
FParser−Fortran.text
~/programming/fparser−fortran/

1/1
09/06/2015

F P A R S E R − F O R T R A N
===============================

by Angelo Graziosi

I N T R O D U C T I O N
=======================

This document contains a few examples of fortran programs "using" the
Function Parser (FParser) library.

It is a C++ library which we have interfaced in fortran exploiting the
new Fortran >= 2003 standards.

We started using function parser since the end of the 1980s. Indeed at
that time there was, on accademia environments, a parser written in
Pascal called FONCTION (or Fonction ptr?, we don’t remember...).

Successively, we rewrote it in C/C++ and used it exensively in many
programs.

A few years ago, we found FunctionParser
(http://warp.povusers.org/FunctionParser) and interfaced it. Since it
is written in C++, we needed to interface it first in C an then in
fortran.

To test it, we wrote a simple test program, fparser_test.f90, which,
in the initial comment, explains as the parser is built.

fparser_dp.f90 and fparser_cd.f90 contain the modules which interface
real and complex functions. cwrapper_fparser.cc is the C interface to
the parser.

With these modules, we have also written some BGI applications (see
for example dynamics2d.f90, in the document about BGI−Fortran on this
site).

−−
This document has been created using EMACS (and some "friends"
tools like ps2pdf, pdftk etc..).

fparser_test.f90
~/programming/fparser−fortran/

1/6
09/06/2015

!
! Fortran Interface to the Function Parser Library
! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi
!
! It is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
!
! HOW TO BUILD
!
! cd ~/work
! wget http://warp.povusers.org/FunctionParser/fparser4.5.1.zip
! mkdir fparser−4.5.1
! bsdtar −xvof fparser4.5.1.zip −C fparser−4.5.1
! apack fparser−4.5.1−src.tar.xz fparser−4.5.1
! mv fparser−4.5.1−src.tar.xz ports−packages/fparser
! cd fparser−4.5.1
!
! g++[−mp−4.9] −Wall −O2 −DFP_SUPPORT_FLOAT_TYPE [−DFP_USE_STRTOLD] \
! −DFP_SUPPORT_LONG_DOUBLE_TYPE \
! −DFP_SUPPORT_LONG_INT_TYPE −DFP_SUPPORT_COMPLEX_DOUBLE_TYPE \
! −DFP_SUPPORT_COMPLEX_FLOAT_TYPE −DFP_SUPPORT_COMPLEX_LONG_DOUBLE_TYPE \
! −DFP_USE_THREAD_SAFE_EVAL −DFP_USE_THREAD_SAFE_EVAL_WITH_ALLOCA \
! −c {fparser.cc,fpoptimizer.cc}
!
! mv *.o ~/programming/fparser−fortran/
!
! It seems that on OSX 10.9 (Mavericks), with g++−mp−4.9 (MacPorts),
! it accepts also DFP_USE_STRTOLD.
!
! cd ~/programming/fparser−fortran
!
! g++[−mp−4.9] −Wall −O2 −I ~/work/fparser−4.5.1 −c cwrapper_fparser.cc
!
! ar rcs libFParser.a fparser.o fpoptimizer.o cwrapper_fparser.o
!
! mkdir −p ~/programming/lib/$PLATFORM
! mv libFParser.a ~/programming/lib/$PLATFORM
!
! being PLATFORM: EMPTY (GNU/Linux), msys2/mingw32/mingw64 (MSYS2)
!
! rm *.o
!
! gfortran[−mp−4.9] −Wall −O3 −J ~/programming/modules \
! ~/programming/basic−modules/basic_mods.f90 \
! fparser_dp.f90 fparser_cd.f90 fparser_test.f90 \
! −L ~/programming/lib/$PLATFORM −lFParser −lstdc++ −o fparser_test[.out]
!

!
! The functions could be defined also in the "contains" section of the main...
!
module adding_functions
 use kind_consts , only : DP
 implicit none
 private

 public :: sqr_d, sqr_c

contains
 function sqr_d (p) result (s)
 real (DP), intent (in) :: p(*)
 real (DP) :: s
 s = p(1)*p(1)
 end function sqr_d

 function sqr_c (p) result (s)
 complex (DP), intent (in) :: p(*)
 complex (DP) :: s
 s = p(1)*p(1)
 end function sqr_c
end module adding_functions

program fparser_test
 use kind_consts , only : DP
 use get_data , only : get, MAXLEN
 use adding_functions

fparser_test.f90
~/programming/fparser−fortran/

2/6
09/06/2015

 implicit none
 call test_fx ()
 call test_fz ()
contains
 subroutine test_fx ()
 use fparser_dp
 character (len=MAXLEN) :: fcn_str = ’x*x’
 type(FunctionParser_type) fparser, fp2
 integer :: res, use_degrees = 0, ammount
 real (DP) :: vals(2), minx = −5.0_DP, maxx = 5.0_DP, stp = 1.0_DP

 call NewParser (fparser)
 call NewParser (fp2)

 if (AddConstant(fparser, ’pi’ ,3.1415926535897932_DP) <= 0) then
 write (*,*) "AddConstant() error..."
 stop
 end if

 if (AddUnit(fparser, ’cm’ ,100.0_DP) <= 0) then
 write (*,*) "AddUnit() error..."
 stop
 end if

 if (AddFunction(fparser, ’sqr’ ,sqr_d,1) <= 0) then
 write (*,*) "AddFunction() error (Fortran function)..."
 stop
 end if

 do
 call get ("Degrees (0 = radians,1 = degrees):" ,use_degrees)
 call get ("f(x) =" ,fcn_str)

 if (use_degrees > 0) then
 res = Parse(fparser,fcn_str, ’x’ ,1)
 else
 res = Parse(fparser,fcn_str, ’x’)
 end if

 if (res < 0) exit

 write (*, ’(A)’) ’f(x) = ’ // trim (fcn_str)
 write (*, ’(A)’) repeat (’ ’ ,res+7)// ’^’
 !
 ! Remember : ErrorMsg() is an array of characters...
 !
 write (*,*) ErrorMsg(fparser)
 write (*,*) ’Error type: ’ ,GetParseErrorType(fparser)
 write (*,*)
 end do

 call Optimize (fparser)

 if (AddFunction(fp2, ’phi’ ,fparser) <= 0) then
 write (*,*) "AddFunction() error (fparser function)..."
 stop
 end if

 do
 call get ("Degrees (0 = radians,1 = degrees):" ,use_degrees)
 call get ("F(x,y) =" ,fcn_str)

 if (use_degrees > 0) then
 res = Parse(fp2,fcn_str, ’x,y’ ,1)
 else
 res = Parse(fp2,fcn_str, ’x,y’)
 end if

 if (res < 0) exit

 write (*, ’(A)’) ’F(x,y) = ’ // trim (fcn_str)
 write (*, ’(A)’) repeat (’ ’ ,res+9)// ’^’
 !
 ! Remember : ErrorMsg() is an array of characters...
 !
 write (*,*) ErrorMsg(fp2)
 write (*,*) ’Error type: ’ ,GetParseErrorType(fp2)
 write (*,*)

fparser_test.f90
~/programming/fparser−fortran/

3/6
09/06/2015

 end do

 call get ("min x:" ,minx)
 call get ("max x:" ,maxx)
 call get ("step:" ,stp)

 vals(1) = minx
 do while (vals(1) <= maxx)
 write (*,*) ’f(’ ,vals(1), ’) = ’ ,Eval(fparser,vals)
 res = EvalError(fparser)
 if (res > 0) then
 write (*,*) ’Eval() error: ’ ,res
 stop
 end if
 vals(1) = vals(1)+stp
 end do

 vals(1) = minx
 vals(2) = 1.0_DP
 do while (vals(1) <= maxx)
 write (*,*) ’F(’ ,vals(1), ’,’ ,vals(2), ’) = ’ ,Eval(fp2,vals)
 res = EvalError(fp2)
 if (res > 0) then
 write (*,*) ’Eval() error: ’ ,res
 stop
 end if
 vals(1) = vals(1)+stp
 end do

 call set_epsilon (1E−7_DP)
 write (*,*) ’current eps= ’ ,get_epsilon()

 write (*,*) ’freeing memory...’
 call DeleteParser (fp2)
 call DeleteParser (fparser)

 write (*,*) ’NOW TESTING setDelimiterChar...’
 write (*,*)

 call NewParser (fparser)

 call setDelimiterChar (fparser, ’}’)

 res = Parse(fparser, ’(y*y)+1 }’ , ’y’)

