FParser—Fortran.text
~/programming/fparser—fortran/

1/1
09/06/2015

FPARSER - FORTRAN

by Angelo Graziosi

INTRODUCTION

This document contains a few examples of fortran programs "using" the
Function Parser (FParser) library.

It is a C++ library which we have interfaced in fortran exploiting the
new Fortran >= 2003 standards.

We started using function parser since the end of the 1980s. Indeed at
that time there was, on accademia environments, a parser written in
Pascal called FONCTION (or Fonction ptr?, we don’t remember...).

Successively, we rewrote it in C/C++ and used it exensively in many
programs.

A few years ago, we found FunctionParser
(http://warp.povusers.org/FunctionParser) and interfaced it. Since it
is written in C++, we needed to interface it first in C an then in
fortran.

To test it, we wrote a simple test program, fparser_test.f90, which,
in the initial comment, explains as the parser is built.

fparser_dp.f90 and fparser_cd.f90 contain the modules which interface
real and complex functions. cwrapper_fparser.cc is the C interface to
the parser.

With these modules, we have also written some BGI applications (see
for example dynamics2d.f90, in the document about BGI-Fortran on this
site).

This document has been created using EMACS (and some "friends"
tools like ps2pdf, pdftk etc..).

fparser_test.f90
~/programming/fparser—fortran/

1/6
09/06/2015

I Fortran Interface to the Function Parser Library

! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi

|

! It is distributed in the hope that it will be useful,
I but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
I HOW TO BUILD
1
cd ~/work
wget http://warp.povusers.org/FunctionParser/fparser4.5.1.zip
mkdir fparser—4.5.1
bsdtar —xvof fparser4.5.1.zip —C fparser—4.5.1
apack fparser—4.5.1-src.tar.xz fparser-4.5.1
mv fparser—4.5.1-src.tar.xz ports—packages/fparser
cd fparser-4.5.1

-DFP_SUPPORT_LONG_DOUBLE_TYPE\

-DFP_SUPPORT_LONG_INT_TYPE -DFP_SUPPORT_COMPLEX_DOUBLE_TYPE \
-DFP_SUPPORT_COMPLEX_FLOAT_TYPE -DFP_SUPPORT_COMPLEX LONG_DOUBLE_TYPE\
-DFP_USE_THREAD_SAFE_EVAL -DFP_USE_THREAD_SAFE_EVAL_WITH_ALLOCA\

—c {fparser.cc,fpoptimizer.cc}

!
!
!
!
!
!
!
!
I g++[-mp-4.9] -Wall —-O2 -DFP_SUPPORT_FLOAT_TYPE [-DFP_USE_STRTOLD] \
!
!
!
!
!
!
I mv *.0 ~/programming/fparser—fortran/

|

! It seems that on OSX 10.9 (Mavericks), with g++-mp-4.9 (MacPorts),
lit accepts also DFP_USE_STRTOLD.
|

cd ~/programming/fparser—fortran

g++[-mp—-4.9] -Wall —-O2 —I ~/work/fparser—4.5.1 —c cwrapper_fparser.cc

mkdir —p ~/programming/lib/$PLATFORM

!
!
!
!
I arrcs libFParser.a fparser.o fpoptimizer.o cwrapper_fparser.o
!
1
I mv libFParser.a ~/programming/lib/$PLATFORM

I

being PLATFORM: EMPTY (GNU/Linux), msys2/mingw32/mingw64 (MSYS2)

rm*.0

~/programming/basic-modules/basic_mods.f90 \
fparser_dp.fo0 fparser_cd.f90 fparser_test.fo0 \

!

!

!

!

! gfortran[-mp—4.9] -Wall —O3 -J ~/programming/modules \

!

! | |

I —L ~/programming/lib/$PLATFORM -IFParser —Istdc++ —o fparser_test[.out]
!

I The functions could be defined also in the "contains" section of the main...
1

module adding_functions

use kind_consts , only : DP
implicit none
private

public ::sqgr_d,sqr_c

contains
function sqr_d (p) result (s)
real (DP), intent (in):: p(*)

real (DP): s
s =p(1)*p(2)
end function sqr_d

function sqr_c (p) result (s)
complex (DP), intent (in):: p(*)
complex (DP):: s

s =p(1)*p(2)

end function sqr_c

end module adding_functions

program fparser_test
use kind_consts , only : DP
use get data , only :get, MAXLEN
use adding_functions

fparser_test.f90
~/programming/fparser—fortran/

216
09/06/2015

implicit none

call test fx ()

call test fz ()

contains

subroutine test fx ()
use fparser_dp
character (len=MAXLEN) :: fcn_str = "'x*x’
type(FunctionParser_type) fparser, fp2
integer :: res, use_degrees = 0, ammount

real (DP): vals(2), minx = -5.0_DP, maxx =5.0_DP, stp = 1.0_DP

call NewParser (fparser)
call NewParser (fp2)

if (AddConstant(fparser, ‘pi’ ,3.1415926535897932_DP) <= 0)
write (*,%) "AddConstant() error..."
stop

end if

if (AddUnit(fparser, 'cm’ ,100.0_DP) <= 0)
write (*,%) "AddUnit() error..."
stop

end if

if (AddFunction(fparser, 'sgqr' ,sqgr_d,1) <=0) then
write (*,*) "AddFunction() error (Fortran function)...”
stop

end if

do
call get ("Degrees (0 = radians,1 = degrees):" ,use_degrees)
call get ("f(x) =" Jfen_str)
if (use_degrees > 0) then

res = Parse(fparser,fcn_str, X ,1)
else

res = Parse(fparser,fcn_str, X')
end if
if (res<0) exit
write (*, '(A)) 'f(x)=" /I trim (fcn_str)

write (¥, '(A)) repeat ('’ ,res+7)//
|

| Remember : ErrorMsg() is an array of characters...

|
write (*,*) ErrorMsg(fparser)

IAY

write (*,*) ‘Error type:’ ,GetParseErrorType(fparser)

write (*,%)
end do

call Optimize (fparser)

if (AddFunction(fp2, ‘phi’ fparser) <=0)
write (*,%) "AddFunction() error (fparser function)..."
stop
end if
do
call get ("Degrees (0 = radians,1 = degrees):"
call get ("F(x,y) =" Jfen_str)
if (use_degrees > 0) then
res = Parse(fp2,fcn_str, Xy 1)
else
res = Parse(fp2,fcn_str, XYy)
end if
if (res<0) exit
write (*, '(A)) 'F(xy) =" /I trim (fcn_str)

write (*, '(A)) repeat ('’ ,res+9)//
|

| Remember : ErrorMsg() is an array of characters...

