Everhart-Integrator.text
~/programming/ode—modules/

1/1
16/06/2015

EVERHART - INTEGRATOR

by Angelo Graziosi

INTRODUCTION

This document contains a few examples of fortran programs "using" the
Everhart’s integrator method for numerical solution of systems of
ordinary differential equations.

This method has proven very efficient in the calculation of the orbits
of comets and, more generally, in the simulation of the gravitational
interactions of a system of n—bodies.

Here we present an implementation in modern Fortran, changing some
notation and conventions. For example, the GAUSS-RADAU spacings are
represented not as array HS(1:8) but as array HS(0:7), which seems a
more natural way, given the meaning of spacings within a

sequence. Another change is to use H, HP, H2, HVAL for time steps and
not T, TP, T2, TVAL.

We have broken the original routine in three routines: radau_on() (to
initialize the integrator), ral5() (the integrator itself) and
radau_off() (to close opened files and to recover allocated memory).

This implementation does not use old Fortran statements like GOTOs
etc., but the most recent "allocatable”, named loops and so on. It
adds, also, the capability to save the solution in a binary file.

All this is in the Fortran module 'everhart_integrator.f90'.

We have tested this implementation writing the programs described in
section 3 of the original Everhart’s paper:

E. Everhart, An Efficient Integrator That Use Gauss—Radau Spacings,
in A. Carusi and G. B. Valsecchi — Dynamics of Comets: Their Origin and
Evolution, 185-202. 1985 by D. Reidel Publishing Company.

One of the following examples, test_jsunp.fo0, is an attempt to
re—write the JSUNP.FOR program cited at the end of section 4 of the
above paper. For the initial positions, we have used those found in

Eckert, Brouwer, Clemence (1951),
Coordinates of the Five Outer Planets 1653-2060,
Astronom. Papers American Ephem. XII

while for initial velocities, we have computed them as numerical
derivative. For details, see the source code of test_jsunp.fo0 below.

Beside this program, we have added also the source code of
close_encounters.f90. This program can simulate the gravitational
interactions of n—bodies using the Everhart's integrator. It finds

also the close encounters of two of them. The data are read from a
cards file, close_encounters.cards, which is added too. A screen shot
showing the Apophis orbit (in red), calculated up to 2070 with this
program, can be found on this same web page . The orbits are drawn in
perspective using the Fortran interface to BGI described elsewhere on
this WEB site. As for test_jsunp.f90, all the details are found in the
source code below.

A special thanks goes to G. Matarazzo who provided the original
paper of Everhart.

This document has been created using EMACS (and some "friends"
tools like ps2pdf, pdftk etc..).

everhart_integrator.f90 1/9
~/programming/ode—modules/ 16/06/2015

I Fortran Interface to the Everhart Integrator Library
! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi

|

i It is distributed in the hope that it will be useful,

I but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

!

| This is the 'everhart_integrator’ module.

!

!

! A simple module which tries to re—implement in modern Fortran the

! Everhart’'s RADAU integrator.

!

| Ref. :

|

I E. Everhart, An Efficient Integrator That Use Gauss—Radau Spacings,
I in A. Carusi and G. B. Valsecchi — Dynamics of Comets: Their Origin and
! Evolution, 185-202. 1985 by D. Reidel Publishing Company.

!

module everhart_integrator

use kind_consts , only : DP

implicit none

private

integer , parameter : NOR =15

integer , parameter : NSTEPS =7, NCOEF = (NSTEPS*(NSTEPS-1))/2
real (DP), parameter : ZERO =0, ONE =1, HALF = ONE/2

|

I These HS(:) values are the Gauss—Radau spacings, scaled to the
I'range O to 1, for integrating to order 15. HS(0) == ZERO always.

! The sum of these H-values should be 3.7(3) = 3.733333... = 56/15
I (Viete formulas for the polynomial of degree 7 whose root are

I HS(1:NSTEPS)-values)

I

real (DP), parameter : HS(O:NSTEPS)=[ZERO, 0.05626256053692215_DP, &
0.18024069173689236_DP, 0.35262471711316964_DP, &
0.54715362633055538_DP, 0.73421017721541053_DP, &

0.88532094683909577_DP, 0.97752061356128750_DP |

abstract interface
subroutine ode_field (t,y,yp,f)

use kind_consts , only : DP
real (DP), intent (in):: t, y(), yp(?)
real (DP), intent (out):: f(})

end subroutine ode_field

end interface

integer :: nv, ll, nclass, log_unit, data_unit

logical :: npq, ncl, nes, debug_flag, save_data_flag
I'WC, UC, WCO, SS, C, D, R are, really, CONSTANTS
real (DP): WC(NSTEPS), UC(NSTEPS), WCO, SS
real (DP):: C(NCOEF), D(NCOEF), R(INCOEF)

I

| The workspace would be NV x 3*NSTEPS+4 = NV x 3*7+4 ——> w(NV,25)
1 (BSG uses W(NEQ,36), being NEQ the number of equations of 1st order)
I

real (DP), allocatable w f00), i), y(), yp(d)
real (DP), allocatable aob(G), 96y, eliyr)

public ::radau_on, ral5, radau_off

contains
subroutine radau_on (nvO0,ll0,nclass0,debug_flag0,save_data_flag0)
integer , intent (in):: nvo, 110, nclassO
logical , intent (in), optional 1 debug_flag0, save_data_flag0
integer , parameter : NW(0:NSTEPS)=[0,0,1, 3,6, 10, 15, 21]
real (DP):: temp
integer | la, Ib, Ic, Id, le, k, ierr

I Work space allocation
allocate (b(NSTEPS,nv0),stat=ierr)
if (ierr/=0) then
write (*,*) "% EFATAL ERROR ***
write (*,*) 'Allocation failure for B(:,:). Exiting...’

everhart_integrator.f90
~/programming/ode—modules/

2/9
16/06/2015

stop
end if
allocate (g(NSTEPS,nv0),stat=ierr)
it (ierr/=0) then

write (*,*) "% EATAL ERROR ***
write (*,%) "Allocation failure for G(:,:). Exiting...’

stop
end if
allocate (e(NSTEPS,nv0),stat=ierr)
it (ierr/=0) then

write (*,*) *** EATAL ERROR ***
write (*,*) 'Allocation failure for E(:,:). Exiting...’

stop
end if
allocate (fO(nv0),stat=ierr)
if (ierr/=0) then

write (*,%) *x EATAL ERROR ***
write (*,*) 'Allocation failure for FO(:). Exiting...’

stop
end if
allocate (fj(nv0),stat=ierr)
if (ierr/=0) then

write (*,*) % EATAL ERROR ***
write (*,%) 'Allocation failure for FJ(:). Exiting...

stop
end if
allocate (y(nvO0),stat=ierr)
if (ierr/=0) then

write (*,%) % EATAL ERROR ***
write (*,%) 'Allocation failure for Y(:). Exiting...’

stop
end if
allocate (yp(nv0),stat=ierr)
it (ierr/=0) then

write (*,*) "% EATAL ERROR ***
write (*,%) 'Allocation failure for YP(:). Exiting...’
stop

end if

! Input data initialization
nv =nvo
=110
nclass = nclassO

|

! Global logical data initialization

!

I NCL is a flag which says if the equations are of 1st order (.TRUE.) or
! of 2nd order (.FALSE.) :

|

F(ty), NCL ==.TRUE.

F(ty), NCL == .FALSE.

F(ty,y'), NCL == .FALSE.

Ly
Loy"
Loy
!

I NPQ is a flag which says if the equations are of 2nd order general

I (FALSE.) or NOT 2nd order general (.TRUE.), i.e. of 1st order or

1 2nd order Special (without y’) :

|

I'NCLASS == 1, NPQ == .TRUE.

I' NCLASS == -2, NPQ == .TRUE.

I'NCLASS == 2, NPQ == .FALSE.

I'NES is .TRUE. only if LL is negative. Then the sequence size is HO.
|

ncl = (nclass == 1)
npq = (nclass < 2)
nes = (Il <0)
debug_flag = false.
if (present (debug_flag0)) debug_flag = debug_flag0

save_data flag = false.
if (present (save_data_flag0)) save_data_flag = save_data_flag0

I CONSTANT coefficients setup

k=2
do =1, NSTEPS
temp = k+k*k

if (ncl) temp =k
WC(l) = ONE/temp
temp = k

everhart_integrator.f90
~/programming/ode—modules/

3/9
16/06/2015

UC(l) = ONE/temp
k =k+1
end do

WCO = HALF
if (ncl) WCO = ONE

C(1) =-HS(1)
D(1) = HS(1)
R(1) = ONE/(HS(2)-HS(1))
la=1
lc=1
do k=3, NSTEPS
Ib=la
la=lc+1
Ic = NW(k)
C(la) = —~HS(k-1)*C(lIb)
C(lc) = C(la-1)-HS(k-1)

D(la) = HS(1)*D(Ib)
D(Ic) = -C(Ic)

R(la) = ONE/(HS(k)-HS(1))
R(Ic) = ONE/(HS(k)-HS(k-1))
if (k==3) cycle

do =4,k
Id = la+I-3
le = Ib+l-4
C(ld) = C(le)-HS(k-1)*C(le+1)
D(ld) = D(le)+HS(I-2)*D(le+1)
R(Id) = ONE/(HS(k)-HS(I1-2))
end do
end do

1 SSis, really, a CONSTANT (like WC, UC, and WCO)

SS =10.0_DP ** (-Il)
1

| The statements above are used only once in an integration to set up
! the constants. They uses less than a second of execution time.

|
if (debug_flag) then
! Opening LOG file
open (newunit = log_unit, file =
end if
if (save_data_flag)
! Opening DATA file
open (newunit = data_unit, file =
form = ‘'unformatted’
write (data_unit) nv, Il, nclass
end if

then

stop

'ral5.log’

ral5.data’

status =

(yp,stat=ierr)

(y,stat=ierr)

end subroutine radau_on
subroutine radau_off ()
integer ierr
if (save_data_flag) then
! Closing DATA file
close (data_unit)
end if
if (debug_flag) then
! Closing LOG file
close (log_unit)
end if
! Freeing work space
if (allocated (yp)) deallocate
if (ierr/=0) then
write (*,*) % EATAL ERROR ***
write (*,%)
stop
end if
if (allocated (y)) deallocate
it (ierr/=0) then
write (*,*) "% EATAL ERROR ***
write (*,%)

‘replace’

'Deallocation failure for YP(:). Exiting...’

'Deallocation failure for Y(:). Exiting...’

, Status =

, access =

)

‘replace’

‘stream’

)

&

everhart_integrator.f90
~/programming/ode—modules/

4/9
16/06/2015

end if

if (allocated

if (ierr/=0)
write (*,*)
write (*,%)
stop

end if

if (allocated

if (ierr/=0)
write (*,*)
write (*,%)
stop

end if

if (allocated

it (ierr/=0)
write (*,%)
write (*,*)
stop

end if

if (allocated

if (ierr/=0)
write (*,%)
write (*,*)
stop

end if

if (allocated

if (ierr/=0)
write (*,%)
write (*,*)
stop

end if

end subroutine

) deallocate (fj,stat=ierr)
then
" EATAL ERROR ***
'Deallocation failure for FJ(:). Exiting...

(foy) deallocate (fO,stat=ierr)
then
"+ EATAL ERROR ***
'Deallocation failure for FO(:). Exiting...”

(e)) deallocate (e,stat=ierr)
then
" EFATAL ERROR ***'
'Deallocation failure for E(:,:). Exiting...’

(9)) deallocate (g,stat=ierr)
then

*** EATAL ERROR ***

'Deallocation failure for G(:,:). Exiting...’

(b)) deallocate (b,stat=ierr)
then
*x EATAL ERROR ***
'Deallocation failure for B(:,:). Exiting...’

radau_off

subroutine ral5 (ta,tz,x,v,h0,force)
real (DP), intent (in):: ta, tz
real (DP), intent (inout) :: x(), v(:), hO

procedure (ode_field) :: force
1

! Integrator by E. Everhart, Physics Department, University of Denver
I Revision : Angelo Graziosi (Sept. 12, 2014)
I

i This 15th—order version is called RA15. Order NOR is 15.
1

! y' = F(ty) isNCLASS==1, y"=F(ty)is NCLASS == -2,
Ly" = F(ty,y) is NCLASS ==
1

I TFis t(final)—t(initial). (Negative when integrating backward.)
I NV = the number of simultaneous differential equations.

I'LL controls accuracy. Thus SS = 10.**(-LL) controls the size of

I the last term in a series. Try LL = 8 and work up or down from there.
I However, if LL < 0, then HO is the constant sequence size used.