 ! res = Parse(fparser,’(y*y)+1’,’y’)
 ! vals(1) = 2.0_DP
 ! write(*,*) ’f(y) = ’, Eval(fparser,vals)

 write (*,*) ’The } is at position ’ , res

 call DeleteParser (fparser)

 !
 ! Quick tests
 !
 call NewParser (fparser)

 res = AddConstant(fparser, ’pi’ ,3.1415926535897932_DP)
 res = ParseAndDeduceVariables(fparser, ’x*sin(pi/2)’)

 vals(1) = 2.71828_DP
 write (*,*) ’fun() = ’ ,Eval(fparser,vals)

 call DeleteParser (fparser)

 call NewParser (fparser)

 res = AddConstant(fparser, ’pi’ ,3.1415926535897932_DP)
 res = ParseAndDeduceVariables(fparser, ’x*sin(pi/2)’ ,ammount)

 vals(1) = 2.71828_DP
 write (*,*) ’fun() = ’ ,Eval(fparser,vals)
 write (*,*) ’ammount = ’ ,ammount

 call DeleteParser (fparser)

 call NewParser (fparser)

fparser_test.f90
~/programming/fparser−fortran/

4/6
09/06/2015

 res = AddConstant(fparser, ’pi’ ,180.0_DP)
 res = ParseAndDeduceVariables(fparser, ’x*sin(pi/2)’ ,ammount,1)

 vals(1) = 2.71828_DP
 write (*,*) ’fun_deg() = ’ ,Eval(fparser,vals)
 write (*,*) ’ammount = ’ ,ammount

 call DeleteParser (fparser)
 call NewParser (fparser)

 res = AddConstant(fparser, ’pi’ ,180.0_DP)
 res = ParseAndDeduceVariables(fparser, ’x*y*sin(pi/2)’ ,ammount,1)

 vals(1) = 2.71828_DP
 vals(2) = 2.0_DP
 write (*,*) ’fun_deg() = ’ ,Eval(fparser,vals)
 write (*,*) ’ammount = ’ ,ammount

 call DeleteParser (fparser)
 call NewParser (fparser)

 res = AddConstant(fparser, ’pi’ ,180.0_DP)
 res = ParseAndDeduceVariables(fparser, ’phy*chi*sin(pi/2)’ ,ammount,1)

 vals(1) = 2.71828_DP
 vals(2) = 3.0_DP
 write (*,*) ’fun_deg() = ’ ,Eval(fparser,vals)
 write (*,*) ’ammount = ’ ,ammount

 call DeleteParser (fparser)
 end subroutine test_fx
 subroutine test_fz ()
 use fparser_cd
 character (len=MAXLEN) :: fcn_str = ’z*z’
 type(FunctionParser_cd_type) fparser, fp2
 integer :: res, use_degrees = 0, ammount
 complex (DP) :: vals(2)
 complex (DP), parameter :: JJ = (0,1)
 real (DP) :: minx = −5.0_DP, maxx = 5.0_DP, stp = 1.0_DP, x, y = 1.0_DP

 call NewParser (fparser)
 call NewParser (fp2)

 if (AddConstant(fparser, ’j’ ,JJ) <= 0) then
 write (*,*) "AddConstant() error (j complex)..."
 stop
 end if

 if (AddConstant(fparser, ’pi’ ,(3.1415926535897932_DP,0.0_DP)) <= 0) then
 write (*,*) "AddConstant() error (pi complex)..."
 stop
 end if

 if (AddUnit(fparser, ’cm’ ,(100.0_DP,100.0_DP)) <= 0) then
 write (*,*) "AddUnit() error (complex)..."
 stop
 end if

 if (AddFunction(fparser, ’sqr’ ,sqr_c,1) <= 0) then
 write (*,*) "AddFunction() error (complex Fortran function)..."
 stop
 end if

 if (RemoveIdentifier(fparser, ’pi’) <= 0) then
 write (*,*) "RemoveIdentifier() error (fparser complex function)..."
 stop
 end if

 do
 call get ("Degrees (0 = radians,1 = degrees):" ,use_degrees)
 call get ("f(z) =" ,fcn_str)

 if (use_degrees > 0) then
 res = Parse(fparser,fcn_str, ’z’ ,1)
 else
 res = Parse(fparser,fcn_str, ’z’)
 end if

fparser_test.f90
~/programming/fparser−fortran/

5/6
09/06/2015

 if (res < 0) exit

 write (*, ’(A)’) ’f(z) = ’ // trim (fcn_str)
 write (*, ’(A)’) repeat (’ ’ ,res+7)// ’^’
 !
 ! Remember : ErrorMsg() is an array of characters...
 !
 write (*,*) ErrorMsg(fparser)
 write (*,*) ’Error type: ’ ,GetParseErrorType(fparser)
 write (*,*)
 end do

 call Optimize (fparser)

 if (AddFunction(fp2, ’phi’ ,fparser) <= 0) then
 write (*,*) "AddFunction() error (fparser complex function)..."
 stop
 end if

 do
 call get ("Degrees (0 = radians,1 = degrees):" ,use_degrees)
 call get ("F(z,w) =" ,fcn_str)

 if (use_degrees > 0) then
 res = Parse(fp2,fcn_str, ’z,w’ ,1)
 else
 res = Parse(fp2,fcn_str, ’z,w’)
 end if

 if (res < 0) exit

 write (*, ’(A)’) ’F(z,w) = ’ // trim (fcn_str)
 write (*, ’(A)’) repeat (’ ’ ,res+9)// ’^’
 !
 ! Remember : ErrorMsg() is an array of characters...
 !
 write (*,*) ErrorMsg(fp2)
 write (*,*) ’Error type: ’ ,GetParseErrorType(fp2)
 write (*,*)
 end do

 call get ("min x:" ,minx)
 call get ("max x:" ,maxx)
 call get ("y:" ,y)
 call get ("step:" ,stp)

 x = minx
 do while (x <= maxx)
 vals(1) = x+JJ*y
 write (*,*) ’f(’ ,vals(1), ’) = ’ ,Eval(fparser,vals)
 res = EvalError(fparser)
 if (res > 0) then
 write (*,*) ’Eval() error: ’ ,res
 stop
 end if
 x = x+stp
 end do

 x = minx
 vals(2) = 1.0_DP+JJ*1.0_DP
 do while (x <= maxx)
 vals(1) = x+JJ*y
 write (*,*) ’F(’ ,vals(1), ’,’ ,vals(2), ’) = ’ ,Eval(fp2,vals)
 res = EvalError(fp2)
 if (res > 0) then
 write (*,*) ’Eval() error: ’ ,res
 stop
 end if
 x = x+stp
 end do

 call set_epsilon (1E−7_DP*(1.0_DP+JJ))
 write (*,*) ’current eps= ’ ,get_epsilon()

 write (*,*) ’freeing memory...’
 call DeleteParser (fp2)
 call DeleteParser (fparser)

fparser_test.f90
~/programming/fparser−fortran/

6/6
09/06/2015

 write (*,*) ’NOW TESTING setDelimiterChar...’
 write (*,*)

 call NewParser (fparser)

 call setDelimiterChar (fparser, ’}’)

 res = Parse(fparser, ’(y*y)+1 }’ , ’y’)