!
write (*,*) ErrorMsg(fp2)

write (*,%) 'Error type:’ ,GetParseErrorType(fp2)

write (*%)

AT

,use_degrees)

then

fparser_test.f90
~/programming/fparser—fortran/

3/6
09/06/2015

end do

call get ("minx:" ,minx)
call get ("maxx:" ,maxx)
call get ("step:" ,stp)

vals(1) = minx
do while (vals(1) <= maxx)

write (*,*) fC ,vals(1),)=’ ,Eval(fparser,vals)
res = EvalError(fparser)
if (res>0) then
write (*,*) ‘Eval() error:”’ res
stop
end if
vals(1) = vals(1)+stp
end do

vals(1) = minx
vals(2) = 1.0 DP
do while (vals(1) <= maxx)

write (*,%) ‘B ,vals(1), o vals(2), =" ,Eval(fp2,vals)
res = EvalError(fp2)
if (res>0) then
write (*,%) 'Eval() error:’ res
stop
end if
vals(1) = vals(1)+stp
end do

call set _epsilon (1E-7_DP)
write (*,%) ‘current eps=" ,get_epsilon()

write (*,%) ‘freeing memory...’
call DeleteParser (fp2)
call DeleteParser (fparser)

write (*,*) 'NOW TESTING setDelimiterChar...’
write (*,)

call NewParser (fparser)
call setDelimiterChar (fparser, 'Y)
res = Parse(fparser, (y*y)+1} Y)
I res = Parse(fparser,’(y*y)+1','y’)
lvals(1) =2.0 DP
I write(*,*) 'f(y) =, Eval(fparser,vals)
write (*,*) 'The } is at position’ , res
call DeleteParser (fparser)

!
! Quick tests
|

call NewParser (fparser)

res = AddConstant(fparser, ‘pi’,3.1415926535897932_DP)
res = ParseAndDeduceVariables(fparser, 'x*sin(pi/2)’)

vals(1) = 2.71828_DP
write (*,) fun() =’ ,Eval(fparser,vals)

call DeleteParser (fparser)

call NewParser (fparser)

res = AddConstant(fparser, pi’ ,3.1415926535897932_DP)
res = ParseAndDeduceVariables(fparser, "x*sin(pi/2)’ ,ammount)
vals(1) = 2.71828_DP

write (*,*) fun() =" ,Eval(fparser,vals)

write (*,%) ‘ammount =’ ,ammount

call DeleteParser (fparser)

call NewParser (fparser)

fparser_test.f90
~/programming/fparser—fortran/

4/6
09/06/2015

res = AddConstant(fparser, ‘pi” ,180.0_DP)
res = ParseAndDeduceVariables(fparser, X*sin(pi/2)’ ,ammount,1)
vals(1) = 2.71828_DP

write (*,%) fun_deg() =" ,Eval(fparser,vals)

write (*,*) ‘'ammount =’ ,ammount

call DeleteParser (fparser)
call NewParser (fparser)

res = AddConstant(fparser, ‘pi” ,180.0_DP)
res = ParseAndDeduceVariables(fparser, x*y*sin(pi/2)’ ,ammount,1)

vals(1) = 2.71828_DP

vals(2) =2.0_DP
write (*,*) ‘fun_deg() ="’ ,Eval(fparser,vals)
write (*,*) ‘ammount =" ,ammount

call DeleteParser (fparser)
call NewParser (fparser)

res = AddConstant(fparser, ‘pi” ,180.0_DP)
res = ParseAndDeduceVariables(fparser, ‘phy*chi*sin(pi/2)’ ,ammount,1)

vals(1) = 2.71828_DP

vals(2) = 3.0_DP
write (*,%) fun_deg() =" ,Eval(fparser,vals)
write (*,*) ‘ammount =’ ,ammount

call DeleteParser (fparser)
end subroutine test_fx
subroutine test fz ()
use fparser_cd
character (len=MAXLEN) :: fcn_str ='z*z’

type(FunctionParser_cd_type) fparser, fp2
integer 1 res, use_degrees = 0, ammount
complex (DP) :: vals(2)

complex (DP), parameter : JJ=(0,1)

real (DP): minx=-5.0_DP, maxx =5.0_DP, stp=1.0_DP, x,y =1.0_DP

call NewParser (fparser)
call NewParser (fp2)

if (AddConstant(fparser, 733 <=0) then
write (*,%) "AddConstant() error (j complex)..."
stop
end if
if (AddConstant(fparser, pi’ ,(3.1415926535897932_DP,0.0_DP)) <= 0)
write (*,*) "AddConstant() error (pi complex)..."
stop
end if
if (AddUnit(fparser, ‘cm’ ,(100.0_DP,100.0_DP)) <=0) then
write (*,*) "AddUnit() error (complex)..."
stop
end if
if (AddFunction(fparser, 'sqr' ,sqr_c,1) <=0) then
write (*,%) "AddFunction() error (complex Fortran function)..."
stop
end if
if (Removeldentifier(fparser, pi’) <=0) then
write (*,%) "Removeldentifier() error (fparser complex function)..."
stop
end if
do
call get ("Degrees (0 = radians,1 = degrees):" ,use_degrees)
call get ("f(z)=" ,fcn_str)
if (use_degrees > 0) then
res = Parse(fparser,fcn_str, 'z 1)
else
res = Parse(fparser,fcn_str, 'z)

end if

fparser_test.f90
~/programming/fparser—fortran/

5/6
09/06/2015

if (res<0) exit

write (*, '(A)) f(z) =" /I trim (fcn_str)
write (¥, '(A)) repeat ('’ es+?7)/[N
|

| Remember : ErrorMsg() is an array of characters...

!
write (*,*) ErrorMsg(fparser)

write (*,%) 'Error type:’ ,GetParseErrorType(fparser)

write (*,%)
end do

call Optimize (fparser)

if (AddFunction(fp2, ‘phi’ fparser) <= 0) then
write (*,*) "AddFunction() error (fparser complex function)..."
stop
end if
do
call get ("Degrees (0 = radians,1 = degrees):" ,use_degrees)
call get ("F(zw)=" ,fcn_str)
if (use_degrees > 0) then
res = Parse(fp2,fcn_str, zw 1)
else
res = Parse(fp2,fcn_str, ZwW)
end if
if (res<0) exit
write (*, '(A)Y) 'F(z,w) ="’ /I trim (fcn_str)
write (¥, '(A)) repeat ('’ ,rest9)// N
!
! Remember : ErrorMsg() is an array of characters...
!
write (*,*) ErrorMsg(fp2)
write (*,*) ‘Error type:’ ,GetParseErrorType(fp2)
write (*,*)
end do
call get ("minx:" ,minx)
call get ("maxx:" ,maxx)
call get ("y:")
call get ("step:" ,stp)
X = minx
do while (x <= maxx)
vals(1) = x+JJ*y
write (*,*) fC ,vals(1), y=' ,Eval(fparser,vals)
res = EvalError(fparser)
if (res>0) then
write (*,%) 'Eval() error:’ res
stop
end if
X = X+stp
end do
X = minx

vals(2) = 1.0_DP+JJ*1.0_DP
do while (x <= maxx)
vals(1) = x+JJ*y

write (*,*) 'F(,vals(1), o vals(2),
res = EvalError(fp2)
if (res>0) then
write (*,*) ‘Eval() error:”’ res
stop
end if
X = X+stp
end do

call set_epsilon (1E-7_DP*(1.0_DP+JJ))
write (*,%) ‘current eps="’ ,get_epsilon()

write (*,*) ‘freeing memory...’
call DeleteParser (fp2)
call DeleteParser (fparser)