I A non-zero HO sets the size of the first sequence regardless of

' LL sign. Zero’s and Oh’s could look alike here. Use care!

|

I X and V enter as the starting position—velocity vector (values of y
land y’ att = ta) and they output as the final position—velocity vector.
1

integer , parameter

MAX_NCOUNT =10

ZZ=2,ZS=3,Z4=4,25¥5,Z6=6,Z7=7, &
710 =10, Z15 =15, Z20 = 20, Z21 = 21, Z35 =35

real (DP), parameter
integer , save ::
logical , save ::

real (DP), save ::

i, k, ncount, ns, nf, ni, j
nsf, nper
tf, hval, hp, tm, tmf, h, h2, s, g, temp, hv, &

bd(NSTEPS), 92, 93, g4, g5, g6, q7
|

i NSF is .FALSE. on starting sequence, otherwise .TRUE.
I'NPER is .TRUE. only on last sequence of integration.

SR =1.4_DP, PW = ONE/9, EPS_TF_MATCH = 1.0E-08_DP,

nsf = false.
nper = false.

! Initialize the working space. We need to initialize only B and BD.
if (ncl) v(:) = ZERO

b(:,:) = ZERO

bd(:) = ZERO

tf = tz—ta

everhart_integrator.f90
~/programming/ode—modules/

5/9
16/06/2015

ho = sign (abs (h0),tf)

I Now set in an estimate to HP based on experience. Same sign as TF.

hp = sign (0.1_DP,tf)
if (hO/=ZERO) hp = ho
if (hp/tf > HALF) hp = HALF*tf

I'NCOUNT is the number of attempts to find the optimal sequence size.
1If NCOUNT > MAX_NCOUNT it returns to the caller: integration failed.

ncount =0

if (debug_flag) then
I An * is the symbol for writing on the monitor. The file is unit
' LOG_UNIT.

write (*,%)

end if
1

" No. of calls, Every 10th seq.X(1),X(2),H, TM,TF’

I Now the loop regarding the first sequence, aka THE MAIN LOOP, or

1if you prefer,
|

i NS is the nu

the main sequence loop.

mber of sequences done

I NF is the number of calls to FORCE subroutine
' NI is the number of iterations to predict the B-values. Nl is 6 for
! the first sequence, 2 after it.

|
main_loop
ns=0

do

if (debug_flag) nf=0

ni=6
tm = ZERO
tmf = ta

call force (tmf,x,v,f0)
if (debug_flag) nf = nf+1

I Now begins every sequence after the first. First find new
I G-values from the predicted B-values, following Egs. (7) in text.
every_sequence_loop : do
dok=1,nv
g(1,k) = b(1,k)+D(1)*b(2,k)+D(2)*b(3,k)+D(4)*b(4,k)+D(7)*b(5,k)
+D(11)*b(6,k)+D(16)*b(7,k)
9(2,k) = b(2,k)+D(3)*b(3,k)+D(5)*b(4,k)+D(8)*b(5,k)+D(12)*b(6,k)
+D(17)*b(7,k)
9(3,k) = b(3,k)+D(6)*b(4,k)+D(9)*b(5,k)+D(13)*b(6,k)+D(18)*b(7,k)
9(4,k) = b(4,k)+D(10)*b(5,k)+D(14)*b(6,k)+D(19)*b(7,k)
g(5,k) = b(5,k)+D(15)*b(6,k)+D(20)*b(7 k)
g(6,k) = b(6,k)+D(21)*b(7,k)
9(7.k) = b(7.K)

end d
'H
I HP

0
is the sequence size
is the guessed sequence size

I HVAL is the absolute value of sequence size

I'T™M

is the current time relative to TA

I TMF is the current time (time to be passed to the force/FCN)

h=hp
h2 = h*h

it (nchh2=h

hval =

abs (h)

if (debug_flag) then
I Writing to the screen during the integration lets one monitor
I the progress. Values are shown at every 10th sequence.

if
temp =27

(ns/10*10 == ns) then
ERO

if (nv>1)temp =x(2)

write (¥, '(1X,216,5F12.5)

end if

end if

) nf, ns, x(1), temp, h, tm, tf

I better_B_loop is 6 iterations on first sequence and

12ite

rations therafter

better B loop : doi=1,ni
I This loop is for each substep within a sequence.
substep_loop : do j=1, NSTEPS

s = HS())
g=s

if (ncl) g=ONE

everhart_integrator.f90
~/programming/ode—modules/

6/9
16/06/2015

I Here Y is used for the value of y at substep n.
I We use Eq. (9). The collapsed series are broken in two part
! because an otherwise excellent compiler could not handle the
! complicated expression.
do k=1, nv
temp = WC(3)*b(3,k)+s*(WC(4)*b(4,k)+s*(WC(5)*b(5,k)
+s*(WC(6)*b(6,k)+s*WC(7)*b(7,k))))
y(k) = x(k)+g*(h*v(k)+h2*s*(fO(k)*WCO0+s*(WC(1)*b(1,k)
+s*(WC(2)*b(2,k)+s*temp))))

! If equations are 1st order or 2nd order special (i.e.
' without y’, continue oops.. cycle..
if (npg) cycle

! Next are calculated the velocity predictors if need for
! general Class Il. Here YP is used as the value of y’ at
! substep n (Eq. (10)).
temp = UC(3)*b(3,k)+s*(UC(4)*b(4,k)+s*(UC(5)*b(5.k)
+s*(UC(6)*b(6,k)+s*UC(7)*b(7,k))))
yp(K) = v(k)+s*h*(fO(k)+s*(UC(1)*b(1,k) &
+s*(UC(2)*b(2,k)+s*temp)))
end do

! Find forces at each substep.
call force (tmf+s*h,y,yp,fj)
if (debug_flag) nf = nf+1

!

1(A)
! Find G-values from the force FJ found at current substep.
! This section uses Eqs. (4) of text.
| Before save in TEMP the current value.
!
'(B)
I TEMP is now the improvement on G(J,K) over its former
' value. Now we upgrade the B-value using this difference
l'in the one term.
! This section is based on Egs. (5).
!
select case 0)
case (1)
_ do k=1, nv
q = (fi(k)-foK)/s

I See comment (A) above...
temp = g(1,k)
gLk =q

I See comment (B) above...
temp = g(1,k)-temp
b(1,k) = b(1,k)+temp
end do
case (2)
dok=1,nv
a = (fi(k)-fo(k))/s

I See comment (A) above...
temp = g(2,k)
9(2.,K) = (a-9(1,k)*R(1)

I See comment (B) above...

temp = g(2,k)-temp
b(1,k) = b(1,k)+C(1)*temp
b(2,k) = b(2,k)+temp

end do

case (3)

dok=1,nv

q = (fi(k)-foK)/s

! See comment (A) above...
temp = g(3,k)
9(3.,k) = ((a-9(1.k)*R(2)-9(2.k))*R(3)

I See comment (B) above...
temp = g(3,k)-temp
b(1,k) = b(1,k)+C(2)*temp
b(2,k) = b(2,k)+C(3)*temp
b(3,k) = b(3,k)+temp
end do

everhart_integrator.f90
~/programming/ode—modules/

719
16/06/2015

case (4)
do k=1, nv
q = (fi(k)-fo(k))/s

I See comment (A) above...
temp = g(4,k)
9(4.K) = ((a-9(1,k))*R(4)-9(2,K)*R(5)-9(3,k))*R(6)

I See comment (B) above...

temp = g(4,k)-temp
b(1,k) = b(1,k)+C(4)*temp
b(2,k) = b(2,k)+C(5)*temp
b(3,k) = b(3,k)+C(6)*temp
b(4,k) = b(4,k)+temp

end do

case (5)

dok=1,nv

a = (fi(k)-fo(k))/s

I See comment (A) above...
temp = g(5,k)
9(5,k) = (((a-9(1,K)*R(7)-9(2,k))*R(8)-9(3,k))*R(9)
-9(4.k)*R(10)

I See comment (B) above...

temp = g(5,k)-temp
b(1,k) = b(1,k)+C(7)*temp
b(2,k) = b(2,k)+C(8)*temp
b(3,k) = b(3,k)+C(9)*temp
b(4,k) = b(4,k)+C(10)*temp
b(5,k) = b(5,k)+temp

end do

case (6)

dok=1,nv

a = (fi(k)-fo(k))/s

I See comment (A) above...
temp = g(6,k)
9(6.k) = (((q-9(1,K)*R(11)-g(2,K))*R(12)
~9(3,k))*R(13)-g(4.k))*R(14)-9(5,k))*R(15)

I See comment (B) above...

temp = g(6,k)-temp
b(1,k) = b(1,k)+C(11)*temp
b(2,k) = b(2,k)+C(12)*temp
b(3,k) = b(3,k)+C(13)*temp
b(4,k) = b(4,k)+C(14)*temp
b(5,k) = b(5,k)+C(15)*temp
b(6,k) = b(6,k)+temp

end do

case (7)

do k=1, nv

a = (fi(k)-fo(k))/s

I See comment (A) above...
temp = g(7,k)
g(7,k) = ((((((a-9(1,K))*R(16)-9(2,k))*R(17)
—9(3,k))*R(18)—-g(4,K))*R(19)-9(5,k))*R(20)
-g(6,k))*R(21)

I See comment (B) above...
temp = g(7,k)-temp
b(1,k) = b(1,k)+C(16)*temp
b(2,k) = b(2,k)+C(17)*temp
b(3,k) = b(3,k)+C(18)*temp
b(4,k) = b(4,k)+C(19)*temp
b(5,k) = b(5,k)+C(20)*temp
b(6,k) = b(6,k)+C(21)*temp
b(7,k) = b(7,k)+temp
end do
end select
end do substep_loop

if (nes .or. i<ni) cycle better B_loop
I Integration of sequence is over. Next is sequence size control.

hv = ZERO
dok=1,nv

everhart_integrator.f90 8/9
~/programming/ode—modules/ 16/06/2015

hv = max(hv, abs (b(7,k)))
end do
hv = hv*WC(7)/hval**7
end do better_ B_loop

I'If this is the 1st sequence... we still have to adjust the

I time step
if (.not. nsf) then
if (.not. nes)hp= sign ((SS/hv)**PW,tf)

if (nes .or. hp/h>ONE) then
if (nes) hp=h0

nsf = true.
if (save_data_flag) then
write (data_unit) ns, h, tmf, x, v
end if
else
hp = 0.8_DP*hp

ncount = ncount+1

if (ncount > MAX_NCOUNT) then
write (*,%)
write (*,*
write (*,*) 'NCOUNT >’ , MAX_NCOUNT
write (*,*) 'Cannot find an optimal sequence size.’
write (*,%) 'RA15 returns to the caller.’
write (*,*
write (*,*)
! Exiting the main loop should be the same as RETURN.
! (Doing so one could close also an LOG_UNIT file if
| it were opened at the beginning of this routine...)
exit main_loop

Ireturn
end if
if (debug_flag) then
if (ncount> 1) &
write (log_unit, '(2X,212,2ES18.10)’) NOR, ncount, h, hp
end if

! Restart with HP = 0.8*H if new HP is smaller than original
' H on 1st sequence.
cycle main_loop
end if
end if

! This loop finds new X and V values at end of sequence.
| Egs. (11), (12).
dok=1,nv
x(k) = x(k)+v(k)*h+h2*(fO(k)*WCO0+b(1,k)*WC(1)+b(2,k)*WC(2) &
+b(3,k)*WC(3)+b(4,k)*WC(4)+b(5,k)*WC(5)+b(6,k)*WC(6) &
+b(7,k)*WC(7))

I'If equations are 1st order, skip to compute y’ (aka V)
I at end of sequence, i.e. cycle..
it (ncl) cycle

v(k) = v(k)+h*(fO(k)+b(1,k)*UC(1)+b(2,k)*UC(2)+b(3,k)*UC(3) &
+b(4,k)*UC(4)+b(5,k)*UC(5)+b(6,k)*UC(6)+b(7,k)*UC(7))
end do
I We have done a sequence and can update current time and
I sequence counter.

tm = tm+h
tmf = tmf+h
ns = ns+1
if (save_data_flag .and. .not. nper) then
write (data_unit) ns, h, tmf, x, v
end if

! Return if done.
if (nper) then
if (debug_flag) then

temp = ZERO
if (nv>1)temp =x(2)
write (¥, '(1X,216,5F12.5)) nf, ns, x(1), temp, h, tm, tf
write (log_unit, '(1X,216)’) nf, ns
end if
if (save_data_flag) then

write (data_unit) ns, h, tmf, x, v

everhart_integrator.f90
~/programming/ode—modules/

9/9
16/06/2015

end if

I On exit, HO contains the last computed (signed) sequence size
hO=h

I Exiting the main loop should be the same as RETURN.