 ! res = Parse(fparser,’(y*y)+1’,’y’)
 ! vals(1) = 2.0_DP+JJ*0.0_DP
 ! write(*,*) ’f(y) = ’, Eval(fparser,vals)

 write (*,*) ’The } is at position ’ , res

 call DeleteParser (fparser)

 !
 ! Quick tests
 !
 call NewParser (fparser)

 res = AddConstant(fparser, ’pi’ ,3.1415926535897932_DP+JJ*0)
 res = ParseAndDeduceVariables(fparser, ’z*sin(pi/2)’)

 vals(1) = 2.71828_DP+JJ*0
 write (*,*) ’fun() = ’ ,Eval(fparser,vals)

 call DeleteParser (fparser)

 call NewParser (fparser)

 res = AddConstant(fparser, ’pi’ ,(3.1415926535897932_DP,0.0_DP))
 res = ParseAndDeduceVariables(fparser, ’z*sin(pi/2)’ ,ammount)

 vals(1) = 2.71828_DP
 write (*,*) ’fun() = ’ ,Eval(fparser,vals)
 write (*,*) ’ammount = ’ ,ammount

 call DeleteParser (fparser)

 call NewParser (fparser)

 res = AddConstant(fparser, ’pi’ ,(180.0_DP,0.0_DP))
 res = ParseAndDeduceVariables(fparser, ’z*sin(pi/2)’ ,ammount,1)

 vals(1) = 2.71828_DP
 write (*,*) ’fun_deg() = ’ ,Eval(fparser,vals)
 write (*,*) ’ammount = ’ ,ammount

 call DeleteParser (fparser)
 call NewParser (fparser)

 res = AddConstant(fparser, ’pi’ ,180.0_DP+JJ*0)
 res = ParseAndDeduceVariables(fparser, ’x*y*sin(pi/2)’ ,ammount,1)

 vals(1) = 2.71828_DP
 vals(2) = 2.0_DP
 write (*,*) ’fun_deg() = ’ ,Eval(fparser,vals)
 write (*,*) ’ammount = ’ ,ammount

 call DeleteParser (fparser)
 call NewParser (fparser)

 res = AddConstant(fparser, ’pi’ ,180.0_DP+JJ*0)
 res = ParseAndDeduceVariables(fparser, ’phy*chi*sin(pi/2)’ ,ammount,1)

 vals(1) = 2.71828_DP
 vals(2) = 3.0_DP
 write (*,*) ’fun_deg() = ’ ,Eval(fparser,vals)
 write (*,*) ’ammount = ’ ,ammount

 call DeleteParser (fparser)
 end subroutine test_fz
end program fparser_test

fparser_dp.f90
~/programming/fparser−fortran/

1/6
09/06/2015

!
! Fortran Interface to the Function Parser Library
! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi
!
! It is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
!
! The simplest interface (real dp) to the
! Function Parser Library for C++ (http://warp.povusers.org/FunctionParser)
!
! References
!
! http://fortranwiki.org/fortran/show/Fortran+and+Cpp+objects
! http://fortranwiki.org/fortran/show/Generating+C+Interfaces
!
! See also:
!
! http://fortranwiki.org/fortran/show/c_interface_module
!
! N.B.
!
! Since these module is an interface to C/C++ routines, a few routines
! handling characters (string) follow the "C rules".
! So Parse() when used in associacition with setDelimiterChar() will
! return position in C style, i.e. starting from 0 (zero)...
!

module fparser_dp
 use kind_consts , only : DP
 use , intrinsic :: iso_c_binding , only : C_INT, C_PTR, C_NULL_PTR, &
 C_CHAR, C_DOUBLE, C_NULL_CHAR, C_SIZE_T , C_FUNPTR, &
 c_funloc !, c_f_pointer
 implicit none
 private

 type FunctionParser_type
 private
 type(C_PTR) :: object = C_NULL_PTR
 end type FunctionParser_type

 interface

 function C_FunctionParser__new () result (this) &
 bind (C,name= ’FunctionParser__new’)
 import :: C_PTR
 type(C_PTR) :: this
 end function C_FunctionParser__new

 function C_FunctionParser__Parse (this,fcn,vars,useDegrees) result (Parse) &
 bind (C,name= ’FunctionParser__Parse’)
 import :: C_CHAR, C_INT, C_PTR
 integer (C_INT) :: Parse
 type(C_PTR) , value :: this
 character (C_CHAR), intent (in) :: fcn(*), vars(*)
 integer (C_INT), value :: useDegrees
 end function C_FunctionParser__Parse

 subroutine C_FunctionParser__setDelimiterChar (this,c) &
 bind (C,name= ’FunctionParser__setDelimiterChar’)
 import :: C_CHAR, C_PTR
 type(C_PTR) , value :: this
 character (C_CHAR), value :: c
 end subroutine C_FunctionParser__setDelimiterChar

 function C_static_FunctionParser__epsilon () result (epsilon) &
 bind (C,name= ’static_FunctionParser__epsilon’)
 import :: C_DOUBLE
 real (C_DOUBLE) :: epsilon
 end function C_static_FunctionParser__epsilon

 subroutine C_static_FunctionParser__setEpsilon (e) &
 bind (C,name= ’static_FunctionParser__setEpsilon’)
 import :: C_DOUBLE
 real (C_DOUBLE), value :: e
 end subroutine C_static_FunctionParser__setEpsilon

fparser_dp.f90
~/programming/fparser−fortran/

2/6
09/06/2015

 function C_FunctionParser__ErrorMsg (this) result (ErrorMsg) &
 bind (C,name= ’FunctionParser__ErrorMsg’)
 import :: C_PTR
 type(C_PTR) :: ErrorMsg
 type(C_PTR) , value :: this
 end function C_FunctionParser__ErrorMsg

 function C_FunctionParser__GetParseErrorType (this) &
 result (GetParseErrorType) &
 bind (C,name= ’FunctionParser__GetParseErrorType’)
 import :: C_INT, C_PTR
 integer (C_INT) :: GetParseErrorType
 type(C_PTR) , value :: this
 end function C_FunctionParser__GetParseErrorType

 function C_FunctionParser__Eval (this,vars) result (Eval) &
 bind (C,name= ’FunctionParser__Eval’)
 import :: C_DOUBLE, C_PTR
 real (C_DOUBLE) :: Eval
 type(C_PTR) , value :: this
 real (C_DOUBLE), intent (in) :: vars(*)
 end function C_FunctionParser__Eval