1

,Eval(fp2,vals)

fparser_test.f90
~/programming/fparser—fortran/

6/6
09/06/2015

write (*,*) 'NOW TESTING setDelimiterChar...’
write (*,%)

call NewParser (fparser)
call setDelimiterChar (fparser, 'Y)
res = Parse(fparser, (y*y)+1 Y Y)
I res = Parse(fparser,’(y*y)+1','y’)
I'vals(1) = 2.0_DP+JJ*0.0_DP
Twrite(*,*) 'f(y) =, Eval(fparser,vals)
write (*,%) 'The } is at position’ , res
call DeleteParser (fparser)

!
I Quick tests
I

call NewParser (fparser)

res = AddConstant(fparser, ‘pi’ ,3.1415926535897932_DP+JJ*0)

res = ParseAndDeduceVariables(fparser, 'z*sin(pi/2)’

vals(1) = 2.71828_DP+JJ*0
write (*,%) fun() = ,Eval(fparser,vals)

call DeleteParser (fparser)

call NewParser (fparser)

)

res = AddConstant(fparser, ‘pi’ ,(3.1415926535897932_DP,0.0_DP))
res = ParseAndDeduceVariables(fparser, 'z*sin(pi/2)’ ,ammount)
vals(1) = 2.71828_DP

write (*,%) fun() ="’ ,Eval(fparser,vals)

write (*,*) ‘'ammount =’ ,ammount

call DeleteParser (fparser)

call NewParser (fparser)

res = AddConstant(fparser, ‘pi” ,(180.0_DP,0.0_DP))
res = ParseAndDeduceVariables(fparser, 'z*sin(pi/2)’
vals(1) = 2.71828_DP

write (*,¥) fun_deg() =" ,Eval(fparser,vals)

write (*,*) ‘'ammount =’ ,ammount

call DeleteParser (fparser)
call NewParser (fparser)

res = AddConstant(fparser, ‘pi’ ,180.0_DP+JJ*0)
res = ParseAndDeduceVariables(fparser, x*y*sin(pi/2)’

vals(1) = 2.71828 DP

vals(2) = 2.0_DP
write (*,¥) fun_deg() =" ,Eval(fparser,vals)
write (*,*) ‘ammount =’ ,ammount

call DeleteParser (fparser)
call NewParser (fparser)

res = AddConstant(fparser, ‘pi’ ,180.0_DP+JJ*0)
res = ParseAndDeduceVariables(fparser, ‘phy*chi*sin(pi/2)’

vals(1) = 2.71828 _DP

vals(2) = 3.0_DP
write (*,¥) fun_deg() =" ,Eval(fparser,vals)
write (*,*) ‘ammount =’ ,ammount

call DeleteParser (fparser)
end subroutine test_fz
end program fparser_test

,ammount,1)

,ammount,1)

,ammount,1)

fparser_dp.fo0

~/programming/fparser—fortran/

1/6
09/06/2015

!

! Fortran Interface to the Function Parser Library

! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi

|

i It is distributed in the hope that it will be useful,

I but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

!

! The simplest interface (real dp) to the

! Function Parser Library for C++ (http://warp.povusers.org/FunctionParser)
!

| References

!

I http://fortranwiki.org/fortran/show/Fortran+and+Cpp+objects

I http://fortranwiki.org/fortran/show/Generating+C+Interfaces

|

| See also:
|

http://fortranwiki.org/fortran/show/c_interface_module
N.B.
handling characters (string) follow the "C rules".

So Parse() when used in associacition with setDelimiterChar() will

!
!
!
!
I Since these module is an interface to C/C++ routines, a few routines
!
1
I return position in C style, i.e. starting from 0 (zero)...

!

module fparser_dp

use kind_consts , only : DP

use, intrinsic : iso_c_binding , only : C_INT, C_PTR C _NULL PTR &
C_CHAR C_DOUBLE C_NULL_CHAR C_SIZE_T, C_FUNPTR &

c_funloc 1, c_f_pointer

implicit none

private

type FunctionParser_type

private

type(C_PTR) : object=C_NULL_PTR
end type FunctionParser_type

interface

function C_FunctionParser__new () result (this) &
bind (C,name= 'FunctionParser__new’

import :: C_PTR
type(C_PTR) : this
end function C_FunctionParser__new
function C_FunctionParser__Parse (this,fcn,vars,useDegrees) result
bind (C,name= 'FunctionParser__Parse’)
import @ C_CHAR C_INT, C_PTR
integer (C_INT): Parse
type(C_PTR) , value : this
character (C_CHAR, intent (in):: fen(*), vars(*)
integer (C_INT), value : useDegrees
end function C_FunctionParser__Parse
subroutine C_FunctionParser__setDelimiterChar (this,c) &
bind (C,name= 'FunctionParser__setDelimiterChar’
import :: C_CHAR C_PTR
type(C_PTR) , value : this
character (C_CHAR value : ¢
end subroutine C_FunctionParser__setDelimiterChar
function C_static_FunctionParser__epsilon () result (epsilon) &
bind (C,name= 'static_FunctionParser__epsilon’)
import :: C_DOUBLE
real (C_DOUBLE:: epsilon
end function C_static_FunctionParser__epsilon
subroutine C_static_FunctionParser__setEpsilon e &
bind (C,name= ’static_FunctionParser__setEpsilon’)
import :: C_DOUBLE

real (C_DOUBLE, value : e
end subroutine C_static_FunctionParser__setEpsilon

(Parse)

&

fparser_dp.fo0

~/programming/fparser—fortran/

216
09/06/2015

function C_FunctionParser__ErrorMsg (this) result (ErrorMsg) &
bind (C,name= 'FunctionParser__ErrorMsg’
import :: C_PTR
type(C_PTR) : ErrorMsg
type(C_PTR) , value : this
end function C_FunctionParser__ErrorMsg

function C_FunctionParser__GetParseErrorType (this) &
result (GetParseErrorType) &
bind (C,name= 'FunctionParser__GetParseErrorType’)
import :: C_INT, C_PTR
integer (C_INT): GetParseErrorType
type(C_PTR) , value : this
end function C_FunctionParser__GetParseErrorType

function C_FunctionParser__Eval (this,vars) result (Eval) &
bind (C,name= 'FunctionParser__Eval’)
import : C_DOUBLE C_PTR
real (C_DOUBLE:: Eval
type(C_PTR) , value : this
real (C_DOUBLE, intent (in):: vars(*)
end function C_FunctionParser__Eval