I (Doing so one could close also an LOG_UNIT file if

I'it were opened at the beginning of this routine...)

exit main_loop

Ireturn

end if

I Control on size of next sequence and adjust last sequence to exactly
I cover the integration span. NPER = .TRUE. set on last sequence.
call force (tmf,x,v,f0)

if (debug_flag) nf = nf+1

if (nes) then

hp = h0
else
hp = sign ((SS/hv)**PW,tf)
if (hp/h > SR) hp = h*SR
end if

if (abs(tm+hp)>= abs(t)-EPS_TF_MATCH) then
hp = tf—tm
nper = true.

end if

I Now predict B-values for next step using Egs. (13). Values from the
I preceding sequence were saved in the E-matrix. The correction BD
l'is applied in the following loop as described in Sec. 2.5.

g = hp/h
! To avoid re—computation of the same expession (g**2, q**3,...)
I for each K...

a2 =0a%q lg**2

g3 =g*q2 g3

g4 = g2*g2 1g**4

g5 = g2*qg3 Ig**5

g6 = g3*g3 1g**6

q7 = q3*g4 1g**7
do k=1,nv

I'lIf we have done at least TWO sequences..
if (ns/=1) then
do j=1, NSTEPS
bd(j) = b(j,k)-e(.k)
end do
end if

e(1,k) = q*(b(1,K)+Z2*b(2,k)+Z3*b(3,K)+Z4*b(4,K)+Z5*b(5 k)
+Z6*D(6,K)+Z7*b(7,K))

e(2,k) = q2*(b(2,k)+Z3*b(3,k)+Z6*b(4,K)+Z10*b(5,k)+Z15*0(6,K)
+221*b(7 K))

e(3,k) = g3*(b(3,k)+Z4*b(4,k)+Z10*b(5,k)+Z20*b(6,k)+Z35*b(7 K))

e(4,k) = q4*(b(4,k)+Z5*b(5,k)+Z15*b(6,k)+Z35*b(7,k))

e(5.k) = q5*(b(5.k)+Z6*b(6.K)+Z21*b(7.K))

e(6,k) = g6*(b(6,k)+Z7*b(7,k))

e(7,K) = q7*b(7,k)

I Apply the correction.. Notice that when we have done ONLY
I one sequence (NS == 1), BD == 0 from its initialization, i.e.
I'we are doing B = E. Itis only when NS > 1 that we are applying
I the correction BD.
do j=1, NSTEPS

b(j.k) = e(.k)+bd(j)
end do

end do

I Two iterations for every sequence. (Use 3 for 23rd and 27th order.)
ni=2
end do every_sequence_loop

end do main_loop
end subroutine rals
end module everhart_integrator

test_jsunp.fo0
~/programming/nbody.apps/

1/7
16/06/2015

!

| Fortran testing of Everhart integrator

! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi

|

i It is distributed in the hope that it will be useful,

I but WITHOUT ANY WARRANTY; without even the implied warranty of
I MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

1

| BUILDING
cd ~/programming/nbody.apps

rm —rf {*.mod,~/programming/modules/*} && \

gfortran [-Warray—-temporaries] ~O3 —Wall $BLD_OPTS\
—-J ~/programming/modules \
../basic-modules/basic_mods.f90 \
..Jode-modules/{everhart_integrator.f90,ode_integrators.fo0} \
test_jsunp.f90 —o test_jsunp$EXE && \
rm —rf {*.mod,~/programming/modules/*}

Jtest_jsunp$EXE

BLD_OPTS =
EXE = .out

for the build on GNU/Linux

BLD_OPTS = —static
EXE =

|

|

1

|

|

|

|

|

1

|

1

!

I where:
1

|

|

|

|

|

1

|

1

I for the build on MSYS2/MINGW32/MINGW64 shells
|
1

| The date range used in the work
|

! Eckert, Brouwer, Clemence (1951),

I Coordinates of the Five Outer Planets 1653-2060,
I Astronom. Papers American Ephem. XII
!
1

lis : [JD = 2325000.5 = 1653.07.13.5, JD = 2473800.5 = 2060.12.07.0]
!

1 On the WEB, that work is at the URL

!

! http://hdl.handle.net/2027/mdp.39015017142152

!
! Notice that before 1925 Jan. 01, the astronomical dates began at the

I Greenwich Mean Noon (i.e. at the 12.0 hours): this explain why the day of
! the Gregorian date which corresponds to the JD 2325000.5 is 13.5 and not

114.0 as one, normally, would expect. For the same reason, the date
11653.05.02.0 has as JD, 2324928.0 and not 2324927.5.
|

| How initial conditions are computed
! The positions are those reported by the above work for the date
1941.01.06.0 (JD 2430000.5). For example, for Jupiter they are (in AU):
(+3.4294 74152, +3.3538 69597, +1.3549 49017)
The velocity is computed numerically as numerical differentiation.

The 11-point formula is used (see below).
Initially, the 5—point formula was used,

being,
F() = F(*H),i=-2,-1,0,+1,+2and F=f or F =f.
(See Koonin—Meredith, Computational Physics, Fortran)

In the work of Eckert and friends, the positions are given at

!

!

!

!

!

!

!

!

!

I f(0) = [f(-2)-8*f(-1)+8*f(+1)-f(+2)]/(12*h) + O(h**4)
!

!

!

!

!

!

!

!

! intervals of 40 days, so the natural time unit is 40D—unit.

test_jsunp.fo0
~/programming/nbody.apps/

2[7
16/06/2015

I Formulas for Numerical Differentiation
1

The following formulas are adaped from (up to 11-point)

http://www.trentfguidry.net/post/2010/09/04/
Numerical—-differentiation—formulas.aspx

and (table 1, up to 17—point) from
http://lwww.ias.ac.in/chemsci/Pdf-Sep2009/935.pdf
seven-points formula:

|
|
!
|
|
!
|
!
i
1
I £(0) = (—f(~3)+9*(—2)—45*f(~1)+A5*(+1)-9*(+2)+f(+3))/(60*h)
|

nine—points formula:

£(0) = (+3*f(—4)-32*f(-3)+168*f(—2)—-672*f(-1) \
+672*f(+1)-168*f(+2)+32*f(+3)—-3*f(+4))/(840*h)

eleven—-points formula:

f'(0) = (—2*f(—5)+25*f(—4)-150*f(—3)+600*f(—2)-2100*f(-1) \
+2100*f(+1)-600*f(+2)+150*f(+3)-25*f(+4)+2*f(+5))/(2520*h)

thirteen—points formula:

£(0) = (+5*f(~6)—72*((~5)+495*f(~4)—2200*f(—3)+ 7425*(~2)-23760*f(~1) \
+23760%(+ 1)~ 7425(+2)+2200%(+3)-495*(+4)+72*f(+5)-5*(+6))/(27720*h)

fifteen—points formula:

£(0) = (~15*(~7)+245*(—6)-1911*(~5)+9555*f(~4)-35035*f(-3) \
+105105*(~2)-315315*(~1)+315315*f(+1)—105105*(+2)+35035*(+3) \
—9555*(+4)+1911*(+5)-245*(+6)+15*(+7))/(360360*h)

seventeen—points formula:

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I f(0) = (7*(—8)—-128*f(=7)+1120*f(-6)—6272*f(-5)+25480*f(-4)-81536*f(-3) \
1 +224224*(-2)-640640*f(—1)+640640%f(+1)—-224224*f(+2)+81536*f(+3) \

I —25480*f(+4)+6272*(+5)-1120*f(+6)+128*f(+7)-7*f(+8))/(720720*h)

|

|

! For the date TZ = 2469600.5_DP = 2049.06.08.0, the best result is obtained

! with the 9-points formula. In the Eckert and friends work, one can find that
! Jupiter position (X, Y, Z) at TZ = 2469600.5_DP is
!

I -0.832708494, +4.678840367, +2.027156624
!

I With this program and 9—points formula we find
|

! -0.832709005, +4.678840309, +2.027156609
!

i For the date TZ = 2325000.5_DP = 1653.07.13.5, the best result is obtained
! with the 9—points formula. In the Eckert and friends work, one can find that

! Jupiter position (X, Y, Z) at TZ = 2325000.5_DP is

!

I +3.548739356, —3.280988352, —-1.495613025
!
! With this program and 9—points formula we find
!

! +3.548738385, —3.280989304, —1.495613406
!

program test_jsunp

use kind_consts , only : DP

use general_routines , only :system_time

use ode_integrators , only :deqgbs

use everhart_integrator , only :radau_on, ral5, radau_off

implicit none

integer , parameter : NDIM =3, NB =5, NV = NDIM*NB, NEQ = 2*NV
integer , parameter : NCLASS=-2,LL=-14

integer , parameter : MAX_DERIV_PTS =17, ND = MAX_DERIV_PTS/2
real (DP), parameter : Z0=0,T_FACT =800, V_FACT =20

integer i, ip, np = MAX_DERIV_PTS, np2

real (DP): tf, h, &

ta = 2430000.5_DP, & 11941.01.06.0

test_jsunp.fo0 3/7

~/programming/nbody.apps/ 16/06/2015
tz = 2325000.5_DP, & 11653.07.13.5
Itz = 2469600.5_DP, & !2049.06.08.0
h0 =320 ! The time step used in Everhart paper, sec. 3.3
real (DP): xO(NV), vVO(NV), xx(-ND:ND,NB), yy(—~ND:ND,NB), zz(~ND:ND,NB)
real (DP):: x(NV), v(NV), y(NEQ), w(NEQ,36), eps = 1.0E-12_DP, &

dx(3), dv(3)
real (DP): 10,1
character (len =32) :: np_arg

i=0

do
call get_command argument (i,np_arg)
if (len_trim (np_arg) ==0) exit

if (i==1) read (np_arg,*) np

i=i+l
end do

I The numer of arguments that have been read is stored in i’
!
I'In this command line,
!
I Jtest_jsunp.out 17
!
' we have 2 arguments: the program name and the number '17’
!
if (i/=2) then
write (*,*) 'USAGE: ./test_jsunp.out <N_POINTS>’
stop
end if

if (np<5 .or. MAX_DERIV_PTS <np) then
write (*,*) np, ‘—points formula not implemented.’
write (*,%) 'Program stops...’
stop

end if

write (*,*) 'Computing initial conditions using ’ ,np, &
'—points formula for derivatives...’

write (*,%)

|

! Planets positions around the starting date, 2430000.5 JD = 1941.01.06.0.

! The rule, for the planets n. |, is:
!

2429680.5 JD = 1940.02.21.0 ==> XX(-8,1), YY(-8,1), ZZ(-8,1)
2429720.5 JD = 1940.04.01.0 ==> XX(-7.1), YY(~7.1), ZZ(-7.))
2429760.5 JD = 1940.05.11.0 ==> XX(-6,1), YY(-6,1), ZZ(-6,1)
2429800.5 JD = 1940.06.20.0 ==> XX(-5,1), YY(-5.1), ZZ(-5,1)
2429840.5 JD = 1940.07.30.0 ==> XX(-4.1), YY(~41). ZZ(~4.))
2429880.5 JD = 1940.09.08.0 ==> XX(-3.1), YY(-3.1), ZZ(-3.])
2429920.5 JD = 1940.10.18.0 ==> XX(-2,1), YY(-2,l), ZZ(-2,1)
2429960.5 JD = 1940.11.27.0 ==> XX(-1.1), YY(~L). ZZ(~1.))

