX, 35, 45, 60, 8
 RADIOBUTTON "&Two Box", IDC_TWOBOX, 35, 65, 60, 8
 RADIOBUTTON "&Condenser", IDC_CONDENSER, 35, 85, 60, 8
 RADIOBUTTON "T&hree Charges", IDC_THREECHARGES, 35, 105, 60, 8
 RADIOBUTTON "Charged &Line", IDC_CHARGEDLINE, 35, 125, 60, 8
END

#define IDD_OPTIONS_FLDTYPE 950
#define IDC_POTENTIAL 951
#define IDC_GRADIENT 952

IDD_OPTIONS_FLDTYPE DIALOG DISCARDABLE 0, 0, 284, 97
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Plotting field"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 227, 7, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 227, 24, 50, 14
 CTEXT IDC_CTEXT, IDC_STATIC, 7, 7, 153, 18
 GROUPBOX "Plotting &field", IDC_STATIC, 13, 30, 186, 54
 RADIOBUTTON "&Potential", IDC_POTENTIAL, 35, 45, 60, 8
 RADIOBUTTON "&Gradient", IDC_GRADIENT, 35, 65, 60, 8
END

#define IDD_DISCLAIMER 998

IDD_DISCLAIMER DIALOG DISCARDABLE 0, 0, 319, 66
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "Disclaimer Box"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 254, 18, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 254, 35, 50, 14
 GROUPBOX "Disclaimer...", IDC_STATIC, 7, 7, 305, 52
 CTEXT "It is distributed in the hope that it will be useful,\n"
 "but WITHOUT ANY WARRANTY; without even the implied "

"warranty of\n"
"MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.",

 IDC_STATIC, 16, 18, 224, 33
END

#define IDD_ABOUT 999

IDD_ABOUT DIALOG DISCARDABLE 0, 0, 239, 66
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
CAPTION "About Box"
FONT 8, "MS Sans Serif"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 174, 18, 50, 14
 PUSHBUTTON "Cancel", IDCANCEL, 174, 35, 50, 14
 GROUPBOX "About this program...", IDC_STATIC, 7, 7, 225, 52
 CTEXT "A Solution for Poisson equation.\n\n"
 "by (C) Angelo Graziosi",
 IDC_STATIC, 16, 18, 144, 33
END