function C_FunctionParser__EvalError (this) &
result (EvalError) &
bind (C,name= 'FunctionParser__EvalError’)
import :: C_INT, C_PTR
integer (C_INT):: EvalError
type(C_PTR) , value : this
end function C_FunctionParser__EvalError

subroutine C_FunctionParser__Optimize (this) &
bind (C,name= 'FunctionParser__ Optimize’)
import :: C_PTR
type(C_PTR) , value : this
end subroutine C_FunctionParser__ Optimize

function C_FunctionParser__ AddConstant (this,name,val) result (AddConstant)

bind (C,name= 'FunctionParser__AddConstant’)
import : C_CHAR C _DOUBLE C_INT, C _PTR
integer (C_INT): AddConstant
type(C_PTR) , value : this
character (C_CHAR, intent (in):: name(*)
real (C_DOUBLE, value : val
end function C_FunctionParser__ AddConstant

function C_FunctionParser__ AddUnit (this,name,val) result (AddUnit) &
bind (C,name= 'FunctionParser__AddUnit’)
import 1 C_CHAR C_DOUBLE C_INT, C_PTR
integer (C_INT):: AddUnit
type(C_PTR) , value : this
character (C_CHAR, intent (in):: name(*)
real (C_DOUBLE value : val
end function C_FunctionParser__AddUnit

function C_FunctionParser__ AddFunction (this,name,functionPtr, &
paramsAmount) result (AddFunction) &
bind (C,name= 'FunctionParser__AddFunction’)

import : C_CHAR C_FUNPTR C_INT, C_PTR

integer (C_INT): AddFunction

type(C_PTR) , value : this

character (C_CHAR intent (in):: name(*)

type(C_FUNPTR) , value : functionPtr

integer (C_INT), value : paramsAmount
end function C_FunctionParser__ AddFunction

function C_FunctionParser__ AddFunction2 (this,name,fp) &
result (AddFunction2) &
bind (C,name= 'FunctionParser__AddFunction2’)
import : C_CHAR C_INT, C PTR
integer (C_INT): AddFunction2
type(C_PTR) , value : this
character (C_CHAR, intent (in):: name(*)
type(C_PTR) , value : fp
end function C_FunctionParser__ AddFunction2

function C_FunctionParser__ Removeldentifier (this,name) &
result (Removeldentifier) &

&

fparser_dp.fo0

~/programming/fparser—fortran/

3/6
09/06/2015

bind (C,name= 'FunctionParser__Removeldentifier’

import :: C_CHAR C_INT, C_PTR
integer (C_INT): Removeldentifier
type(C_PTR) , value : this
character (C_CHAR, intent (in):: name(*)
end function C_FunctionParser__Removeldentifier
function C_FunctionParser__ParseAndDeduceVariables (this,fcn,
amountOfVariablesFound,useDegrees) result (ParseAndDeduceVariables)
bind (C,name= 'FunctionParser__ParseAndDeduceVariables’)
import :: C_CHAR C_INT, C_PTR
integer (C_INT): ParseAndDeduceVariables
type(C_PTR) , value : this
character (C_CHAR, intent (in):: fen(*)
integer (C_INT), intent (out):: amountOfVariablesFound
integer (C_INT), value : useDegrees
end function C_FunctionParser__ParseAndDeduceVariables
subroutine C_FunctionParser__delete (this) &
bind (C,name= 'FunctionParser__delete’)
import :: C_PTR
type(C_PTR) , value : this
end subroutine C_FunctionParser__delete
end interface
interface NewParser
module procedure FunctionParser__new
end interface NewParser
interface Parse
module procedure FunctionParser__Parse
end interface Parse
interface setDelimiterChar
module procedure FunctionParser__setDelimiterChar
end interface setDelimiterChar
interface get_epsilon
module procedure static_FunctionParser__epsilon
end interface get_epsilon
interface set_epsilon
module procedure static_FunctionParser__setEpsilon
end interface set_epsilon
interface ErrorMsg
module procedure FunctionParser__ErrorMsg
end interface ErrorMsg
interface GetParseErrorType
module procedure FunctionParser__ GetParseErrorType
end interface GetParseErrorType
interface Eval
module procedure FunctionParser__Eval
end interface Eval
interface EvalError
module procedure FunctionParser__EvalError
end interface EvalError
interface Optimize
module procedure FunctionParser__ Optimize
end interface Optimize
interface AddConstant
module procedure FunctionParser__ AddConstant
end interface AddConstant
interface AddUnit
module procedure FunctionParser__ AddUnit
end interface AddUnit
interface AddFunction
module procedure FunctionParser__ AddFunction,FunctionParser__ AddFunction2

end interface AddFunction

fparser_dp.fo90 4/6
~/programming/fparser—fortran/ 09/06/2015

interface Removeldentifier

module procedure FunctionParser__ Removeldentifier
end interface Removeldentifier
interface ParseAndDeduceVariables
module procedure FunctionParser__ParseAndDeduceVariables
end interface ParseAndDeduceVariables
interface DeleteParser
module procedure FunctionParser__delete
end interface DeleteParser
public :: AddConstant, AddFunction, AddUnit, DeleteParser, ErrorMsg, Eval, &
EvalError, FunctionParser_type, get_epsilon, GetParseErrorType, &
NewParser, Optimize, Parse, ParseAndDeduceVariables, Removeldentifier, &

setDelimiterChar, set_epsilon
contains

! Fortran wrapper routines to interface C wrappers
subroutine FunctionParser__new (this)

type(FunctionParser_type) , intent (out) : this
this%object = C_FunctionParser__new()
end subroutine FunctionParser__new
function FunctionParser__Parse (this,fcn,vars,useDegrees) result (Parse)
type(FunctionParser_type) , intent (in) this
character (len=%), intent (in) :: fcn, vars
integer , intent (in), optional 1 useDegrees
integer 1 Parse
integer :: degrees=0

if (present (useDegrees)) degrees = useDegrees

Parse = C_FunctionParser__Parse(this%object, trim (fcn)// C_NULL_CHAR &
trim (vars)// C_NULL_CHARlegrees)
end function FunctionParser__Parse

subroutine FunctionParser__setDelimiterChar (this,c)
type(FunctionParser_type) , intent (in) this
character (len=1), intent (in) c
call C_FunctionParser__setDelimiterChar (this%object,c)
end subroutine FunctionParser__setDelimiterChar
function static_FunctionParser__epsilon () result (epsilon)
real (DP): epsilon
epsilon = C_static_FunctionParser__epsilon()
end function static_FunctionParser__epsilon

subroutine static_FunctionParser__setEpsilon (e)
real (DP), intent (in):: e
call C_static_FunctionParser__setEpsilon (e)
end subroutine static_FunctionParser__setEpsilon

I function FunctionParser__ErrorMsg(this) result(ErrorMsg)
I use general_routines, only: str_len

I type(FunctionParser_type), intent(in) :: this

I type(C_PTR) :: cstr

I integer :: len

I character, pointer :: str

I character(len=70) :: ErrorMsg

I cstr = C_FunctionParser__ErrorMsg(this%object)
' len = str_len(cstr)