2430000.5 JD = 1941.01.06.0 ==> XX(0,1), YY(0,1), ZZ(0,1)

|
|
|
|
|
|
|
|
|
|
|
| 2430040.5 JD = 1941.02.15.0 ==> XX(+L1,I), YY(+L,1), ZZ(+1,])
| 2430080.5 JD = 1941.03.27.0 ==> XX(+2.1). YY(+2.l), ZZ(+2.])
| 2430120.5 JD = 1941.05.06.0 ==> XX(+31), YY(+3.1), ZZ(+3.])
| 2430160.5 JD = 1941.06.15.0 ==> XX(+4.1). YY(+4.1), ZZ(+4.])
| 2430200.5 JD = 1941.07.25.0 ==> XX(+5,1), YY(+5,1), ZZ(+5,1)
| 2430240.5 JD = 1941.09.03.0 ==> XX(+6,1), YY(+6.1), ZZ(+6.])
| 2430280.5 JD = 1941.10.13.0 ==> XX(+7.I), YY(+7.1), ZZ(+7.])
| 2430320.5JD = 1941.11.22.0 ==> XX(+8,1), YY(+8.1), ZZ(+8.])
|

|

(I =1 for jupiter, 2 for Saturn,..., 5 for Pluto)

XX(1) =[4.724184873_DP, 4.621378591_DP, 4.500533544_DP, &
4.362143991_DP, 4.206780873_DP, 4.035088112_DP, &
3.847778387_DP, 3.645628468_DP, &
3.429474152_DP, &
3.200204874_DP, 2.958758073_DP, &
2.706113369_DP, 2.443286632_DP, 2.171324008_DP, &
1.891295968_DP, 1.604291433_DP, 1.311412040_DP]

xx(:,2) = [7.833676700_DP, 7.700327328_DP, 7.562355230_DP, &
7.419827637_DP, 7.272815279_DP, 7121392386 DP, &
6.965636697_DP, 6.805629460_DP,
6.641455425_DP, &

test_jsunp.fo0
~/programming/nbody.apps/

47
16/06/2015

6.473202831_DP, 6.300963375_DP, &
6.124832183_DP, 5.944907752_DP, 5.761291895_DP,
5.574089663_DP, 5.383409269_DP, 5.189362000_DP]
xx(:,3) = [12.280065983_DP, 12.155630171_DP, 12.030409732_DP,
11.904412250_DP, 11. 777645443 DP, 11. 650117157 DP,

11.521835361_DP, 11.392808146_DP, &
11.263043721_DP, &
11.132550402_DP, 11.001336615_DP, &

10.869410886_DP, 10.736781836_DP, 10.603458178_DP,
10.469448708_DP, 10.334762302_DP, 10.199407912_DP]

xx(:,4) = [-30.062244610_DP, -30.075613890_DP, —30.088485654_DP,

-30.100859239_DP, —-30.112733915_DP, —30.124108891_DP,

—-30.134983319_DP, -30.145356298_DP, &
-30.155226876_DP, &
-30.164594060_DP, -30.173456819_DP, &

-30.181814088_DP, -30.189664777_DP, -30.197007772_DP,
-30.203841948_DP, —30.210166165_DP, —30.215979282_DP]

xx(:,5) = [-20.552905937_DP, —20.624802965_DP, —20.696551366_DP,

-20.768149710_DP, -20.839596488_DP, —20. 910890122 DP,
-20.982028960_DP, —21.053011290_DP,

-21.123835338_DP, &

-21.194499275_DP, -21.265001224_DP,

-21.335339263_DP, —21.405511434_DP, —21. 475515746 DP,
-21.545350180_DP, —21.615012699_DP, —21.684501247_DP |

yy(,,1) = [1.395636674_DP, 1.670118716_DP, 1.938084558_DP,
2.198497852_DP, 2.450359098_DP, 2.692710961_DP,
2.924643186_DP, 3.145297096_DP, &
3.353869597 DP, &
3.549616687_DP, 3.731856438_DP,
3.899971436_DP, 4.053410685_DP, 4191690969 DP,
4.314397699_DP, 4.421185252_DP, 4.511776837_DP]
yy(,2) = [4.692917397_DP, 4.863738797_DP, 5.031639065_DP,
5.196506906_DP, 5.358232433_DP, 5.516707288_DP,

5.671824759_DP, 5.823479888_DP, &
5.971569579_DP, &
6.115992687_DP, 6.256650116_DP, &

6.393444896_DP, 6.526282269_DP, 6.655069769_DP,

6.779717298_DP, 6.900137218_DP, 7.016244426_DP]
yy(:,3) = [14.058466481_DP, 14.141261359_DP, 14.223157071_DP,

14.304146527_DP, 14.384222716_DP, 14.463378712_DP,

14.541607680_DP, 14.618902882_DP, &

14.695257679_DP, &

14.770665540_DP, 14.845120038_DP,

14.918614862_DP, 14.991143811_DP, 15. 062700802 DP,

15.133279868_DP, 15.202875158_DP, 15.271480939_DP |
yy(:,4) = [2.576077682_DP, 2.461358369_DP, 2.346589777_DP,

2.231772859_DP, 2.116908609_DP, 2.001998061_DP,

1.887042292_DP, 1.772042432_DP, &
1.656999664_DP, &
1.541915229_DP, 1.426790427_DP, &

1.311626621_DP, 1.196425238_DP, 1.081187771_DP,
0.965915778_DP, 0.850610887_DP, 0.735274788_DP |

yy(,5) = [29.131108835_DP, 29.046387877_DP, 28.961424498 DP,

28.876217865_DP, 28.790767187_DP, 28.705071716_DP,

28.619130752_DP, 28.532943648_DP, &
28.446509814_DP, &
28.359828720_DP, 28.272899897_DP, &

28.185722946_DP, 28.098297530_DP, 28.010623384_DP,
27.922700310_DP, 27.834528183_DP, 27.746106944_DP]

zz(:,1) = [0.483165204_DP, 0.603437945_DP, 0.721356205_DP,
0.836463264_DP, 0.948316335_DP, 1.056488937_DP,

1.160573114_DP, 1.260181470_DP, &
1.354949017_DP, &
1.444534814_DP, 1.528623379_DP, &

1.606925883_DP, 1.679181106_DP, 1.745156173_DP,

1.804647057_DP, 1.857478868_DP, 1.903505939 DP]
72(:,2) = [1.602157778_DP, 1.678543833_DP, 1.753921800_DP,

1.828242798_DP, 1.901458371_DP, 1.973520543_DP,

2.044381861_DP, 2.113995438_DP, &
2.182314997_DP, &
2.249294912_DP, 2.314890241_DP, &

2.379056771_DP, 2.441751048_DP, 2.502930418_DP,
2.562553065_DP, 2.620578047_DP, 2.676965343_DP]
zz(:,3) = [5.986200890_DP, 6.024237821_DP, 6.061892122_DP,
6.099160581_DP, 6.136040020_DP, 6.172527294_DP,
6.208619295_DP, 6.244312956_DP, &

test_jsunp.fo0
~/programming/nbody.apps/

5/7
16/06/2015

6.279605251_DP, &

6.314493195_DP, 6.348973852_DP, &

6.383044329_DP, 6.416701783_DP, 6.449943418_DP,

6.482766489_DP, 6.515168298_DP, 6.547146198_DP]
zz(:,4) =[1. 811963696 DP, 1. 765312683 DP, 1.718628845_DP,

1.671912540_DP, 1.625164136_DP, 1.578384018_DP,

1.531572591_DP, 1.484730279_DP, &
1.437857527_DP, &
1.390954805_DP, 1.344022607_DP, &

1.297061453_DP, 1.250071890_DP, 1.203054493_DP,
1.156009865_DP, 1.108938636_DP, 1.061841466_DP]

zz(:,5) = [15.431663080_DP, 15.426689424 DP, 15.421588226_DP,
15.416358811_DP, 15.411000518_DP, 15. 405512704 DP,
15.399894742_DP, 15.394146025_DP,
15.388265968_DP, &
15.382254010_DP, 15.376109615_DP, &
15.369832271_DP, 15.363421496_DP, 15.356876831_DP,
15.350197850_DP, 15.343384151_DP, 15.336435365_DP]

I Compute the initial conditions needed for the integration.

I Equatorial Rectangular Coordinates, B1950.0 Epoch
np2 = np/2

doi=1,NB

ip = 1+NDIM*(i-1)

I Initial position in AU
x0(ip:ip+2) = [xx(0,i), yy(0,i), zz(0,i)]

I'Initial velocity in AU/40D—-unit, i.e. HSTEP = 1 40D-unit
vO(ip:ip+2) = [deriv(np,xx(—np2:np2,i)), deriv(np,yy(-np2:np2,i)),
deriv(np,zz(-np2:np2,i))]
end do

write (*,*) 'Testing CLASS IS differential equations:’

write (*,%) ’ The Outer Planets Problem’
write (*,* " (sec. 3.3 of Everhart paper)’
write (*,*)

I Conversion to use time unit 800 days. Being the velocity given in
I AU/40D-unit, the conversion factor is 800/40 = 20

x =x0

v =VvO*V_FACT

tf = (tz-ta)/T_FACT

h =hO/T_FACT

Icall radau_on(NV,LL,NCLASS,.true.,.true.)
Icall radau_on(NV,LL,NCLASS,save_data_flag0=.true.)
call radau_on (NV,LL,NCLASS, .true.)
t0 = system_time()
call ral5 (Z0,tf,x,v,h,force)
t1 = system_time()
call radau_off ()

I Conversion to AU/D
v(1:3) = v(1:3)/T_FACT

write (*,%)

write (¥, '(a,f12.2,a)) CAtt=" , tz, " the result is (JUPITER)’
write (*, '(a,3f15.9)) 'RA15 : X="' , X(1:3)

write (¥, ’'(a,3f15.9)) 'RA15 : Vv="' , v(1:3)

write (*, '(A,F8.3,A)) 'Runtime’ J11-t0, ' seconds!

y(1:NV) =x0

y(NV+1:NEQ) = vO*V_FACT
tf = (tz—ta)/T_FACT

h =hO/T_FACT

t0 = system_time()
call deqgbs (NEQ,Z0,tf,y,h,eps,w,sub)
t1 = system_time()

I Conversion to AU/D
Y(NV+1:NV+3) = y(NV+1:NV+3)/T_FACT

dx = x(1:3)-y(1:3)
dv = v(1:3)-y(NV+1:NV+3)

write (%)

test_jsunp.fo0
~/programming/nbody.apps/

6/7
16/06/2015

write (*, ’(a,fl2.2,a)) Att=" , tz, " the result is (JUPITER):’

write (*, '(a,3f15.9)) 'DEQGBS: X=" , y(1:3)

write (¥, '(a,3f15.9)) 'DEQGBS: V=’ , Y(INV+1:NV+3)

write (¥, '(A,F8.3,A)) 'Runtime’ t1-t0, ' seconds!

write (*,*

write (¥, '(a,3es10.2)’) 'DX=" ,dx

write (*, '(a,3es10.2)’) DVv=",dv

write (*,*

write (*, ’(a,es10.2)) 'ABS(DX) =", norm2 (dx)

write (*, ’(a,es10.2)’) 'ABS(DV) =", norm2(dv)
contains

function deriv (n_points,f) result (df)

real (DP): df

! Declaring F as F(:) would mean that its lower bound is 1 and not
I —n_points/2 as in the caller.

integer , intent (in) : n_points

real (DP), intent (in):: f(-=n_points/2:)

select case (n_points)
case (5)
! 5—points formula, HSTEP = 1
df = (f(-2)-8.0_DP*f(-1)+8.0_DP*f(+1)-f(+2))/12.0_DP
case (7)
! 7-points formula, HSTEP = 1
df = (-f(-3)+9.0_DP*f(-2)-45.0_DP*f(-1)+45.0_DP*f(+1)-9.0_DP*f(+2)
+f(+3))/60.0_DP
case (9)
! 9—points formula, HSTEP = 1
df = (+3.0_DP*f(-4)-32.0_DP*f(-3)+168.0_DP*f(-2)-672.0_DP*f(-1)
+672.0_DP*f(+1)-168.0_DP*f(+2)+32.0_DP*f(+3)
-3.0_DP*f(+4))/840.0_DP
case (11)
! 11-points formula, HSTEP =1
! If F were declared as F(:) then
|
I df = (-2.0_DP*f(1)+25.0_DP*f(2)-150.0_DP*f(3)+600.0_DP*f(4) &
I -2100.0_DP*f(5)+2100.0_DP*f(7)-600.0_DP*f(8)+150.0_DP*f(9) &
I —25.0_DP*{(10)+2.0_DP*f(11))/2520.0_DP
|
df = (-2.0_DP*f(-5)+25.0_DP*f(-4)-150.0_DP*f(-3)+600.0_DP*f(-2)
-2100.0_DP*f(-1)+2100.0_DP*f(+1)-600.0_DP*f(+2)+150.0_DP*f(+3)
-25.0_DP*f(+4)+2.0_DP*f(+5))/2520.0_DP
case (13)
! 13-points formula, HSTEP = 1
df = (+5.0_DP*f(—6)-72.0_DP*f(-5)+495.0_DP*f(-4)—-2200.0_DP*f(-3)
+7425.0_DP*{(-2)-23760.0_DP*f(-1)+23760.0_DP*f(+1)
—-7425.0_DP*f(+2)+2200.0_DP*f(+3)-495.0_DP*f(+4)+72.0_DP*f(+5)
-5.0_DP*f(+6))/27720.0_DP
case (15)
! 15-points formula, HSTEP = 1
df = (-15.0_DP*f(-7)+245.0_DP*f(-6)-1911.0_DP*f(-5)+9555.0_DP*f(-4)
—35035*f(—3)+105105.0_DP*f(-2)-315315.0_DP*f(-1)
+315315.0_DP*f(+1)-105105.0_DP*{(+2)+35035.0_DP*f(+3)
-9555.0_DP*f(+4)+1911.0_DP*f(+5)-245.0_DP*(+6) &
+15.0_DP*f(+7))/360360.0_DP
case (17)
! 17—-points formula, HSTEP = 1
df = (7.0_DP*f(—8)-128.0_DP*f(-7)+1120.0_DP*f(-6)-6272.0_DP*f(-5)
+25480.0_DP*{(-4)-81536.0_DP*f(—3)+224224.0_DP*f(-2)
—-640640.0_DP*f(-1)+640640.0_DP*f(+1)-224224.0_DP*f(+2)
+81536.0_DP*f(+3)-25480.0_DP*f(+4)+6272.0_DP*f(+5)-1120.0_DP*f(+6)
+128.0_DP*f(+7)-7.0_DP*f(+8))/720720.0_DP
case default

df=0
write (*,*) n_points, '—points formula not implemented.’
write (*,%) 'Program stops...’
stop
end select
end function deriv

subroutine force (t,x,v,f)
I The FORCE subroutine for the 5 outer planet integration.
real (DP), intent (in):: t, x(), v(2)
real (DP), intent (out):: ()
! The above statement assumes an 8-byte doubel word (64 bits).

test_jsunp.fo0 717
~/programming/nbody.apps/ 16/06/2015

I X, V, and F are dimensioned assumed-shape because they appear

lin the call.

|

1 SCZ is the Gaussian constant for an 800—day time unit, and SC is the

! same except the mass of sun is augmented by masses of inner

! planets, Mercury through Mars.