 function C_FunctionParser__EvalError (this) &
 result (EvalError) &
 bind (C,name= ’FunctionParser__EvalError’)
 import :: C_INT, C_PTR
 integer (C_INT) :: EvalError
 type(C_PTR) , value :: this
 end function C_FunctionParser__EvalError

 subroutine C_FunctionParser__Optimize (this) &
 bind (C,name= ’FunctionParser__Optimize’)
 import :: C_PTR
 type(C_PTR) , value :: this
 end subroutine C_FunctionParser__Optimize

 function C_FunctionParser__AddConstant (this,name,val) result (AddConstant) &
 bind (C,name= ’FunctionParser__AddConstant’)
 import :: C_CHAR, C_DOUBLE, C_INT, C_PTR
 integer (C_INT) :: AddConstant
 type(C_PTR) , value :: this
 character (C_CHAR), intent (in) :: name(*)
 real (C_DOUBLE), value :: val
 end function C_FunctionParser__AddConstant

 function C_FunctionParser__AddUnit (this,name,val) result (AddUnit) &
 bind (C,name= ’FunctionParser__AddUnit’)
 import :: C_CHAR, C_DOUBLE, C_INT, C_PTR
 integer (C_INT) :: AddUnit
 type(C_PTR) , value :: this
 character (C_CHAR), intent (in) :: name(*)
 real (C_DOUBLE), value :: val
 end function C_FunctionParser__AddUnit

 function C_FunctionParser__AddFunction (this,name,functionPtr, &
 paramsAmount) result (AddFunction) &
 bind (C,name= ’FunctionParser__AddFunction’)
 import :: C_CHAR, C_FUNPTR, C_INT, C_PTR
 integer (C_INT) :: AddFunction
 type(C_PTR) , value :: this
 character (C_CHAR), intent (in) :: name(*)
 type(C_FUNPTR) , value :: functionPtr
 integer (C_INT), value :: paramsAmount
 end function C_FunctionParser__AddFunction

 function C_FunctionParser__AddFunction2 (this,name,fp) &
 result (AddFunction2) &
 bind (C,name= ’FunctionParser__AddFunction2’)
 import :: C_CHAR, C_INT, C_PTR
 integer (C_INT) :: AddFunction2
 type(C_PTR) , value :: this
 character (C_CHAR), intent (in) :: name(*)
 type(C_PTR) , value :: fp
 end function C_FunctionParser__AddFunction2

 function C_FunctionParser__RemoveIdentifier (this,name) &
 result (RemoveIdentifier) &

fparser_dp.f90
~/programming/fparser−fortran/

3/6
09/06/2015

 bind (C,name= ’FunctionParser__RemoveIdentifier’)
 import :: C_CHAR, C_INT, C_PTR
 integer (C_INT) :: RemoveIdentifier
 type(C_PTR) , value :: this
 character (C_CHAR), intent (in) :: name(*)
 end function C_FunctionParser__RemoveIdentifier

 function C_FunctionParser__ParseAndDeduceVariables (this,fcn, &
 amountOfVariablesFound,useDegrees) result (ParseAndDeduceVariables) &
 bind (C,name= ’FunctionParser__ParseAndDeduceVariables’)
 import :: C_CHAR, C_INT, C_PTR
 integer (C_INT) :: ParseAndDeduceVariables
 type(C_PTR) , value :: this
 character (C_CHAR), intent (in) :: fcn(*)
 integer (C_INT), intent (out) :: amountOfVariablesFound
 integer (C_INT), value :: useDegrees
 end function C_FunctionParser__ParseAndDeduceVariables

 subroutine C_FunctionParser__delete (this) &
 bind (C,name= ’FunctionParser__delete’)
 import :: C_PTR
 type(C_PTR) , value :: this
 end subroutine C_FunctionParser__delete

 end interface

 interface NewParser
 module procedure FunctionParser__new
 end interface NewParser

 interface Parse
 module procedure FunctionParser__Parse
 end interface Parse

 interface setDelimiterChar
 module procedure FunctionParser__setDelimiterChar
 end interface setDelimiterChar

 interface get_epsilon
 module procedure static_FunctionParser__epsilon
 end interface get_epsilon

 interface set_epsilon
 module procedure static_FunctionParser__setEpsilon
 end interface set_epsilon

 interface ErrorMsg
 module procedure FunctionParser__ErrorMsg
 end interface ErrorMsg

 interface GetParseErrorType
 module procedure FunctionParser__GetParseErrorType
 end interface GetParseErrorType

 interface Eval
 module procedure FunctionParser__Eval
 end interface Eval

 interface EvalError
 module procedure FunctionParser__EvalError
 end interface EvalError

 interface Optimize
 module procedure FunctionParser__Optimize
 end interface Optimize

 interface AddConstant
 module procedure FunctionParser__AddConstant
 end interface AddConstant

 interface AddUnit
 module procedure FunctionParser__AddUnit
 end interface AddUnit

 interface AddFunction
 module procedure FunctionParser__AddFunction,FunctionParser__AddFunction2
 end interface AddFunction

fparser_dp.f90
~/programming/fparser−fortran/

4/6
09/06/2015

 interface RemoveIdentifier
 module procedure FunctionParser__RemoveIdentifier
 end interface RemoveIdentifier

 interface ParseAndDeduceVariables
 module procedure FunctionParser__ParseAndDeduceVariables
 end interface ParseAndDeduceVariables

 interface DeleteParser
 module procedure FunctionParser__delete
 end interface DeleteParser

 public :: AddConstant, AddFunction, AddUnit, DeleteParser, ErrorMsg, Eval, &
 EvalError, FunctionParser_type, get_epsilon, GetParseErrorType, &
 NewParser, Optimize, Parse, ParseAndDeduceVariables, RemoveIdentifier, &
 setDelimiterChar, set_epsilon

contains

 ! Fortran wrapper routines to interface C wrappers
 subroutine FunctionParser__new (this)
 type(FunctionParser_type) , intent (out) :: this
 this%object = C_FunctionParser__new()
 end subroutine FunctionParser__new

 function FunctionParser__Parse (this,fcn,vars,useDegrees) result (Parse)
 type(FunctionParser_type) , intent (in) :: this
 character (len=*), intent (in) :: fcn, vars
 integer , intent (in), optional :: useDegrees
 integer :: Parse
 integer :: degrees = 0

 if (present (useDegrees)) degrees = useDegrees

 Parse = C_FunctionParser__Parse(this%object, trim (fcn)// C_NULL_CHAR, &
 trim (vars)// C_NULL_CHAR,degrees)
 end function FunctionParser__Parse

 subroutine FunctionParser__setDelimiterChar (this,c)
 type(FunctionParser_type) , intent (in) :: this
 character (len=1), intent (in) :: c
 call C_FunctionParser__setDelimiterChar (this%object,c)
 end subroutine FunctionParser__setDelimiterChar

 function static_FunctionParser__epsilon () result (epsilon)
 real (DP) :: epsilon
 epsilon = C_static_FunctionParser__epsilon()
 end function static_FunctionParser__epsilon

 subroutine static_FunctionParser__setEpsilon (e)
 real (DP), intent (in) :: e
 call C_static_FunctionParser__setEpsilon (e)
 end subroutine static_FunctionParser__setEpsilon