I call c_f_pointer(cstr,str)

I ErrorMsg = trim(adjustl(str(1:len)))

! end function FunctionParser__ErrorMsg

function FunctionParser__ErrorMsg (this) result (ErrorMsg)
use general_routines , only :c_f string
type(FunctionParser_type) , intent (in) this
character , dimension (), pointer :: ErrorMsg
ErrorMsg => c_f_string(C_FunctionParser__ErrorMsg(this%object))
end function FunctionParser__ErrorMsg
function FunctionParser__ GetParseErrorType (this) result (GetParseErrorType)
type(FunctionParser_type) , intent (in) this
integer 1 GetParseErrorType

GetParseErrorType = C_FunctionParser__ GetParseErrorType(this%object)

fparser_dp.fo0 5/6

~/programming/fparser—fortran/ 09/06/2015
end function FunctionParser__ GetParseErrorType
function FunctionParser__Eval (this,vars) result (Eval)

type(FunctionParser_type) , intent (in) this

real (DP), intent (in):: vars(:)

real (DP): Eval
Eval = C_FunctionParser__Eval(this%object,vars)

end function FunctionParser__Eval
function FunctionParser__EvalError (this) result (EvalError)
type(FunctionParser_type) , intent (in) : this
integer 1 EvalError
EvalError = C_FunctionParser__EvalError(this%object)
end function FunctionParser__ EvalError
subroutine FunctionParser__ Optimize (this)
type(FunctionParser_type) , intent (in):: this
call C_FunctionParser__Optimize (this%object)
end subroutine FunctionParser__ Optimize
function FunctionParser__ AddConstant (this,name,val) result (AddConstant)
type(FunctionParser_type) , intent (in) : this
character (len=*), intent (in) name
real (DP), intent (in):: val
integer :: AddConstant
AddConstant = C_FunctionParser__ AddConstant(this%object, &
trim (name)// C_NULL_CHARal)
end function FunctionParser__ AddConstant
function FunctionParser__ AddUnit (this,name,val) result (AddUnit)
type(FunctionParser_type) , intent (in):: this
character (len=*), intent (in) name
real (DP), intent (in):: val
integer 1 AddUnit
AddUnit = C_FunctionParser__ AddUnit(this%object, &
trim (name)// C_NULL CHARal)
end function FunctionParser__ AddUnit
function FunctionParser__ AddFunction (this,name,fcn,paramsAmount) &
result (AddFunction)
type(FunctionParser_type) , intent (in) this
character (len=*), intent (in) name
interface
function fcn (x) bind (C)
use iso_c_binding , only : C_DOUBLE
real (C_DOUBLE intent (in):: X(*)
real (C_DOUBLE:: fcn
end function fcn

end interface

integer , intent (in) paramsAmount
integer 1 AddFunction
AddFunction = C_FunctionParser__ AddFunction(this%object, &
trim (name)// C_NULL_CHARc_funloc (fcn),paramsAmount)
end function FunctionParser__ AddFunction
function FunctionParser__ AddFunction2 (this,name,fp) &
result (AddFunction2)
type(FunctionParser_type) , intent (in):: this
character (len=*), intent (in) name
type(FunctionParser_type) , intent (in) : fp
integer 1 AddFunction2
AddFunction2 = C_FunctionParser__ AddFunction2(this%object, &
trim (name)// C_NULL_CHAHRp%object)
end function FunctionParser__ AddFunction2
function FunctionParser__Removeldentifier (this,name) &
result (Removeldentifier)
type(FunctionParser_type) , intent (in):: this
character (len=*), intent (in) name
integer :: Removeldentifier
Removeldentifier = C_FunctionParser__Removeldentifier(this%object, &

trim (name)// C_NULL_CHAR
end function FunctionParser__ Removeldentifier

fparser_dp.fo0

~/programming/fparser—fortran/

6/6
09/06/2015

function FunctionParser__ParseAndDeduceVariables (this,fcn, &
amountOfVariablesFound,useDegrees) result (ParseAndDeduceVariables)
type(FunctionParser_type) , intent (in) this

character (len=*), intent (in) fcn

integer , intent (out), optional :: amountOfVariablesFound

integer , intent (in), optional 1 useDegrees

integer :: ParseAndDeduceVariables

integer :: ammount=-1,degrees =0

if (present (amountOfVariablesFound)) ammount = amountOfVariablesFound
if (present (useDegrees)) degrees = useDegrees

ParseAndDeduceVariables = &
C_FunctionParser__ParseAndDeduceVariables(this%object, &
trim (fcn)// C_NULL_CHARmmount,degrees)

if (present (amountOfVariablesFound)) amountOfVariablesFound = ammount
end function FunctionParser___ParseAndDeduceVariables

subroutine FunctionParser__delete (this)
type(FunctionParser_type) , intent (inout) :: this
call C_FunctionParser__delete (this%object)
this%object = C_NULL_PTR
end subroutine FunctionParser__delete
end module fparser_dp

fparser_cd.f90
~/programming/fparser—fortran/

1/6
09/06/2015

!

! Fortran Interface to the Function Parser Library

! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi

|

i It is distributed in the hope that it will be useful,

I but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

!

! The simplest interface (complex double) to the

! Function Parser Library for C++ (http://warp.povusers.org/FunctionParser)
!

| References

!

I http://fortranwiki.org/fortran/show/Fortran+and+Cpp+objects

I http://fortranwiki.org/fortran/show/Generating+C+Interfaces

|

| See also:
|

http://fortranwiki.org/fortran/show/c_interface_module
N.B.
handling characters (string) follow the "C rules".

So Parse() when used in associacition with setDelimiterChar() will

!
!
!
!
I Since these module is an interface to C/C++ routines, a few routines
!
1
I return position in C style, i.e. starting from 0 (zero)...

!

module fparser_cd

use kind_consts , only : DP

use, intrinsic : iso_c_binding , only : C_INT, C_PTR C _NULL PTR &
C_CHAR C_DOUBLE_COMPLEXC_NULL_CHAR C_SIZE_ T, C_FUNPTR &

c_funloc 1, c_f_pointer

implicit none

private

type FunctionParser_cd_type

private

type(C_PTR) : object=C_NULL_PTR
end type FunctionParser_cd_type

interface

function C_FunctionParser_cd__new () result (this) &
bind (C,name= 'FunctionParser_cd__new’

import :: C_PTR
type(C_PTR) : this
end function C_FunctionParser_cd__new

function C_FunctionParser_cd__Parse (this,fcn,vars,useDegrees)

result (Parse) bind (C,name= 'FunctionParser_cd__Parse’

import @ C_CHAR C_INT, C_PTR
integer (C_INT): Parse
type(C_PTR) , value : this
character (C_CHAR, intent (in):: fen(*), vars(*)
integer (C_INT), value : useDegrees
end function C_FunctionParser_cd__Parse

subroutine C_FunctionParser_cd__setDelimiterChar (this,c)

bind (C,name= 'FunctionParser_cd__setDelimiterChar’
import :: C_CHAR C_PTR
type(C_PTR) , value : this
character (C_CHAR value : ¢
end subroutine C_FunctionParser_cd__setDelimiterChar

function C_static_FunctionParser_cd__epsilon () result
bind (C,name= 'static_FunctionParser_cd__epsilon’
import :: C_DOUBLE_COMPLEX
complex (C_DOUBLE_COMPLEX epsilon
end function C_static_FunctionParser_cd__epsilon

subroutine C_static_FunctionParser_cd__setEpsilon (e)
bind (C,name= ’static_FunctionParser_cd__setEpsilon’
import :: C_DOUBLE_COMPLEX
complex (C_DOUBLE_COMPLEX value :: e
end subroutine C_static_FunctionParser_cd__setEpsilon