1'X,V, and F are dimensioned for 15 in the calling programs. Indices 1,2,3

! are for x,y,z for Jupiter, 4,5,6 are for x,y,z Saturn, 7,8,9 are for

' x,y,z Uranus, 10,11,12 for x,y,z Neptune, and 13,14,15 for Pluto.

real (DP), parameter : SCZ=-((1.720209895E-2_DP)**2)*((800._DP)**2), &
SC =-1.8938494521574133E2_DP, 721 =1

! The reciprocal masses of the 5 planets, units of reciprocal sun.

real (DP), parameter : RM(NB)=[1047.355 DP, 3501.6_DP, 22869. DP, &
19314._DP, 360000._DP]

real (DP), save : pm(NB), r(NB), rh(NB,NB), scm

integer , save : kI, n,na

logical , save : first = .true.

it (first) then
first = false.
pm(:) = =SCZ/RM(:)
end if

do n=1,NB
j=(n-1)*3+1
r(n) =21/ norm2 (x(j:j+2))**3
if (n==NB) cycle
na=n+1
do I=na, NB
k= (I-1)*3+1
rh(n,l) = 21/ norm2 (X(j:j+2)—-x(k:k+2))**3
rh(l,n) = rh(n,l)
end do
!'Indices K and J run 1-15, indices N and L for the planets run 1-5.
I The mass factors are in PM, the distance from the sun of each planet
I contribute to R, and the planet-to—planet distances contribute to RH.
end do

don=1,NB
j=(n-1)*3+1
scm = (SC-pm(n))*r(n)
f(j:j+2) = scm*x(j:;j+2)
I Th F-values above are for the sun—planet forces/unit mass.

do1=1,NB
it (I==n) cycle
k=(-1)*3+1

f(j:j+2) = f(j:;j+2)+pm()*((x(k:k+2)=x(j:j+2))*rh(n,))—x(k:k+2)*r(l))
! The mutual planetary perturbation forces/unit mass are added on. The
| first part of the second term is due to the planet-to—planet force,
I 'and the second part is the indirect term because the sun at the
I origin is not at the center of mass of the system.
end do
end do

end subroutine force

subroutine sub (t,y,f)

real (DP), intent (in):: t, y()

real (DP), intent (out):: ()
f(1:NV) = y(NV+1:NEQ)

call force (t,y(1:NV),y(NV+1:NEQ),f(NV+1:NEQ))
end subroutine sub

end program test_jsunp

close_encounters.fo0
~/programming/nbody.apps/

1/8
16/06/2015

I Fortran Interface to the Xbgi—-364p/WinBGIm-6.0 Library
! by Angelo Graziosi (firstname.lastnameATalice.it)

! Copyright Angelo Graziosi

|

i It is distributed in the hope that it will be useful,
I but WITHOUT ANY WARRANTY; without even the implied warranty of
I MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

| HOW TO BUILD XBGl (GNU/Linux Mint)

cd ~/work

wget http://libxbgi.sourceforge.net/xbgi—364.tar.gz
tar —xf xbgi—364.tar.gz

cd xbgi—364/src

make

make demo

./demo
make clean
cd test
make
./mandelbrot

cd ..
mv libXbgi.a ~/programming/lib

HOW TO BUILD WIinBGIm-6.0 (MSYS2/MINGW64 shell)

cd ~/work/WinBGIm-6.0
make
mv libbgi.a ~/programming/lib/mingw64/libWinBGIm6.0.a

make clean

cd all-tests
g++ -03 -Wall -mwindows -I .. test-bgidemo0.cxx \
-L ~/programming/lib/mingw64 —-IWinBGIm6.0 \
-lgdi32 -lcomdlg32 —luuid —loleaut32 —lole32 —o test-bgidemo0

HOW TO BUILD THE APP
cd ~/programming/nbody.apps

rm —rf {*.mod,~/programming/modules/*} && \

gfortran ~O3 —Wall $BLD_OPTS -J ~/programming/modules \
../basic-modules/{basic_mods.f90,julian_dates.f90} \
..Jode-modules/everhart_integrator.f90 \
../bgi—fortran/{bgi.f90,bgiapp.fo0} close_encounters.fo0 \
-L ~/programming/lib/$PLATFORM $LIBS -o close_encounters$EXE

.close_encounters$EXE
where:
BLD_OPTS =
PLATFORM =
LIBS = -IXbgi -IX11 -Im
EXE = .out
for the build on GNU/Linux
$BLD_OPTS = —static [-mwindows]
$PLATFORM = mingw64
$LIBS = —-IWinBGIm6.0 -Igdi32 -Icomdlg32 —luuid -loleaut32 —lole32 \
—Istdc++
EXE =

for the build on MSYS2/MINGW64

NICE WEB PAGES

https://phet.colorado.edu/sims/my-solar—-system/my-solar-system_en.html

http://en.wikipedia.org/wiki/Numerical_model_of_the_Solar_System

APOPHIS TEST

close_encounters.fo0
~/programming/nbody.apps/

218
16/06/2015

With T1 = 2477476.5 D, H =0, LL = 16, the result is

CPAattime (D): 2462240.40684 (2029 4 13.90684)
CPA distance [P1-P2| (AU): 2.5991332899197143E-004

Assuming AU ~ 150E6 km, |[P1-P2| ~ 2.6E-4 * 150E6 = 39000 km
Wikipedia (http://it.wikipedia.org/wiki/99942_Apophis) says

|
!
!
!
!
|
!
! |P1-P2| ~ 36350 km on April 13, 2029...
!

module close_encounters_lib

use kind_consts , only :DP
implicit none

private
I

| GAUSS Units : AU (A) for lengths, Day (D) for times,
I Solar Mass (MS) for masses.
I

i With these units,
|

i G*MSUN = MU = KQ = K*K = 2.959122082855910 x 10**(-4)

!

I being K == 0.01720209895 A**(3/2) MS**(=1/2) D**(-1) the

I Gauss'’s Gravitational Constant

!

integer , parameter : NDIM =3, NDIM1 = NDIM-1, &
MAX_NBODY = 15, MAX_NV = NDIM*MAX_NBODY, NCLASS = -2

real (DP), parameter : Z0=0,Z1=1

integer : body_color(MAX_NBODY) = 0, p1(NDIM) = 0, p2(NDIM) = 0, Il = 10
I'NV is the number of 2nd order equations.

integer : nb, nbl, nv

real (DP): t0=2Z20,tl=2454053.0_DP, h = Z0, &

m(MAX_NBODY) = Z0, mm(MAX_NBODY) = Z0

real (DP):: k view =1000.0_DP, phi = 270.0_DP, theta = Z0,
rot_m(3,3) = Z0

|

I We adopt the variables with this meaning (for example with 4 bodies in 3D)
!

x(1:3) =q1(1:3)
x(4:6) =qg2(1:3)
X(7:9) =0g3(1:3)
x(10:12) = g4(1:3)
v(1:3) =vi1(1:3)
v(4:6) =v2(1:3)

v(7:9) =v3(1:3)

!
!
!
!
!
!
:
I
I v(10:12) = v4(1:3)
I

I Notice that the first index sequences,
!
114 7 10
!
I can be produced with
!
I 3*-2, i-1,2,3,. ,NBODY
!
lie.
!
I NDIM*i=(NDIM-1) = 1 + (i-1)*NDIM
!
real (DP):: x(MAX_NV) = Z0, v(MAX_NV) = Z0
public ::input_data, calc_orbit, run_app
contains
subroutine read_cards ()
integer i, ipl,ip2, cards_unit
real (DP):: mu=20
open (newunit = cards_unit, file = ‘close_encounters.cards’

! Epoch of the data to be read (starting time of integration interval)
read (cards_unit,*) tO

I Number of bodies
read (cards_unit,*) nb

, status =

‘old’

close_encounters.fo0
~/programming/nbody.apps/

3/8
16/06/2015

if (nb>MAX_NBODY) then
write (**) °NB=' ,nb, '.GT.” ,MAX_NBODY, . Exiting...
stop
end if
nbl =nb-1
nv = NDIM*nb

! Gravitational parameter (G*M) for Sun (in AU**3/D**2)
read (cards_unit,*) mu

! Planets data: gravitational parameter (in AU**3/D**2),
! positions (in AU) and velocities (in AU/D) at time tO
! Notice: m(1:nb) is the gravitational parameter (G*mass) NOT the mass..
doi=1,nb
ipl = 1+NDIM*(i-1)
ip2 = ip1+NDIM1

read (cards_unit,*) m(i)

read (cards_unit,*) x(ipl:ip2)

read (cards_unit,*) v(ipl:ip2)
end do

I Computing the constants : —(mu+m(i))
mm(1:nb) = Z0O—(mu+m(1:nb))

! The bodies for which we want the Closest Point Approach (CPA) data
! (should be in the range 1..nb and ipl /= ip2)
read (cards_unit,*) ip1, ip2

if (ipl==ip2 or. (ipl<1 .or. nb<ipl) &
or. (ip2<1 .or. nb<ip2)) then
write (*,%) 'P1=",ipl, p2=" ,ip2, &
". Wrong request for CPA. Exiting...’
stop
end if

' Now IP1 and IP2 point to the X coordinate of body P1 and P2,
! respectively...

ipl = 1+NDIM*(ip1-1)

pl=[ipl, ipl+l, ipl+2]

ip2 = 1+NDIM*(ip2-1)
p2 =[ip2, ip2+1, ip2+2]

close (cards_unit)
write (*,%) ‘done’’

! Notice that, in the default example, the Earth orbit color (CYAN ?) is
! almost all overlapped by that of MOON (LIGHT_BLUE ?).
! Obviously, the colors could be defined differently...

doi=1,nb
body_color(i) =i
end do
end subroutine read_cards
subroutine input_data ()

use math_consts , only : DEG2RAD
use get data , only :get
|

! The coordinates system is rectangular, heliocentric and ecliptic,
I which means a NOT-inertial reference system, where the SUN is ALWAYS
| at rest. See the note
|
M. Carpino, Introduzione ai metodi di calcolo delle effemeridi e
determinazione orbitale.

(http://www.brera.mi.astro.it/~carpino/didattica/detorb.pdf)

i
!

!

!

!
land
!

! G. Matarazzo, Moto perturbato degli N-corpi (Metodo di Cowell) risolto
I con l'integratore di Everhart al 15—-esimo ordine.

!

I (http://astrodinamica.altervista.org/PDF/MotoPert.pdf)

I Just a clarification about the table on page 7 of the last cited work.
! The table does not report the close(st) encounters AS computed by

close_encounters.fo0
~/programming/nbody.apps/

4/8
16/06/2015

I COW.FOR program. This would mean to compute not only the distance
! of the close encounter but also the time at which this occurs.

! Instead the table shows only the positions at the times 'tf’ of

! first column. The times 'tf’ are the times of close(st) encounters

I AS computed by the astronomer E. Goffin.

|

! This program tries to compute both times and distances of close(st)

! encounters. Obviously, we can verify the results of Goffin and

I COW.FOR ONLY approximately, in the limit of time step H and

! "precision” LL.