 ! function FunctionParser__ErrorMsg(this) result(ErrorMsg)
 ! use general_routines, only: str_len
 ! type(FunctionParser_type), intent(in) :: this
 ! type(C_PTR) :: cstr
 ! integer :: len
 ! character, pointer :: str
 ! character(len=70) :: ErrorMsg
 ! cstr = C_FunctionParser__ErrorMsg(this%object)
 ! len = str_len(cstr)
 ! call c_f_pointer(cstr,str)
 ! ErrorMsg = trim(adjustl(str(1:len)))
 ! end function FunctionParser__ErrorMsg

 function FunctionParser__ErrorMsg (this) result (ErrorMsg)
 use general_routines , only : c_f_string
 type(FunctionParser_type) , intent (in) :: this
 character , dimension (:), pointer :: ErrorMsg
 ErrorMsg => c_f_string(C_FunctionParser__ErrorMsg(this%object))
 end function FunctionParser__ErrorMsg

 function FunctionParser__GetParseErrorType (this) result (GetParseErrorType)
 type(FunctionParser_type) , intent (in) :: this
 integer :: GetParseErrorType
 GetParseErrorType = C_FunctionParser__GetParseErrorType(this%object)

fparser_dp.f90
~/programming/fparser−fortran/

5/6
09/06/2015

 end function FunctionParser__GetParseErrorType

 function FunctionParser__Eval (this,vars) result (Eval)
 type(FunctionParser_type) , intent (in) :: this
 real (DP), intent (in) :: vars(:)
 real (DP) :: Eval
 Eval = C_FunctionParser__Eval(this%object,vars)
 end function FunctionParser__Eval

 function FunctionParser__EvalError (this) result (EvalError)
 type(FunctionParser_type) , intent (in) :: this
 integer :: EvalError
 EvalError = C_FunctionParser__EvalError(this%object)
 end function FunctionParser__EvalError

 subroutine FunctionParser__Optimize (this)
 type(FunctionParser_type) , intent (in) :: this
 call C_FunctionParser__Optimize (this%object)
 end subroutine FunctionParser__Optimize

 function FunctionParser__AddConstant (this,name,val) result (AddConstant)
 type(FunctionParser_type) , intent (in) :: this
 character (len=*), intent (in) :: name
 real (DP), intent (in) :: val
 integer :: AddConstant
 AddConstant = C_FunctionParser__AddConstant(this%object, &
 trim (name)// C_NULL_CHAR,val)
 end function FunctionParser__AddConstant

 function FunctionParser__AddUnit (this,name,val) result (AddUnit)
 type(FunctionParser_type) , intent (in) :: this
 character (len=*), intent (in) :: name
 real (DP), intent (in) :: val
 integer :: AddUnit
 AddUnit = C_FunctionParser__AddUnit(this%object, &
 trim (name)// C_NULL_CHAR,val)
 end function FunctionParser__AddUnit

 function FunctionParser__AddFunction (this,name,fcn,paramsAmount) &
 result (AddFunction)
 type(FunctionParser_type) , intent (in) :: this
 character (len=*), intent (in) :: name

 interface
 function fcn (x) bind (C)
 use iso_c_binding , only : C_DOUBLE
 real (C_DOUBLE), intent (in) :: x(*)
 real (C_DOUBLE) :: fcn
 end function fcn
 end interface

 integer , intent (in) :: paramsAmount
 integer :: AddFunction

 AddFunction = C_FunctionParser__AddFunction(this%object, &
 trim (name)// C_NULL_CHAR, c_funloc (fcn),paramsAmount)
 end function FunctionParser__AddFunction

 function FunctionParser__AddFunction2 (this,name,fp) &
 result (AddFunction2)
 type(FunctionParser_type) , intent (in) :: this
 character (len=*), intent (in) :: name
 type(FunctionParser_type) , intent (in) :: fp
 integer :: AddFunction2

 AddFunction2 = C_FunctionParser__AddFunction2(this%object, &
 trim (name)// C_NULL_CHAR,fp%object)
 end function FunctionParser__AddFunction2

 function FunctionParser__RemoveIdentifier (this,name) &
 result (RemoveIdentifier)
 type(FunctionParser_type) , intent (in) :: this
 character (len=*), intent (in) :: name
 integer :: RemoveIdentifier

 RemoveIdentifier = C_FunctionParser__RemoveIdentifier(this%object, &
 trim (name)// C_NULL_CHAR)
 end function FunctionParser__RemoveIdentifier

fparser_dp.f90
~/programming/fparser−fortran/

6/6
09/06/2015

 function FunctionParser__ParseAndDeduceVariables (this,fcn, &
 amountOfVariablesFound,useDegrees) result (ParseAndDeduceVariables)
 type(FunctionParser_type) , intent (in) :: this
 character (len=*), intent (in) :: fcn
 integer , intent (out), optional :: amountOfVariablesFound
 integer , intent (in), optional :: useDegrees
 integer :: ParseAndDeduceVariables
 integer :: ammount = −1,degrees = 0

 if (present (amountOfVariablesFound)) ammount = amountOfVariablesFound
 if (present (useDegrees)) degrees = useDegrees

 ParseAndDeduceVariables = &
 C_FunctionParser__ParseAndDeduceVariables(this%object, &
 trim (fcn)// C_NULL_CHAR,ammount,degrees)

 if (present (amountOfVariablesFound)) amountOfVariablesFound = ammount
 end function FunctionParser__ParseAndDeduceVariables

 subroutine FunctionParser__delete (this)
 type(FunctionParser_type) , intent (inout) :: this
 call C_FunctionParser__delete (this%object)
 this%object = C_NULL_PTR
 end subroutine FunctionParser__delete
end module fparser_dp

fparser_cd.f90
~/programming/fparser−fortran/

1/6
09/06/2015

!
! Fortran Interface to the Function Parser Library
! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi
!
! It is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
!
! The simplest interface (complex double) to the
! Function Parser Library for C++ (http://warp.povusers.org/FunctionParser)
!
! References
!
! http://fortranwiki.org/fortran/show/Fortran+and+Cpp+objects
! http://fortranwiki.org/fortran/show/Generating+C+Interfaces
!
! See also:
!
! http://fortranwiki.org/fortran/show/c_interface_module
!
! N.B.
!
! Since these module is an interface to C/C++ routines, a few routines
! handling characters (string) follow the "C rules".
! So Parse() when used in associacition with setDelimiterChar() will
! return position in C style, i.e. starting from 0 (zero)...
!

module fparser_cd
 use kind_consts , only : DP
 use , intrinsic :: iso_c_binding , only : C_INT, C_PTR, C_NULL_PTR, &
 C_CHAR, C_DOUBLE_COMPLEX, C_NULL_CHAR, C_SIZE_T , C_FUNPTR, &
 c_funloc !, c_f_pointer
 implicit none
 private

 type FunctionParser_cd_type
 private
 type(C_PTR) :: object = C_NULL_PTR
 end type FunctionParser_cd_type

 interface

 function C_FunctionParser_cd__new () result (this) &
 bind (C,name= ’FunctionParser_cd__new’)
 import :: C_PTR
 type(C_PTR) :: this
 end function C_FunctionParser_cd__new

 function C_FunctionParser_cd__Parse (this,fcn,vars,useDegrees) &
 result (Parse) bind (C,name= ’FunctionParser_cd__Parse’)
 import :: C_CHAR, C_INT, C_PTR
 integer (C_INT) :: Parse
 type(C_PTR) , value :: this
 character (C_CHAR), intent (in) :: fcn(*), vars(*)
 integer (C_INT), value :: useDegrees
 end function C_FunctionParser_cd__Parse