&

(epsilon)

&

fparser_cd.f90
~/programming/fparser—fortran/

216
09/06/2015

function C_FunctionParser_cd__ErrorMsg (this) result (ErrorMsg) &
bind (C,name= 'FunctionParser_cd__ErrorMsg’
import :: C_PTR
type(C_PTR) : ErrorMsg
type(C_PTR) , value : this
end function C_FunctionParser_cd__ErrorMsg
function C_FunctionParser_cd__GetParseErrorType (this) &
result (GetParseErrorType) &
bind (C,name= 'FunctionParser_cd__GetParseErrorType’)
import :: C_INT, C_PTR
integer (C_INT): GetParseErrorType
type(C_PTR) , value : this
end function C_FunctionParser_cd__GetParseErrorType
function C_FunctionParser_cd__Eval (this,vars) result (Eval) &
bind (C,name= 'FunctionParser_cd__Eval’)
import : C_DOUBLE_COMPLEXC PTR
complex (C_DOUBLE_COMPLEX Eval
type(C_PTR) , value : this
complex (C_DOUBLE_COMPLEX intent (in) :: vars(*)
end function C_FunctionParser_cd__Eval
function C_FunctionParser_cd__EvalError (this) &
result (EvalError) &
bind (C,name= 'FunctionParser_cd__EvalError’)
import :: C_INT, C_PTR
integer (C_INT):: EvalError
type(C_PTR) , value : this
end function C_FunctionParser_cd__EvalError
subroutine C_FunctionParser_cd__Optimize (this) &
bind (C,name= 'FunctionParser_cd__Optimize’
import :: C_PTR
type(C_PTR) , value : this
end subroutine C_FunctionParser_cd__ Optimize
function C_FunctionParser_cd__AddConstant (this,name,val) &
result (AddConstant) bind (C,name= "FunctionParser_cd__AddConstant’
import : C_CHAR C_DOUBLE_COMPLEXC_INT, C_PTR
integer (C_INT): AddConstant
type(C_PTR) , value : this
character (C_CHAR, intent (in):: name(*)
complex (C_DOUBLE_COMPLEX value :: val
end function C_FunctionParser_cd__AddConstant
function C_FunctionParser_cd__AddUnit (this,name,val) result (AddUnit)
bind (C,name= 'FunctionParser_cd__AddUnit’
import 1 C_CHAR C_DOUBLE_COMPLEXC_INT, C_PTR
integer (C_INT):: AddUnit
type(C_PTR) , value : this
character (C_CHAR, intent (in):: name(*)
complex (C_DOUBLE_COMPLEX value :: val
end function C_FunctionParser_cd__AddUnit
function C_FunctionParser_cd__AddFunction (this,name,functionPtr, &
paramsAmount) result (AddFunction) &
bind (C,name= 'FunctionParser_cd__AddFunction’)
import : C_CHAR C_FUNPTR C_INT, C_PTR
integer (C_INT): AddFunction
type(C_PTR) , value : this
character (C_CHAR intent (in):: name(*)
type(C_FUNPTR) , value : functionPtr
integer (C_INT), value : paramsAmount
end function C_FunctionParser_cd__AddFunction
function C_FunctionParser_cd__AddFunction2 (this,name,fp) &
result (AddFunction2) &
bind (C,name= 'FunctionParser_cd__ AddFunction2’)
import : C_CHAR C_INT, C PTR
integer (C_INT): AddFunction2
type(C_PTR) , value : this
character (C_CHAR, intent (in):: name(*)
type(C_PTR) , value : fp
end function C_FunctionParser_cd__AddFunction2
function C_FunctionParser_cd__Removeldentifier (this,name) &

result (Removeldentifier) &

&

fparser_cd.f90
~/programming/fparser—fortran/

3/6
09/06/2015

bind (C,name= 'FunctionParser_cd__Removeldentifier’)

import C_CHAR C_INT, C_PTR

integer (C_INT): Removeldentifier
type(C_PTR) value : this
character (C_CHAR, intent (in)::

end function

function
amountOfVariablesFound,useDegrees)

C_FunctionParser_cd__ParseAndDeduceVariables

name(*)

C_FunctionParser_cd__Removeldentifier

(this,fcn, &

result (ParseAndDeduceVariables)

bind (C,name= 'FunctionParser_cd__ParseAndDeduceVariables’)

import C_CHAR C_INT, C_PTR
integer (C_INT)
type(C_PTR) , value : this
character (C_CHAR, intent (in)::
integer (C_INT), intent (out)::
integer (C_INT), value
end function

subroutine

C_FunctionParser_cd__delete

ParseAndDeduceVariables

fen(*)
amountOfVariablesFound

useDegrees
C_FunctionParser_cd__ParseAndDeduceVariables

(this) &

bind (C,name= 'FunctionParser_cd__delete’)

import C_PTR
type(C_PTR) , value : this
end subroutine

end interface

interface NewParser
module procedure
end interface NewParser

interface Parse
module procedure
end interface Parse

interface setDelimiterChar
module procedure
end interface setDelimiterChar

interface get_epsilon
module procedure
end interface get_epsilon
interface set_epsilon
module procedure
end interface set_epsilon

interface ErrorMsg
module procedure
end interface ErrorMsg

interface GetParseErrorType
module procedure

C_FunctionParser_cd__delete

FunctionParser_cd__new

FunctionParser_cd__Parse

FunctionParser_cd__setDelimiterChar

static_FunctionParser_cd__epsilon

static_FunctionParser_cd__setEpsilon

FunctionParser_cd__ErrorMsg

FunctionParser_cd__ GetParseErrorType

end interface GetParseErrorType
interface Eval
module procedure FunctionParser_cd__Eval
end interface Eval
interface EvalError

module procedure
end interface EvalError

interface Optimize
module procedure
end interface Optimize

interface AddConstant
module procedure
end interface AddConstant

interface AddUnit
module procedure
end interface AddUnit

interface AddFunction
module procedure
FunctionParser_cd__ AddFunction2
end interface AddFunction