1

! Another clarification. Often the data refer to the ecliptic plane

' with which most planetary orbits are almost co—planar. So an interesting
! point of view is on the equatorial plane. This forms an angle of about

1 23 degrees with the ecliptic plane. Put, then, the observer on the

! equatorial plane choosing a THETA angle of 90-23 = 67 degrees.

|

write (*, '(A)’ ,advance= 'NO’) ’Reading data...’
call read_cards ()

write (*,*

write (*,*) ‘Integration starts at time TO (JD):’ ,t0
write (*,%) 'Number of interacting bodies: ’ ,hb

write (*,*)

| The starting integration time, t0, is read from the cards file.
! The final time, t1, and the integration step (guess) is read here,

linteractively.

call get ('T1(ID)=" 1)

call get ('H(D)=" ,h)

write (*,%)

call get ('LL=")

if (Il >20) then
write (*,*) 'LL TOO HIGH! Exiting...’
stop

end if

write (*,*)

call get ('K_VIEW (AU) ="’ K_view)

call get ('PHI (DEG) =" ,phi)

call get ('THETA (DEG)=" ,theta)

write (*,*)

I Conversion to radians..
phi = phi*DEG2RAD
theta = theta*DEG2RAD

I With PHI and THETA we can compute ROT_M

rot. m(1,1) = - sin (phi)
rot_m(1,2) = cos (phi)
rot_m(1,3) = Z0

rot_m(2,3) = sin (theta)
rot_m(3,3) = cos (theta)

I —cos(theta)*cos(phi), —cos(theta)*sin(phi)
rot_m(2,1) = -rot_m(3,3)*rot_m(1,2)
rot._ m(2,2) = rot_m(3,3)*rot_m(1,1)

I sin(theta)*cos(phi), sin(theta)*sin(phi)
rot_m(3,1) = rot_m(2,3)*rot_m(1,2)
rot_m(3,2) = -rot_m(2,3)*rot_m(1,1)

end subroutine input_data

subroutine force (t,x,v,f)
real (DP), intent (in):: t, x(), v(:)
real (DP), intent (out):: f(2)
integer , save : 1], ipl,ip2,jpl, jp2

real (DP), save :: a(NDIM*MAX_NBODY), d(NDIM)
i Initialization of a(:) and field f(:).

i In a(:) we store

OO

i where r(p) is the radius vector of planet p from the Sun.

doizl,nb

close_encounters.fo0
~/programming/nbody.apps/

5/8
16/06/2015

ipl = 1+NDIM*(i-1)
ip2 = ip1+NDIM1

Id = qi/|qi|**3
d = x(ipl:ip2)
d=d/ norm2 (d)**3
a(ipl:ip2) =d
f(ipl:ip2) = mm(i)*a(ipl:ip2)
end do

! Filling with forces/accelerations the field f(:)
doi=1,nbl

ipl = 1+NDIM*(i-1)

ip2 = ip1+NDIM1

doj=i+l, nb
jpl = 1+NDIM*(j-1)
jp2 = jp1+NDIM1

= (qi-qj)/|qi-qj[**3
d= X(Ipl ip2)-x(jp1:jp2)
d= norm2 (d)**3

f(ip1:ip2) = f(ipL:ip2)—-m(j)*(d+a(jpl:jp2))
f(ip1:jp2) = f(jp1:jp2)+m(i)*(d-a(ipl:ip2))
end do
end do
end subroutine force

subroutine calc_orbit ()

use everhart_integrator , only :radau_on, ral5, radau_off
write (*,*)

write (¥, '(A) ,advance= 'NO’) ’'Computing the orbits...’

call radau_on (nv,I,NCLASS,save_data_flag0= frue.)

call ral5 (t0,t1,x(1:nv),v(1:nv),h,force)
call radau_off ()
write (*,*) "...done!’

1 Just to test/debug

print
print ’(a,f15.10,f15.4)’ , 'HT= ,h, t1
print ’(a,3f15.10) , 'Position (P2) = , X(p2)
print ’(a,3f15.10) , ’Posmon (P1) = , X(pl)
print '(a,f15.8)’ , ‘D=, norm2 (x(pl) x(p2))
print *

end subroutine calc_orbit

subroutine do_projection (p,u,v)
real (DP), intent (in):: p()
real (DP), intent (out):: u, v
real (DP): pv(3)

pv = matmul (rot_m,p)

v = (pv(3)/k_view)-Z1

u=-pv(l)iv

v = —pv(2)/v

end subroutine do_projection

subroutine run_app ()
use, intrinsic ;o iso_fortran_env , only : iostat_end
use julian_dates , only :jd2cal

use bgi, only : BLUE, GREEN, RED, setcolor, YELLOW
use bgiapp , only : bgiapp_dot, bgiapp_line

real (DP), parameter : DQ_THRESHOLD = (0.1_DP)**2
integer 1 nvO, ll0, nclassO, ns, k, kp, data_unit, io_status,
year, month

real (DP): h,t, us,vs, &

dg, dg_min, d(NDIM), t_cpa, p1_cpa(NDIM), p2_cpa(NDIM),
dg_ce, t_ce, p1_ce(NDIM), p2_ce(NDIM), day
real (DP): U_SUN, V_SUN

logical :: find_ce

! Opening DATA file

open (newunit = data_unit, file = 'ral5.data’ , access =
form = ‘'unformatted’ , status = ‘old’

read (data_unit) nvO, I10, nclassO

‘stream’

close_encounters.fo0
~/programming/nbody.apps/

6/8
16/06/2015

if (nvO/=nv) error stop “rx Mismatch for NV, ***
it (llo/=1) error stop *** Mismatch for LL. ***'
if (nclassO /= NCLASS) error stop "*x Mismatch for NCLASS. ***'

! Reading sequence n. 0, i.e. initial conditions. We do not test EOF
! because we assume at least a few sequences (NS > 1)
read (data_unit) ns, h, t, x(1:nv), v(1:nv)

! Just to test/debug...
Iprint *, 'NS,H,T,X,V =, ns, h, t, x(1:nv), v(1:nv)
|

! Initialization for Close—Encounter (CE) and Closest Point Approach (CPA)
|

I'd s the distance vector between P1 and P2
I't_ce isthetime at CE

I pl_ce is the position of body P1 at CE

1 p2_ce is the position of body P2 at CE

|

i t_cpa isthetime at CPA

I p1_cpa is the position of body P1 at CPA
1 p2_cpa is the position of body P2 at CPA
|

I We try to find CEs which are below DQ_THRESHOLD (distance squared
! threshold), i.e. when the flag FIND_CE is set. This occurs the first

I time that DQ < DQ_THRESHOLD, for current search).

1

i We can lose CEs in certain situations. For example, if bodies are at CE,
li.e. below DQ_THRESHOLD, when we start the integration.
1

if we start above DQ_THRESHOLD, we should be able to find all the
! CE < DQ_THRESHOLD.
|

find_ce = false.

d = X(p1)-x(p2)

dg = dot_product (d,d)
dg_ce =dg

tce=t

pl_ce =x(pl)

p2_ce = x(p2)

! Being the CPA the minimum of all CE, dq_min is the minimum of all dqg_ce.
dg_min =dqg_ce
t cpa=t_ce
pl_cpa=pl_ce
p2_cpa = p2_ce

! Plotting the SUN and the axes

I The Sun position, i.e. the origin of Heliocentric System: notice that
I here we compute ONLY the position. We do not plot the SUN..
call do_projection ([20, z0O, Z0],U_SUN,V_SUN)

! First, we plot the axes...

I X axis

call setcolor (RED)

call do_projection ([15*21, 20, 20],us,vs)
call bgiapp_line (U_SUN,V_SUN,us,vs)

1Y axis

call setcolor (GREEN)

call do_projection ([2O, 15*Z1, Z0],us,vs)
call bgiapp_line (U_SUN,V_SUN,us,vs)

1 Z axis

call setcolor (BLUE)

call do_projection ([20O, Z0, 15*Z1],us,vs)
call bgiapp_line (U_SUN,V_SUN,us,vs)

I ...then we plot the SUN!!!
call bgiapp_dot (U_SUN,V_SUN,YELLOW)

do
! Plotting planets at current position
dok=1,nb

kp = 1+NDIM*(k-1)

call do_projection (X(kp:kp+2),us,vs)
call bgiapp_dot (us,vs,body_color(k))

close_encounters.f90 7/8
~/programming/nbody.apps/ 16/06/2015

end do

I We take another step...
read (data_unit,iostat=io_status) ns, h, t, x(1:nv), v(1:nv)

if (io_status == iostat end) exit
if (io_status > 0) &
error stop "*x Error occurred while reading file. ***
d = x(p1)~x(p2)
dqg = dot_product (d,d)

I We are entering the "region" DQ < DQ_THRESHOLD. Hunting can begin...
if (.not. find_ce .and. dg<DQ_THRESHOLD) find_ce = true.

I We are leaving the "region" DQ < DQ_THRESHOLD. Hunting stops...
! ...and we emptied its pouch, i.e. we output the result and
| reset essential variables.. DQ_CE is reset to DQ which
lis >= DQ_THRESHOLD!
if (find_ce .and. dq>=DQ_THRESHOLD) then
call jd2cal (t_ce,1,year,month,day)
* Kk

write (%,

write (*,*

write (*, '(a,f18.5,a,i6,i4,f10.5,a)’) 'CE attime (D):’ , t_ce, &
T , year, month, day,)y

write (*,*) 'CE P1 position (AU):’ ,pl_ce

write (*,%) 'CE P2 position (AU):’ ,p2_ce

write (*,*) 'CE distance |P1-P2| (AU):’ , sgrt (dg_ce)

' We have found a CE.. but is this also the CPA?
if (dg_ce < dg_min) then

dg_min =dg_ce

t cpa=t_ce

pl cpa=pl_ce

p2_cpa = p2_ce
end if

| Reset of the relevant variables for the next search...
find_ce = false.
dg_ce =dg
end if

I If we are hunting, let’s see if we are close the prey..
if (find_ce .and. (dg<dg_ce)) then
dg_ce =dqg
tce=t
pl ce =x(pl)
p2_ce = x(p2)
end if
end do
call jd2cal (t_cpa,l,year,month,day)
write (*,)

write (*,*)

write (*, ’'(a,f18.5,a,i6,i4,f10.5,a)’) 'CPA at time (D):’ , t_cpa, &
" , year, month, day, ')’

write (*,*) "CPA P1 position (AU):’ , pl_cpa

write (*,¥) 'CPA P2 position (AU):’ , p2_cpa

write (*,%) 'CPA distance |P1-P2| (AU):’ , sqrt (dg_min)

close (data_unit)
end subroutine run_app
end module close_encounters_lib

program close_encounters
use kind_consts , only : DP
use general_routines , only :system_time
use bgiapp , only : bgiapp_setup, bgiapp_init, bgiapp_close
use close_encounters_lib
implicit none
real (DP):: 10,1

call input_data ()
call bgiapp_setup (-5.0_DP,5.0_DP,-5.0_DP,5.0_DP,900,900)

t0 = system_time()
call calc_orbit ()
tl = system_time()-t0

close_encounters.fo0
~/programming/nbody.apps/

8/8
16/06/2015

write (*,*

write (¥, '(A,F9.3,A)) 'Completedin’ 1, ' seconds!
call bgiapp_init (’Close Encounters in 3D’)

write (*,)

write (¥, '(A) ,advance= 'NO’) ’'Please wait, we are working...’

t0 = system_time()
call run_app ()
t1 = tl+system_time()-t0

write (*,*)
write (¥, '(A,F9.3,A)) 'Completed (TOTAL time) in”’ 11,

call bgiapp_close ()
end program close_encounters

" seconds!’

close_encounters.cards
~/programming/nbody.apps/

1/2
16/06/2015

2450400.5E0 I Epoch of the following data: t0 in JD (1996.11.13)

13 I Num. of bodies: 9_PLANETS + MOON + 3_ASTEROID
2.9591220828559109E-04 ! SUN gravitational parameter (GM) in AU**3/D**2
4.9125495718310926E-011 ! MERCURY data: mu, P, V
-1.491597147372767E-01 —4.409630314852908E-01 —-2.232760294282906E-02
2.099935561673024E-02 -7.614588783381691E-03 —2.549599303902789E-03
7.2434531799395128E-010 ! VENUS data: mu, P, V

-6.119893135637021E-01 3.744913412372688E-01 4.044173605869310E-02
-1.064020054248585E-02 —1.735242543146333E-02 3.772384910458827E-04
8.8876925468881312E-010 ! EARTH data: mu, P, V

6.235834212190300E-01 7.683399260131534E-01 4.751567992370535E-06
-1.364628508960836E-02 1.077936535027717E-02 -1.828322890139825E-07
1.0931889900447183E-011 ! MOON data: mu, P, V