 subroutine C_FunctionParser_cd__setDelimiterChar (this,c) &
 bind (C,name= ’FunctionParser_cd__setDelimiterChar’)
 import :: C_CHAR, C_PTR
 type(C_PTR) , value :: this
 character (C_CHAR), value :: c
 end subroutine C_FunctionParser_cd__setDelimiterChar

 function C_static_FunctionParser_cd__epsilon () result (epsilon) &
 bind (C,name= ’static_FunctionParser_cd__epsilon’)
 import :: C_DOUBLE_COMPLEX
 complex (C_DOUBLE_COMPLEX) :: epsilon
 end function C_static_FunctionParser_cd__epsilon

 subroutine C_static_FunctionParser_cd__setEpsilon (e) &
 bind (C,name= ’static_FunctionParser_cd__setEpsilon’)
 import :: C_DOUBLE_COMPLEX
 complex (C_DOUBLE_COMPLEX), value :: e
 end subroutine C_static_FunctionParser_cd__setEpsilon

fparser_cd.f90
~/programming/fparser−fortran/

2/6
09/06/2015

 function C_FunctionParser_cd__ErrorMsg (this) result (ErrorMsg) &
 bind (C,name= ’FunctionParser_cd__ErrorMsg’)
 import :: C_PTR
 type(C_PTR) :: ErrorMsg
 type(C_PTR) , value :: this
 end function C_FunctionParser_cd__ErrorMsg

 function C_FunctionParser_cd__GetParseErrorType (this) &
 result (GetParseErrorType) &
 bind (C,name= ’FunctionParser_cd__GetParseErrorType’)
 import :: C_INT, C_PTR
 integer (C_INT) :: GetParseErrorType
 type(C_PTR) , value :: this
 end function C_FunctionParser_cd__GetParseErrorType

 function C_FunctionParser_cd__Eval (this,vars) result (Eval) &
 bind (C,name= ’FunctionParser_cd__Eval’)
 import :: C_DOUBLE_COMPLEX, C_PTR
 complex (C_DOUBLE_COMPLEX) :: Eval
 type(C_PTR) , value :: this
 complex (C_DOUBLE_COMPLEX), intent (in) :: vars(*)
 end function C_FunctionParser_cd__Eval

 function C_FunctionParser_cd__EvalError (this) &
 result (EvalError) &
 bind (C,name= ’FunctionParser_cd__EvalError’)
 import :: C_INT, C_PTR
 integer (C_INT) :: EvalError
 type(C_PTR) , value :: this
 end function C_FunctionParser_cd__EvalError

 subroutine C_FunctionParser_cd__Optimize (this) &
 bind (C,name= ’FunctionParser_cd__Optimize’)
 import :: C_PTR
 type(C_PTR) , value :: this
 end subroutine C_FunctionParser_cd__Optimize

 function C_FunctionParser_cd__AddConstant (this,name,val) &
 result (AddConstant) bind (C,name= ’FunctionParser_cd__AddConstant’)
 import :: C_CHAR, C_DOUBLE_COMPLEX, C_INT, C_PTR
 integer (C_INT) :: AddConstant
 type(C_PTR) , value :: this
 character (C_CHAR), intent (in) :: name(*)
 complex (C_DOUBLE_COMPLEX), value :: val
 end function C_FunctionParser_cd__AddConstant

 function C_FunctionParser_cd__AddUnit (this,name,val) result (AddUnit) &
 bind (C,name= ’FunctionParser_cd__AddUnit’)
 import :: C_CHAR, C_DOUBLE_COMPLEX, C_INT, C_PTR
 integer (C_INT) :: AddUnit
 type(C_PTR) , value :: this
 character (C_CHAR), intent (in) :: name(*)
 complex (C_DOUBLE_COMPLEX), value :: val
 end function C_FunctionParser_cd__AddUnit

 function C_FunctionParser_cd__AddFunction (this,name,functionPtr, &
 paramsAmount) result (AddFunction) &
 bind (C,name= ’FunctionParser_cd__AddFunction’)
 import :: C_CHAR, C_FUNPTR, C_INT, C_PTR
 integer (C_INT) :: AddFunction
 type(C_PTR) , value :: this
 character (C_CHAR), intent (in) :: name(*)
 type(C_FUNPTR) , value :: functionPtr
 integer (C_INT), value :: paramsAmount
 end function C_FunctionParser_cd__AddFunction

 function C_FunctionParser_cd__AddFunction2 (this,name,fp) &
 result (AddFunction2) &
 bind (C,name= ’FunctionParser_cd__AddFunction2’)
 import :: C_CHAR, C_INT, C_PTR
 integer (C_INT) :: AddFunction2
 type(C_PTR) , value :: this
 character (C_CHAR), intent (in) :: name(*)
 type(C_PTR) , value :: fp
 end function C_FunctionParser_cd__AddFunction2

 function C_FunctionParser_cd__RemoveIdentifier (this,name) &
 result (RemoveIdentifier) &

fparser_cd.f90
~/programming/fparser−fortran/

3/6
09/06/2015

 bind (C,name= ’FunctionParser_cd__RemoveIdentifier’)
 import :: C_CHAR, C_INT, C_PTR
 integer (C_INT) :: RemoveIdentifier
 type(C_PTR) , value :: this
 character (C_CHAR), intent (in) :: name(*)
 end function C_FunctionParser_cd__RemoveIdentifier

 function C_FunctionParser_cd__ParseAndDeduceVariables (this,fcn, &
 amountOfVariablesFound,useDegrees) result (ParseAndDeduceVariables) &
 bind (C,name= ’FunctionParser_cd__ParseAndDeduceVariables’)
 import :: C_CHAR, C_INT, C_PTR
 integer (C_INT) :: ParseAndDeduceVariables
 type(C_PTR) , value :: this
 character (C_CHAR), intent (in) :: fcn(*)
 integer (C_INT), intent (out) :: amountOfVariablesFound
 integer (C_INT), value :: useDegrees
 end function C_FunctionParser_cd__ParseAndDeduceVariables

 subroutine C_FunctionParser_cd__delete (this) &
 bind (C,name= ’FunctionParser_cd__delete’)
 import :: C_PTR
 type(C_PTR) , value :: this
 end subroutine C_FunctionParser_cd__delete

 end interface

 interface NewParser
 module procedure FunctionParser_cd__new
 end interface NewParser

 interface Parse
 module procedure FunctionParser_cd__Parse
 end interface Parse

 interface setDelimiterChar
 module procedure FunctionParser_cd__setDelimiterChar
 end interface setDelimiterChar

 interface get_epsilon
 module procedure static_FunctionParser_cd__epsilon
 end interface get_epsilon

 interface set_epsilon
 module procedure static_FunctionParser_cd__setEpsilon
 end interface set_epsilon

 interface ErrorMsg
 module procedure FunctionParser_cd__ErrorMsg
 end interface ErrorMsg

 interface GetParseErrorType
 module procedure FunctionParser_cd__GetParseErrorType
 end interface GetParseErrorType

 interface Eval
 module procedure FunctionParser_cd__Eval
 end interface Eval

 interface EvalError
 module procedure FunctionParser_cd__EvalError
 end interface EvalError

 interface Optimize
 module procedure FunctionParser_cd__Optimize
 end interface Optimize

 interface AddConstant
 module procedure FunctionParser_cd__AddConstant
 end interface AddConstant