FunctionParser_cd__EvalError

FunctionParser_cd__Optimize

FunctionParser_cd__AddConstant

FunctionParser_cd__AddUnit

FunctionParser_cd__AddFunction, &

&

fparser_cd.f90 4/6

~/programming/fparser—fortran/ 09/06/2015
interface Removeldentifier
module procedure FunctionParser_cd__Removeldentifier
end interface Removeldentifier
interface ParseAndDeduceVariables
module procedure FunctionParser_cd__ParseAndDeduceVariables
end interface ParseAndDeduceVariables
interface DeleteParser
module procedure FunctionParser_cd__delete
end interface DeleteParser
public :: AddConstant, AddFunction, AddUnit, DeleteParser, ErrorMsg, Eval, &
EvalError, FunctionParser_cd_type, get_epsilon, GetParseErrorType, &
NewParser, Optimize, Parse, ParseAndDeduceVariables, Removeldentifier, &

setDelimiterChar, set_epsilon
contains

I Fortran wrapper routines to interface C wrappers
subroutine FunctionParser_cd__new (this)

type(FunctionParser_cd_type) , intent (out) : this
this%object = C_FunctionParser_cd__new()
end subroutine FunctionParser_cd__new
function FunctionParser_cd__Parse (this,fcn,vars,useDegrees) result (Parse)
type(FunctionParser_cd_type) , intent (in) : this
character (len=*), intent (in) fcn, vars
integer , intent (in), optional 1 useDegrees
integer :: Parse
integer :: degrees =0

if (present (useDegrees)) degrees = useDegrees

Parse = C_FunctionParser_cd__Parse(this%object, trim (fcn)// C_NULL_CHAR &
trim (vars)// C_NULL_CHARlegrees)
end function FunctionParser_cd__Parse

subroutine FunctionParser_cd__setDelimiterChar (this,c)
type(FunctionParser_cd_type) , intent (in) :: this
character (len=1), intent (in) C
call C_FunctionParser_cd__setDelimiterChar (this%object,c)
end subroutine FunctionParser_cd__setDelimiterChar

function static_FunctionParser_cd__epsilon () result (epsilon)
complex (DP):: epsilon

epsilon = C_static_FunctionParser_cd__epsilon()

end function static_FunctionParser_cd__epsilon

subroutine static_FunctionParser_cd__setEpsilon (e)
complex (DP), intent (in):: e
call C_static_FunctionParser_cd__setEpsilon (e)
end subroutine static_FunctionParser_cd__setEpsilon

I function FunctionParser_cd__ErrorMsg(this) result(ErrorMsg)
I use general_routines, only: str_len

I type(FunctionParser_cd_type), intent(in) :: this

I type(C_PTR) :: cstr

I integer :: len

I character, pointer :: str

I character(len=70) :: ErrorMsg

I cstr = C_FunctionParser_cd__ErrorMsg(this%object)
I len = str_len(cstr)

I call c_f_pointer(cstr,str)

I ErrorMsg = trim(adjustl(str(1:len)))

I'end function FunctionParser_cd__ErrorMsg

function FunctionParser_cd__ErrorMsg (this) result (ErrorMsg)
use general_routines , only :c_f string
type(FunctionParser_cd_type) , intent (in) :: this
character , dimension (), pointer :: ErrorMsg
ErrorMsg => c_f_string(C_FunctionParser_cd__ErrorMsg(this%object))
end function FunctionParser_cd__ErrorMsg
function FunctionParser_cd__GetParseErrorType (this) result (GetParseErrorType)
type(FunctionParser_cd_type) , intent (in) :: this

integer : GetParseErrorType

fparser_cd.f90
~/programming/fparser—fortran/

5/6
09/06/2015

GetParseErrorType = C_FunctionParser_cd__GetParseErrorType(this%object)

end function FunctionParser_cd__GetParseErrorType

function FunctionParser_cd__Eval (this,vars) result (Eval)
type(FunctionParser_cd_type) , intent (in) :: this
complex (DP), intent (in):: vars(:)

complex (DP):: Eval
Eval = C_FunctionParser_cd__Eval(this%object,vars)

end function FunctionParser_cd__Eval
function FunctionParser_cd__EvalError (this) result (EvalError)
type(FunctionParser_cd_type) , intent (in) : this
integer :: EvalError
EvalError = C_FunctionParser_cd__EvalError(this%object)
end function FunctionParser_cd__EvalError
subroutine FunctionParser_cd__Optimize (this)
type(FunctionParser_cd_type) , intent (in) :: this
call C_FunctionParser_cd__Optimize (this%object)
end subroutine FunctionParser_cd__Optimize
function FunctionParser_cd__AddConstant (this,name,val) result (AddConstant)
type(FunctionParser_cd_type) , intent (in) : this
character (len=*), intent (in) name
complex (DP), intent (in):: val
integer 1 AddConstant
AddConstant = C_FunctionParser_cd__AddConstant(this%object, &
trim (name)// C_NULL_CHARal)
end function FunctionParser_cd__AddConstant
function FunctionParser_cd__AddUnit (this,name,val) result (AddUnit)
type(FunctionParser_cd_type) , intent (in) :: this
character (len=*), intent (in) name
complex (DP), intent (in) : val
integer :: AddUnit
AddUnit = C_FunctionParser_cd__AddUnit(this%object, &
trim (name)// C_NULL_CHARval)
end function FunctionParser_cd__ AddUnit
function FunctionParser_cd__AddFunction (this,name,fcn,paramsAmount)
result (AddFunction)
type(FunctionParser_cd_type) , intent (in) : this
character (len=*), intent (in) name
interface
function fcn (z) bind (C)
use iso_c_binding , only : C DOUBLE COMPLEX
complex (C_DOUBLE_COMPLEX intent (in) :: 2(*)
complex (C_DOUBLE_COMPLEX fcn
end function fcn

end interface

integer , intent (in) : paramsAmount
integer :: AddFunction
AddFunction = C_FunctionParser_cd__ AddFunction(this%object, &
trim (name)// C_NULL_CHARc_ funloc (fcn),paramsAmount)
end function FunctionParser_cd__ AddFunction
function FunctionParser_cd__ AddFunction2 (this,name,fp) &
result (AddFunction2)
type(FunctionParser_cd_type) , intent (in) :: this
character (len=*), intent (in) name
type(FunctionParser_cd_type) , intent (in) : fp
integer :: AddFunction2
AddFunction2 = C_FunctionParser_cd__AddFunction2(this%object, &
trim (name)// C_NULL_CHAHRp%object)
end function FunctionParser_cd__ AddFunction2
function FunctionParser_cd__Removeldentifier (this,name) &
result (Removeldentifier)
type(FunctionParser_cd_type) , intent (in) :: this
character (len=*), intent (in) name
integer 1 Removeldentifier