6.229102892685170E-01 7.659462392724490E-01 2.106771983479050E-04
—1.305453769069843E-02 1.063212641103732E-02 1.967671914792972E-05
9.5495319248992543E-011 ! MARS data: mu, P, V

-8.678762425345101E-01 1.387156048737002E+00 5.039199333124769E-02
-1.133319250585803E-02 —6.233312585307682E-03 1.480613776554786E-04
2.8247604533651827E-007 ! JUPITER data: mu, P, V

2.082087540769299E+00 —-4.715767658128386E+00 —2.710998509201615E-02
6.809364256702234E-03 3.403616809968890E-03 -1.665752961137376E-04
8.4576151711855840E-008 ! SATURN data: mu, P, V

9.431816319591139E+00 9.254821134396185E-01 -3.911315416992688E-01
—8.404643760719874E-04 5.546167970574444E-03 —6.334347795242694E-05
1.2918949220207392E-008 ! URANUS data: mu, P, V

1.102987764625917E+01 —1.643087121705927E+01 —2.039897402435908E-01
3.243004224175503E-03 2.014199077781569E-03 -3.460988677815098E-05
1.5240407045482162E-008 ! NEPTUNE data: mu, P, V
1.374054785933357E+01 —2.684413121570826E+01 2.360069346593258E-01
2.780267752478550E-03 1.453067809066634E-03 —9.353788642859004E-05
1.9452118462049880E-012 ! PLUTO data: mu, P, V

-1.327085889240211E+01 —2.600534944576927E+01 6.622324629725974E+00
2.903988680023795E-03 -1.866045588646760E-03 —6.311262844723530E-04
2.2297247205467541E-020 ! 1620 Geographos data: mu, P, V
—-7.060485772092238E-01 1.252231067126121E+00 2.095930365992838E-01
-8.952871398986725E-03 —9.046046376125343E-03 -2.797321808419076E-03
6.85E-024 199942 Apophis data: mu, P, V

7.107062136151633E-01 3.894508051529238E-01 —-3.274807289758988E-03
-7.016197192797620E-03 1.896184795079028E-02 -1.172780694723344E-03
14.03E-014 1'1 Ceres data: mu, P, V

6.159275815999015E-01 —2.820904493849575E+00 -1.993609022032636E-01
9.599130262761093E-03 1.594095019532529E-03 -1.723388645820340E-03
312 I The bodies for which we want the CPA data

| The above data have been generated with JPL Horizons WEB Interface.
|

| The data refers to:

!

! Sun body centered

I Earth (Geocenter)

I Vector table

I Reference epoch: J2000.0

I Coordinate system: Ecliptic and Mean Equinox of Reference Epoch

!

I At JPL WEB site, the gravitational parameters are expressed in km**3/s**2,
! so we have expressed them in AU**3/D**2 with planet_state_vector.fo0
! program.

!

I The GM for Apophis has been computed with these data:

|

M = 4.6E10 kg (from Wikipedia, italian version)

MSUN = 1.98855E30 kg (from Wikipedia, english version)
G = G*MSUN = 2.9591220828559109E-04 (third line above)

|

|

1

!

! So,
!

I GM = (4.6E10/1.98855E30)*2.9591220828559109E-04
I =(4.6/1.98855)*2.9591220828559109 * 1E-24

I =6.85E-24

|

For Ceres, Wikipedia says: M = 9.43E20 kg. So with the same steps:

!
!
I GM = (9.43E20/1.98855E30)*2.9591220828559109E-04
I =(9.43/1.98855)*2.9591220828559109 * 1E-14

! =14.03E-14

!

!

JPL gives: GM = 63.2 km**3/s**2. Assuming 1 AU ~ 150E6 km, D = 86400 s, a

2/2

close_encounters.cards
16/06/2015

~/programming/nbody.apps/

! raw extimate gives:

|

I GM =63.2 * (86400)**2 / (150E6)**3 = 63.2 * ((8.64)**2 / 1.5**3) * 1E-16
! =1397.88 * 1IE-16 ~ 13.98 * 1E-14 ~ 14E-14

!

I The "1"in "1 Ceres" means that Ceres was the first asteroid discovered

! (by G. piazzi).
!

planar3body.f90
~/programming/nbody.apps/

1/4
16/06/2015

I Fortran Interface to the Xbgi—-364p Library

! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi

|

! It is distributed in the hope that it will be useful,
I but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
I'HOW TO BUILD (GNU/Linux Mint)
1

cd ~/work

wget http://libxbgi.sourceforge.net/xbgi—364.tar.gz

tar —xf xbgi—364.tar.gz

cd xbgi—364/src

make

make demo

./demo
make clean
cd test
make
./mandelbrot

mv libXbgi.a ~/programming/lib
cd ~/programming/nbody.apps

rm —rf {*. mod,~/programming/modules/*} && \

gfortran —O3 —Wall —=J ../modules \
../basic-modules/basic_mods.f90 \
..Jode—-modules/ode_integrators.fo0 \
../bgi—fortran/{bgi.f90,bgiapp.fo0} planar3body.fo0 \
-L ../lib =IXbgi —IX11 —Im —o planar3body.out

|
1

|

!

!

!

!

!

!

!

!

!

!

I cd..
!

!

!

!

!

!

!

!

!

!

I ./planar3body.out
!
1

WEB SITES/DOCS
http://it.wikipedia.org/wiki/Orbita_osculatrice

!
!
!
!
I Osculating orbits in the Pythagorean 3—-Body problem (video, youtube)
I https://www.youtube.com/watch?v=rr0JpgKPKgg

1

EXAMPLES

!
!

! tin [0,300], M(;) = [200E4, 10E4, 0.001E4],

| P1(-6.76266,0), P2(135.237,0), P3(159.237,0)
I V1(0,-6.71461), V2(0,134.285), V3(0,68.1902)

!

! position and speeds are referred to the CM system. This means, the CM
lis at rest. This is true approximately, in the limit of numeric precision

!'and you should consider also that we have computed postions and speeds

! with six significat figures.
!

module planar3body_lib

use kind_consts , only : DP

implicit none

private

I'Units so that G_NEWTON =1 (G_NEWTON = 6.67E-11 in SI)

integer : id_method =1

integer , parameter :: NDIM =2, NBODY =3, NEQ = 2*NDIM*NBODY

real (DP):: t0=0.0_DP,1t1=10.0 DP, h=0.00005_DP, eps = 1.0E-12_DP,

m(NBODY) =[5.0_DP, 3.0_DP, 4.0 DP |
|

| We adopt the equation found in
I

D. Gruntz - J. Waldvogel "Orbits in te Planar Three—-Body Problem"

i.e.

y(1:2) =qg1(1:2)

!
!
i
!
I y(3:4) =vi(1:2)
!

!

y(5:6) =q2(1:2)

planar3body.f90
~/programming/nbody.apps/

2/4
16/06/2015

y(7:8) =v2(1:2)

y(9:10) =q3(1:2)

i
!
I y(11:12) = v3(1:2)

i w(:,:) work space to compute K1, K2, K3, K4. Notice that the method uses

I'w(:,3) and NOT w(:,4)!

real (DP):: yO(NEQ)=[1.0_DP,-1.0 DP,0.0_DP, 0.0_DP,

1.0_DP, 3.0_DP, 0.0_DP, 0.0_DP,
-2.0 DP,-1.0_DP, 0.0_DP, 0.0_DP]

public ::input_data, run_app
contains
subroutine input_data ()

use get_data , only :get

real (DP), parameter : MACHEPS = epsilon(1.0_DP)

write (*,*) "Choose the method:’
write (*,*) " 1:RK4

write (*,%) ' 2:GBS

write (**) ' 3:RKM’

call get ('ID_METHOD =" ,id_method)

! For GBS or RKM step, the default initial H step can be greather..
if (id_method == .or. id_method == 3) h = 0.005_DP

write (*,¥)

call get ('TO
call get ('T1
call get('H=" ,h)

if (id_method == .or. id_method == 3)

write (*,%)
call get ('EPS=" ,eps)
if (eps < 1000*MACHEPS) then

write (*,) 'EPS TOO SMALL! Exiting...’

stop
end if
end if
write (*,*)

write (¥ 'Masses:’

call get ('M1=" ,m(1)
call get ('M2=",m(2)
call get ('M3=",m(3))
write (*,*)
write (*,*) ‘Initial position:’
call get ('X1=" ,y0(1))
call get ('Y1=" ,y0(2)
write (*,*)
call get ('X2= ,yO(5))
call get('Y2=" ,y0(6))
write (*,*)
call get ('X3=",y0(9))
call get ('Y3= ,y0(10))
write (*,*)
write (*,%) ‘Initial speed:’
call get ('VX1=" ,y0(3))
call get ('VYl=' ,y0(4))
write (*,*)
call get ('VX2="' y0(7))
call get ('VY2=" ,y0(8))
write (*,*)
call get ('VX3=" ,y0(11))
call get ('VY3=" ,y0(12))
write (*,*)

end subroutine input_data

subroutine sub (x,y,f)
real (DP), intent (in):: X, Y()
real (DP), intent (out):: ()

then

real (DP), save :: di(NDIM), d2(NDIM),d3(NDIM)

planar3body.f90

~/programming/nbody.apps/

3/4
16/06/2015

!
1y(1:2) =ql(1:2)
1y(3:4) =v1(1:2)
|

1y(5:6) =q2(1:2)
1y(7:8) =v2(1:2)
|

iy(9:10) =03(1:2)
1y(11:12) = v3(1:2)
|

1d1 = (q3-92)/|g3-g2|**3
dl =y(9:10)-y(5:6)
dl =d1/ norm?2 (d1)**3

1d2 = (q1-93)/|q1-g3|**3
d2 = y(1:2)-y(9:10)
d2 =d2/ norm?2 (d2)**3

1d3 =(gq2-91)/|q2-q1[**3
d3 =y(5:6)-y(1:2)
d3 =d3/ norm?2 (d3)**3

I Now computing the field
f(1:2) = y(3:4)
(5:6) = y(7:8)
f(9:10) = y(11:12)

(3:4) = m(2)*d3-m(3)*d2
f(7:8) = m(3)*d1-m(1)*d3
f(11:12) = m(1)*d2-m(2)*d1
end subroutine sub

subroutine run_app ()

use bgi, only : GREEN, RED, YELLOW
use bgiapp , only : bgiapp_dot

use ode_integrators

only : rk4step, deggbs, deqrkm

! For RK4 w(NEQ,3) would be sufficient...

I For RKM w(NEQ,6) would be sufficient...

! For GBS we need w(NEQ,36)...

real (DP): t,tz, y(NEQ), w(NEQ,36), hO

hO=h
t=t0
y=y0
do while (t<tl)

call bgiapp_dot (y(1),y(2),GREEN)
call bgiapp_dot (y(5),y(6),RED)
call bgiapp_dot (y(9),y(10),YELLOW)

I We take an ode integrator step

if (id_method == 1)

then

call rk4dstep (NEQ,h,t,y,w,sub)

else
h=ho
tz =t+h
if (id_method == 2) then
call deqgbs (NEQ,t,tz,y,h,eps,w,sub)
else
call degrkm (NEQ,t,tz,y,h,eps,w,sub)
end if
t=1tz
end if
end do
lprint *
lprint *, t,y
end subroutine run_app

end module planar3body_lib

program planar3body

use kind_consts , only :

use general_routines ,

use bgiapp , only : bgiapp_setup, bgiapp_init, bgiapp_close

use planar3body_lib
implicit none

real (DP): 1O, t1

DP
only : system_time

planar3body.f90 4/4
~/programming/nbody.apps/ 16/06/2015

call input_data ()
call bgiapp_setup (-5.0_DP,5.0 DP,-5.0 DP,5.0_DP)
call bgiapp_init ('3-Body Planar Orbits’)

write (¥, '(A) ,advance= 'NO’) ’'Please wait, we are working...’
t0 = system_time()

call run_app ()
t1 = system_time()

write (*,*)
write (¥, '(A,F9.3,A)) 'Completedin’ ,t1-t0, ’seconds!

call bgiapp_close ()
end program planar3body

jsunp.f90
~/programming/nbody.apps/

1/6
16/06/2015

I Fortran Interface to the Xbgi—-364p Library

! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi

|

! It is distributed in the hope that it will be useful,
I but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
I'HOW TO BUILD (GNU/Linux Mint)
1

cd ~/work

wget http://libxbgi.sourceforge.net/xbgi—364.tar.gz

tar —xf xbgi—364.tar.gz

cd xbgi—364/src

make

make demo

./demo
make clean
cd test
make
./mandelbrot

mv libXbgi.a ~/programming/lib
cd ~/programming/nbody.apps

rm —rf {*. mod,~/programming/modules/*} && \

gfortran —O3 —Wall —=J ../modules \
../basic-modules/basic_mods.f90 \
..Jode-modules/{ode_integrators.f90,everhart_integrator.fo0} \
../bgi—fortran/{bgi.f90,bgiapp.f0} jsunp.fo0 \
-L ../lib =IXbgi =IX11 —=Im -0 jsunp.out

!