 interface AddUnit
 module procedure FunctionParser_cd__AddUnit
 end interface AddUnit

 interface AddFunction
 module procedure FunctionParser_cd__AddFunction, &
 FunctionParser_cd__AddFunction2
 end interface AddFunction

fparser_cd.f90
~/programming/fparser−fortran/

4/6
09/06/2015

 interface RemoveIdentifier
 module procedure FunctionParser_cd__RemoveIdentifier
 end interface RemoveIdentifier

 interface ParseAndDeduceVariables
 module procedure FunctionParser_cd__ParseAndDeduceVariables
 end interface ParseAndDeduceVariables

 interface DeleteParser
 module procedure FunctionParser_cd__delete
 end interface DeleteParser

 public :: AddConstant, AddFunction, AddUnit, DeleteParser, ErrorMsg, Eval, &
 EvalError, FunctionParser_cd_type, get_epsilon, GetParseErrorType, &
 NewParser, Optimize, Parse, ParseAndDeduceVariables, RemoveIdentifier, &
 setDelimiterChar, set_epsilon

contains

 ! Fortran wrapper routines to interface C wrappers
 subroutine FunctionParser_cd__new (this)
 type(FunctionParser_cd_type) , intent (out) :: this
 this%object = C_FunctionParser_cd__new()
 end subroutine FunctionParser_cd__new

 function FunctionParser_cd__Parse (this,fcn,vars,useDegrees) result (Parse)
 type(FunctionParser_cd_type) , intent (in) :: this
 character (len=*), intent (in) :: fcn, vars
 integer , intent (in), optional :: useDegrees
 integer :: Parse
 integer :: degrees = 0

 if (present (useDegrees)) degrees = useDegrees

 Parse = C_FunctionParser_cd__Parse(this%object, trim (fcn)// C_NULL_CHAR, &
 trim (vars)// C_NULL_CHAR,degrees)
 end function FunctionParser_cd__Parse

 subroutine FunctionParser_cd__setDelimiterChar (this,c)
 type(FunctionParser_cd_type) , intent (in) :: this
 character (len=1), intent (in) :: c
 call C_FunctionParser_cd__setDelimiterChar (this%object,c)
 end subroutine FunctionParser_cd__setDelimiterChar

 function static_FunctionParser_cd__epsilon () result (epsilon)
 complex (DP) :: epsilon
 epsilon = C_static_FunctionParser_cd__epsilon()
 end function static_FunctionParser_cd__epsilon

 subroutine static_FunctionParser_cd__setEpsilon (e)
 complex (DP), intent (in) :: e
 call C_static_FunctionParser_cd__setEpsilon (e)
 end subroutine static_FunctionParser_cd__setEpsilon

 ! function FunctionParser_cd__ErrorMsg(this) result(ErrorMsg)
 ! use general_routines, only: str_len
 ! type(FunctionParser_cd_type), intent(in) :: this
 ! type(C_PTR) :: cstr
 ! integer :: len
 ! character, pointer :: str
 ! character(len=70) :: ErrorMsg
 ! cstr = C_FunctionParser_cd__ErrorMsg(this%object)
 ! len = str_len(cstr)
 ! call c_f_pointer(cstr,str)
 ! ErrorMsg = trim(adjustl(str(1:len)))
 ! end function FunctionParser_cd__ErrorMsg

 function FunctionParser_cd__ErrorMsg (this) result (ErrorMsg)
 use general_routines , only : c_f_string
 type(FunctionParser_cd_type) , intent (in) :: this
 character , dimension (:), pointer :: ErrorMsg
 ErrorMsg => c_f_string(C_FunctionParser_cd__ErrorMsg(this%object))
 end function FunctionParser_cd__ErrorMsg

 function FunctionParser_cd__GetParseErrorType (this) result (GetParseErrorType)
 type(FunctionParser_cd_type) , intent (in) :: this
 integer :: GetParseErrorType

fparser_cd.f90
~/programming/fparser−fortran/

5/6
09/06/2015

 GetParseErrorType = C_FunctionParser_cd__GetParseErrorType(this%object)
 end function FunctionParser_cd__GetParseErrorType

 function FunctionParser_cd__Eval (this,vars) result (Eval)
 type(FunctionParser_cd_type) , intent (in) :: this
 complex (DP), intent (in) :: vars(:)
 complex (DP) :: Eval
 Eval = C_FunctionParser_cd__Eval(this%object,vars)
 end function FunctionParser_cd__Eval

 function FunctionParser_cd__EvalError (this) result (EvalError)
 type(FunctionParser_cd_type) , intent (in) :: this
 integer :: EvalError
 EvalError = C_FunctionParser_cd__EvalError(this%object)
 end function FunctionParser_cd__EvalError

 subroutine FunctionParser_cd__Optimize (this)
 type(FunctionParser_cd_type) , intent (in) :: this
 call C_FunctionParser_cd__Optimize (this%object)
 end subroutine FunctionParser_cd__Optimize

 function FunctionParser_cd__AddConstant (this,name,val) result (AddConstant)
 type(FunctionParser_cd_type) , intent (in) :: this
 character (len=*), intent (in) :: name
 complex (DP), intent (in) :: val
 integer :: AddConstant
 AddConstant = C_FunctionParser_cd__AddConstant(this%object, &
 trim (name)// C_NULL_CHAR,val)
 end function FunctionParser_cd__AddConstant

 function FunctionParser_cd__AddUnit (this,name,val) result (AddUnit)
 type(FunctionParser_cd_type) , intent (in) :: this
 character (len=*), intent (in) :: name
 complex (DP), intent (in) :: val
 integer :: AddUnit
 AddUnit = C_FunctionParser_cd__AddUnit(this%object, &
 trim (name)// C_NULL_CHAR,val)
 end function FunctionParser_cd__AddUnit

 function FunctionParser_cd__AddFunction (this,name,fcn,paramsAmount) &
 result (AddFunction)
 type(FunctionParser_cd_type) , intent (in) :: this
 character (len=*), intent (in) :: name

 interface
 function fcn (z) bind (C)
 use iso_c_binding , only : C_DOUBLE_COMPLEX
 complex (C_DOUBLE_COMPLEX), intent (in) :: z(*)
 complex (C_DOUBLE_COMPLEX) :: fcn
 end function fcn
 end interface

 integer , intent (in) :: paramsAmount
 integer :: AddFunction

 AddFunction = C_FunctionParser_cd__AddFunction(this%object, &
 trim (name)// C_NULL_CHAR, c_funloc (fcn),paramsAmount)
 end function FunctionParser_cd__AddFunction

 function FunctionParser_cd__AddFunction2 (this,name,fp) &
 result (AddFunction2)
 type(FunctionParser_cd_type) , intent (in) :: this
 character (len=*), intent (in) :: name
 type(FunctionParser_cd_type) , intent (in) :: fp
 integer :: AddFunction2

 AddFunction2 = C_FunctionParser_cd__AddFunction2(this%object, &
 trim (name)// C_NULL_CHAR,fp%object)
 end function FunctionParser_cd__AddFunction2

 function FunctionParser_cd__RemoveIdentifier (this,name) &
 result (RemoveIdentifier)
 type(FunctionParser_cd_type) , intent (in) :: this
 character (len=*), intent (in) :: name
 integer :: RemoveIdentifier