Removeldentifier = C_FunctionParser_cd__Removeldentifier(this%object,
trim (name)// C_NULL_CHAR

fparser_cd.f90
~/programming/fparser—fortran/

6/6
09/06/2015

end function FunctionParser_cd__Removeldentifier
function FunctionParser_cd__ParseAndDeduceVariables (this,fcn, &
amountOfVariablesFound,useDegrees) result (ParseAndDeduceVariables)
type(FunctionParser_cd_type) , intent (in) :: this

character (len=*), intent (in) fcn

integer , intent (out), optional :: amountOfVariablesFound

integer , intent (in), optional 1 useDegrees

integer :: ParseAndDeduceVariables

integer 1 ammount = -1,degrees =0

if (present (amountOfVariablesFound)) ammount = amountOfVariablesFound
if (present (useDegrees)) degrees = useDegrees

ParseAndDeduceVariables = &
C_FunctionParser_cd__ParseAndDeduceVariables(this%object, &
trim (fcn)// C_NULL_CHAFRammount,degrees)

if (present (amountOfVariablesFound)) amountOfVariablesFound = ammount
end function FunctionParser_cd__ParseAndDeduceVariables

subroutine FunctionParser_cd__delete (this)
type(FunctionParser_cd_type) , intent (inout) :: this
call C_FunctionParser_cd__delete (this%object)
this%object = C_NULL_PTR
end subroutine FunctionParser_cd__delete
end module fparser_cd

cwrapper_fparser.cc
~/programming/fparser—fortran/

1/3
09/06/2015

1

/I C Interface to the Function Parser Library

/I by Angelo Graziosi (firstname.lastnameATalice.it)
/I Copyright Angelo Graziosi

1

/I It is distributed in the hope that it will be useful,

/I but WITHOUT ANY WARRANTY; without even the implied warranty of
/I MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

I

1

/I References

I

/I http:/ffortranwiki.org/fortran/show/Fortran+and+Cpp+objects
/I http://fortranwiki.org/fortran/show/Generating+C+Interfaces
1

/I See also:

1

/I http:/ffortranwiki.org/fortran/show/c_interface_module

1

#include “fparser.hh"

extern "C"

{
1
/I C interface to FuncionParser (double)
1

FunctionParser * FunctionParser__new ()

return new FunctionParser ();

int FunctionParser__Parse (FunctionParser * This , const

const char * vars ,int

return This—>Parse(fcn,vars,useDegrees);

void FunctionParser__setDelimiterChar (FunctionParser

This—>setDelimiterChar(c);

}

double static_FunctionParser__epsilon 0

{
}

void static_FunctionParser__setEpsilon (double

return FunctionParser :epsilon();

FunctionParser ::setEpsilon(e);

const char * FunctionParser__ErrorMsg (FunctionParser

return This—>ErrorMsg();

int FunctionParser__GetParseErrorType (FunctionParser

return This—>GetParseErrorType();

e)

char * fcn ,
useDegrees)

* This , char c¢)

* This)

* This)

double FunctionParser__Eval (FunctionParser * This , const double

{
}

return This—>Eval(vars);

int FunctionParser__EvalError (FunctionParser * This)

{
}

return This—>EvalError();

void FunctionParser__Optimize (FunctionParser * This)

{
This—>Optimize();

* vars)

cwrapper_fparser.cc
~/programming/fparser—fortran/

213
09/06/2015

int FunctionParser__AddConstant (FunctionParser * This ,
const char * name, double value)

return This—>AddConstant(name,value);

}
int FunctionParser__AddUnit (FunctionParser * This ,
const char * name, double value)
return This—>AddUnit(name,value);
int FunctionParser__ AddFunction (FunctionParser * This , const char * name,
double (* functionPtr)(const double *),
int paramsAmount)
return This—>AddFunction(name,functionPtr,paramsAmount);
}
int FunctionParser__AddFunction2 (FunctionParser * This , const char * name,
FunctionParser *fp)
{
return This—>AddFunction(name, (*fp));
}
int FunctionParser__Removeldentifier (FunctionParser * This , const char * name)
return This—>Removeldentifier(name);
}
int
FunctionParser__ ParseAndDeduceVariables (FunctionParser * This ,
const char * fcn ,
int * amountOfVariablesFound ,
int useDegrees)
return ~ This—>ParseAndDeduceVariables(fcn,amountOfVariablesFound,
useDegrees);
}
void FunctionParser__delete (FunctionParser * This)
delete This;
1
/I C interface to FuncionParser_cd (complex double)
1
FunctionParser_cd * FunctionParser_cd__new 0
{
return new FunctionParser_cd 0;
}
int FunctionParser_cd__Parse (FunctionParser_cd * This , const char * fcn ,
const char * vars ,int useDegrees)
return This—>Parse(fcn,vars,useDegrees);
}
void FunctionParser_cd__setDelimiterChar (FunctionParser_cd * This , char c)
This—>setDelimiterChar(c);
}
std :: complex <double > static_FunctionParser_cd__epsilon 0
return FunctionParser_cd :epsilon();
void static_FunctionParser_cd__setEpsilon (std :: complex <double > e)
FunctionParser_cd ::setEpsilon(e);
}
const char * FunctionParser_cd__ErrorMsg (FunctionParser_cd * This)
{

return This—>ErrorMsg();
}

cwrapper_fparser.cc 3/3

~/programming/fparser—fortran/ 09/06/2015
int FunctionParser_cd__GetParseErrorType (FunctionParser_cd * This)
return This—>GetParseErrorType();
}
std :: complex <double >
FunctionParser_cd__Eval (FunctionParser_cd * This
const std :: complex <double >* vars)
return This—>Eval(vars);
}
int FunctionParser_cd__EvalError (FunctionParser_cd * This)
{
return This—>EvalError();
}
void FunctionParser_cd__Optimize (FunctionParser_cd * This)

This—>Optimize();

int
FunctionParser_cd__AddConstant (FunctionParser_cd * This
const char * name, std :: complex <double > value)

return This—>AddConstant(name,value);

}
int FunctionParser_cd__AddUnit (FunctionParser_cd * This ,
const char * name, std :: complex <double > value)
{
return This—>AddUnit(name,value);
int FunctionParser_cd__AddFunction (FunctionParser_cd * This , const char * name,
std :: complex <double > (* functionPtr)(const std :: complex <double >*),
int paramsAmount)
return This—>AddFunction(name,functionPtr,paramsAmount);
}
int FunctionParser_cd__ AddFunction2 (FunctionParser_cd * This , const char * name,
FunctionParser_cd *fp)
{
return This—>AddFunction(name,(*fp));
}
int FunctionParser_cd__Removeldentifier (FunctionParser_cd * This ,
const char * name)
{
return This—>Removeldentifier(name);
}
int
FunctionParser_cd__ParseAndDeduceVariables (FunctionParser_cd * This ,
const char * fcn ,
int * amountOfVariablesFound ,
int useDegrees)
{
return This—>ParseAndDeduceVariables(fcn,amountOfVariablesFound,
useDegrees);
}
void FunctionParser_cd__delete (FunctionParser_cd * This)
delete This;
}