 RemoveIdentifier = C_FunctionParser_cd__RemoveIdentifier(this%object, &
 trim (name)// C_NULL_CHAR)

fparser_cd.f90
~/programming/fparser−fortran/

6/6
09/06/2015

 end function FunctionParser_cd__RemoveIdentifier

 function FunctionParser_cd__ParseAndDeduceVariables (this,fcn, &
 amountOfVariablesFound,useDegrees) result (ParseAndDeduceVariables)
 type(FunctionParser_cd_type) , intent (in) :: this
 character (len=*), intent (in) :: fcn
 integer , intent (out), optional :: amountOfVariablesFound
 integer , intent (in), optional :: useDegrees
 integer :: ParseAndDeduceVariables
 integer :: ammount = −1,degrees = 0

 if (present (amountOfVariablesFound)) ammount = amountOfVariablesFound
 if (present (useDegrees)) degrees = useDegrees

 ParseAndDeduceVariables = &
 C_FunctionParser_cd__ParseAndDeduceVariables(this%object, &
 trim (fcn)// C_NULL_CHAR,ammount,degrees)

 if (present (amountOfVariablesFound)) amountOfVariablesFound = ammount
 end function FunctionParser_cd__ParseAndDeduceVariables

 subroutine FunctionParser_cd__delete (this)
 type(FunctionParser_cd_type) , intent (inout) :: this
 call C_FunctionParser_cd__delete (this%object)
 this%object = C_NULL_PTR
 end subroutine FunctionParser_cd__delete
end module fparser_cd

cwrapper_fparser.cc
~/programming/fparser−fortran/

1/3
09/06/2015

//
// C Interface to the Function Parser Library
// by Angelo Graziosi (firstname.lastnameATalice.it)
// Copyright Angelo Graziosi
//
// It is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
//
//
// References
//
// http://fortranwiki.org/fortran/show/Fortran+and+Cpp+objects
// http://fortranwiki.org/fortran/show/Generating+C+Interfaces
//
// See also:
//
// http://fortranwiki.org/fortran/show/c_interface_module
//

#include "fparser.hh"

extern "C"
{
 //
 // C interface to FuncionParser (double)
 //
 FunctionParser * FunctionParser__new ()
 {
 return new FunctionParser ();
 }

 int FunctionParser__Parse (FunctionParser * This , const char * fcn ,
const char * vars , int useDegrees)

 {
 return This−>Parse(fcn,vars,useDegrees);
 }

 void FunctionParser__setDelimiterChar (FunctionParser * This , char c)
 {
 This−>setDelimiterChar(c);
 }

 double static_FunctionParser__epsilon ()
 {
 return FunctionParser ::epsilon();
 }

 void static_FunctionParser__setEpsilon (double e)
 {
 FunctionParser ::setEpsilon(e);
 }

 const char * FunctionParser__ErrorMsg (FunctionParser * This)
 {
 return This−>ErrorMsg();
 }

 int FunctionParser__GetParseErrorType (FunctionParser * This)
 {
 return This−>GetParseErrorType();
 }

 double FunctionParser__Eval (FunctionParser * This , const double * vars)
 {
 return This−>Eval(vars);
 }

 int FunctionParser__EvalError (FunctionParser * This)
 {
 return This−>EvalError();
 }

 void FunctionParser__Optimize (FunctionParser * This)
 {
 This−>Optimize();
 }

cwrapper_fparser.cc
~/programming/fparser−fortran/

2/3
09/06/2015

 int FunctionParser__AddConstant (FunctionParser * This ,
const char * name, double value)

 {
 return This−>AddConstant(name,value);
 }

 int FunctionParser__AddUnit (FunctionParser * This ,
 const char * name, double value)
 {
 return This−>AddUnit(name,value);
 }

 int FunctionParser__AddFunction (FunctionParser * This , const char * name,
 double (* functionPtr)(const double *),
 int paramsAmount)
 {
 return This−>AddFunction(name,functionPtr,paramsAmount);
 }

 int FunctionParser__AddFunction2 (FunctionParser * This , const char * name,
 FunctionParser * fp)
 {
 return This−>AddFunction(name,(*fp));
 }

 int FunctionParser__RemoveIdentifier (FunctionParser * This , const char * name)
 {
 return This−>RemoveIdentifier(name);
 }

 int
 FunctionParser__ParseAndDeduceVariables (FunctionParser * This ,

const char * fcn ,
int * amountOfVariablesFound ,
int useDegrees)

 {
 return This−>ParseAndDeduceVariables(fcn,amountOfVariablesFound,

useDegrees);
 }

 void FunctionParser__delete (FunctionParser * This)
 {
 delete This;
 }

 //
 // C interface to FuncionParser_cd (complex double)
 //
 FunctionParser_cd * FunctionParser_cd__new ()
 {
 return new FunctionParser_cd ();
 }

 int FunctionParser_cd__Parse (FunctionParser_cd * This , const char * fcn ,
const char * vars , int useDegrees)

 {
 return This−>Parse(fcn,vars,useDegrees);
 }

 void FunctionParser_cd__setDelimiterChar (FunctionParser_cd * This , char c)
 {
 This−>setDelimiterChar(c);
 }

 std :: complex <double > static_FunctionParser_cd__epsilon ()
 {
 return FunctionParser_cd ::epsilon();
 }

 void static_FunctionParser_cd__setEpsilon (std :: complex <double > e)
 {
 FunctionParser_cd ::setEpsilon(e);
 }

 const char * FunctionParser_cd__ErrorMsg (FunctionParser_cd * This)
 {
 return This−>ErrorMsg();
 }

cwrapper_fparser.cc
~/programming/fparser−fortran/

3/3
09/06/2015

 int FunctionParser_cd__GetParseErrorType (FunctionParser_cd * This)
 {
 return This−>GetParseErrorType();
 }

 std :: complex <double >
 FunctionParser_cd__Eval (FunctionParser_cd * This ,

const std :: complex <double > * vars)
 {
 return This−>Eval(vars);
 }

 int FunctionParser_cd__EvalError (FunctionParser_cd * This)
 {
 return This−>EvalError();
 }

 void FunctionParser_cd__Optimize (FunctionParser_cd * This)
 {
 This−>Optimize();
 }

 int
 FunctionParser_cd__AddConstant (FunctionParser_cd * This ,

const char * name, std :: complex <double > value)
 {
 return This−>AddConstant(name,value);
 }

 int FunctionParser_cd__AddUnit (FunctionParser_cd * This ,
 const char * name, std :: complex <double > value)
 {
 return This−>AddUnit(name,value);
 }

 int FunctionParser_cd__AddFunction (FunctionParser_cd * This , const char * name,
 std :: complex <double > (* functionPtr)(const std :: complex <double >*),
 int paramsAmount)
 {
 return This−>AddFunction(name,functionPtr,paramsAmount);
 }

 int FunctionParser_cd__AddFunction2 (FunctionParser_cd * This , const char * name,
 FunctionParser_cd * fp)
 {
 return This−>AddFunction(name,(*fp));
 }

 int FunctionParser_cd__RemoveIdentifier (FunctionParser_cd * This ,
const char * name)

 {
 return This−>RemoveIdentifier(name);
 }

 int
 FunctionParser_cd__ParseAndDeduceVariables (FunctionParser_cd * This ,

const char * fcn ,
int * amountOfVariablesFound ,
int useDegrees)

 {
 return This−>ParseAndDeduceVariables(fcn,amountOfVariablesFound,

useDegrees);
 }

 void FunctionParser_cd__delete (FunctionParser_cd * This)
 {
 delete This;
 }

}