!

!

!

!

!

!

!

!

!

!

!

!

I cd..
!

!

!

!

!

!

!

!

!

!

I ./jsunp.out
!
1

| While developping, you should compile with these options:

!

I gfortran[-mp—4.9] ~Wall —Wextra —Wimplicit-interface —fPIC —fmax—errors=1\
! —g —fcheck=all —fbacktrace...

!

I REFERENCES

!

I http://inis.jinr.ru/sl/ivol1/CMC/

I Hairer,_Numerical_Geometric_Integration,1999.pdf

1

| The data refers to Sept. 5, 1994 00:00, i.e. JD 2449600.5
!

module jsunp_lib

use kind_consts , only :DP
implicit none

private
I

| GAUSS Units : AU (A) for lengths, Day (D) for times,
! Solar Mass (MSUN) for masses:
!

I MSUN =1, AU = 149597870 km, G = 2.95912208286 x 10**(-4)
I

integer , parameter : NDIM =3, NDIM1 = NDIM-1, &
NB =5, NB1 = NB-1, NV = NDIM*NB, NEQ = 2*NV, NCLASS = -2
integer , parameter : RK4_ID=1,GBS ID=2,RKM_ID =3, RA15 ID=4
real (DP), parameter : Z0=0,Z1=1,GN =2.95912208286E-04_DP
integer :: body_color(NB) =0, id_method = RKM_ID, Il = 10
real (DP): t0=2Z0,t1=100000.0_DP, h=0.125_DP, eps = 1.0E-9_DP,
m(NB) = [0.000954786104043_DP, &

0.000285583733151_DP, 0.0000437273164546_DP, 0.0000517759138449 DP,
Z1/1.3E08_DP], mm(NB) = Z0
|

i We are looking at the scene from the distance K_VIEW,

l'in the direction (phi,theta). ROT_M is the matrix to transform
1 (X,Y,Z) to (XV,YV,2ZV). See QFA2, pag. 175+

|

real (DP) :: k_view = 1000.0_DP, phi =270.0_DP, theta = 90.0_DP,
rot_m(3,3) = Z0
!

jsunp.f90
~/programming/nbody.apps/

216
16/06/2015

' We adopt the variables with this meaning (for example with 4 bodies in 3D)

!

|

I y(1:3) =q1(1:3)
I y(4:6) =0g2(1:3)
I y(7:9) =qg3(1:3)
I y(10:12) = q4(1:3)
|

I y(13:15) = v1(1:3)
I y(16:18) = v2(1:3)
I

!

I

y(19:21) = v3(1:3)
y(22:24) = v4(1:3)

I Notice that the first index sequences,
14 7 10
13 16 19 22

can be produced with

|
|

I

!

!

!

!

!

I 3*%-2, i-1,2,3,..,NBODY
!

I 3*-2+NEQ/2, i-1,2,3,..,NBODY
!

li.e.

!

I NDIM*i—~(NDIM-1) = 1 + (i-1)*NDIM
!
|

NDIM*i—(NDIM-1) + NEQ/2 = 1 + (i-1)*NDIM + NEQ/2
|

! These data uses an Heliocentric equatorial rectangular coordinates system

real (DP): yO(NEQ) = [-3.5023653 DP, -3.8169847 DP, -1.5507963_DP,

9.0755314_DP, -3.0458353_DP, -1.6483708_DP, &
8.3101420_DP, -16.2901086_DP, -7.2521278_DP, &
11.4707666_DP, —25.7294829_DP, -10.8169456_DP, &
—-15.5387357_DP, -25.2225594_DP, -3.1902382_DP, &
0.00565429_DP, -0.00412490_DP, -0.00190589_DP, &
0.00168318_DP, 0.00483525_DP, 0.00192462_DP, &
0.00354178_DP, 0.00137102_DP, 0.00055029_DP, &
0.00288930_DP, 0.00114527_DP, 0.00039677_DP, &
0.0027672_DP, —0.00170702_DP, —0.00136504_DP]

public ::input_data, run_app
contains
subroutine input_data ()

use math_consts , only : DEG2RAD
use get data , only :get

real (DP), parameter : MACHEPS = epsilon(Z1), &
MUO = GN*1.00000597682_DP I MU for SUN+inner planets
integer i

write (*,%) 'Choose the method:’
write (*,*) " 1:RK4

write (*,%) ' 2: GBS
write (**) ' 3:RKM’
write (*,¥) " 4:RALY

call get ('ID_METHOD =' ,id_method)
I For GBS, RKM or RA15 step, the default initial H step can be greather..
if (id_method /= RK4_ID) h =0.25_DP

write (*,*)

call get ('TO(D)=" ,t0)

call get ('TL(D)=" 1)

call get ('"H(D)=" ,h)

if (id_method == GBS_ID .or. id_method == RKM_ID) then
write (*,%)
call get ('EPS=" ,eps)

if (eps < 1000*MACHEPS) then
write (*,) 'EPS TOO SMALL! Exiting...’
stop
end if
end if
if (id_method == RA15_ID) then
write (*,%)
call get ('LL=",II)
if (Il >20) then
write (*,%) 'LL TOO HIGH! Exiting..."’
stop

jsunp.f90
~/programming/nbody.apps/

3/6
16/06/2015

end if
end if
write (*,%)
call get ('K_VIEW (AU) =" k_view)
call get ('PHI (DEG) =" ,phi)
call get ('THETA (DEG) =" ,theta)
write (*,¥)

I Conversion to radians..
phi = phi*DEG2RAD
theta = theta*DEG2RAD

I With PHI and THETA we can compute ROT_M

rot. m(1,1) = - sin (phi)
rot_ m(1,2) = cos (phi)
rot_m(1,3) = Z0

rot. m(2,3) = sin (theta)
rot_m(3,3) = cos (theta)

I —cos(theta)*cos(phi), —cos(theta)*sin(phi)
rot_m(2,1) = —rot_m(3,3)*rot_m(1,2)
rot_m(2,2) = rot_m(3,3)*rot_m(1,1)

I sin(theta)*cos(phi), sin(theta)*sin(phi)
rot_m(3,1) = rot_m(2,3)*rot_m(1,2)
rot_m(3,2) = -rot_m(2,3)*rot_m(1,1)

! Converting masses, m(i), (in MSUN units) to

! Gravitational Parameters, mu(i)

!

I HERE we use an Heliocentric Reference System (HRS)
m(1:NB) = GN*m(1:NB)

I Computing the constants : —=(MUO+mu(i))
mm(1:NB) = Z0-(MUO+m(1:NB))

! Obviously, the colors could be defined differently...

doi=1,NB
body_color(i) = i+5
end do
end subroutine input_data
subroutine do_projection (p,u,v)
real (DP), intent (in):: p()
real (DP), intent (out):: u,v

real (DP):: pv(3)
pv = matmul (rOt_m,p)

v = (pv(3)/k_view)-Z1

u=-pv(l)iv
v = —pv(2)v
end subroutine do_projection
subroutine sub (x,y,f)
real (DP), intent (in):: X, ¥(2)
real (DP), intent (out):: ()

lip... point to the first half of arrays, iv... to the seconf half.
! The same for jp..., jv...

integer , save : i, j,ipl,ip2,jpl, jp2,ivl, iv2, jvi, jv2
real (DP), save : a(NDIM*NB), d(NDIM)

|

! y(1:2) =q1(1:2)
1y(3:4) =9g2(1:2)
1y(5:6) =q3(1:2)
!

1y(7:8) =v1(1:2)

1y(9:10) =v2(1:2)
1y(11:12) = v3(1:2)
|

! Filling/initializing with speeds the first half of field f(:)
f(1:NV) = y(NV+1:NEQ)

jsunp.f90
~/programming/nbody.apps/

4/6
16/06/2015

! Initialization of a(:) and second half of field f(:).
I'In a(:) we store
!

i (r(E)/Ir(p)[**3)
| where r(p) is the radius vector of planet p from the Sun.
I

doi=1,NB
ip1 = 1+NDIM*(i-1)
ip2 = ip1+NDIM1

ivl = NV+ipl
iv2 = iv1+NDIM1

Id = qi/|qi|**3
d = y(ipl:ip2)
d=d/ norm2 (d)**3
a(ipl:ip2) =d
f(iv1:iv2) = mm(i)*a(ipl:ip2)
end do

! Filling with forces/accelerations the second half of field f(:)
doi=1,NB1

ipl = 1+NDIM*(i-1)

ip2 = ip1+NDIM1

ivl = NV+ipl
iv2 = ivl+NDIM1

do j=i+1, NB
jpl = 1+NDIM*(j-1)
jp2 = jp1+NDIM1

vl = NV+jpl
jv2 = jv1+NDIM1

1d = (qi-qj)/|qicj|**3
d = y(iplip2)-y(ipl:jp2)
d=d/ norm2 (d)**3

f(ivl:iv2) = f(ivl:iv2)-m(j)*(d+a(jpl:jp2))

f(jvl:jv2) = f(jv1:jv2)+m(i)*(d—a(ipl:ip2))

end do

end do

end subroutine sub

subroutine force (t,x,v,f)

real (DP), intent (in):: t, x(2), v(2)
real (DP), intent (out):: ()
integer , save : i, j,ipl,ip2,jpl, jp2

real (DP), save : a(NDIM*NB), d(NDIM)
|

! Initialization of a(:) and field f(:).
I'In a(:) we store
!

i (r(E)/Ir(p)[**3)
| where r(p) is the radius vector of planet p from the Sun.
I

doi=1,NB
ip1 = 1+NDIM*(i-1)
ip2 = ip1+NDIM1

I'd = qi/|qi[**3
d = x(ipl:ip2)
d=d/ norm?2 (d)**3
a(ipl:ip2) =d
f(ipl:ip2) = mm(i)*a(ipl:ip2)
end do

! Filling with forces/accelerations the field f(:)
doi=1,NB1

ipl = 1+NDIM*(i-1)

ip2 = ip1+NDIM1

do j=i+1, NB
ipl = 1+NDIM*(j-1)
jp2 = jp1+NDIM1

jsunp.f90
~/programming/nbody.apps/

5/6
16/06/2015

!d = (qi-qj)/|qi-qj[*3
d = x(ipLl:ip2)-x(jpl:jp2)
d=d/ norm2 (d)**3

f(ipL:ip2) = f(ip1l:ip2)-m(j)*(d+a(jpLl:jp2))

f(ip1:jp2) = f(jp1:jp2)+m(i)*(d-a(ipl:ip2))

end do

end do

end subroutine force

subroutine run_app ()

use bgi,
use bgiapp , only : bgiapp_dot, bgiapp_line

only : BLUE, GREEN, RED, setcolor, YELLOW

use ode_integrators ,
use everhart_integrator

only : rk4step, deggbs, deqrkm
, only :radau_on, ral5, radau_off

integer Kk, kp

! For RK4 w(NEQ,3) would be sufficient...
I For RKM w(NEQ,6) would be sufficient...
! For GBS we need w(NEQ,36)...

real (DP): t,tz, y(NEQ), w(NEQ,36), hO, sgh, u, v

real (DP):: U_SUN,V_SUN
logical :: first

! Switching on the Everhart integrator if it has been selected...

'LL =12, NCLASS = -2

radau_on (NV,IL,NCLASS)

if (id_method == RA15_ID) call

! Initialization for forward/backward integration
h= sign (abs (h),t1-t0)
sgh = sign (Z1,h)

! General initialization for integration
hO=h
t=t0
y(1:NEQ) = yO(1:NEQ)

! Initialization for plotting SUN
first = true.

do while (sgh*(t+h0-t1) < 0)

it (first) then
first = false.

I The Central Body position, i.e. the origin of Heliocentric System

call do_projection ([20, z0,

I X axis
call setcolor (RED)

Z01],U_SUN,V_SUN)

call do_projection ([15*z1, z0, Z0],u,v)
call bgiapp_line (U_SUN,V_SUN,u,v)

'Y axis
call setcolor (GREEN)

call do_projection ([20, 15*71, Z0],u,v)
call bgiapp_line (U_SUN,V_SUN,u,v)

| Z axis
call setcolor (BLUE)
call do_projection ([Z0, Z0,

15%71 1,u,v)

call bgiapp_line (U_SUN,V_SUN,u,v)

! The SUN-Central Body!!!

call bgiapp_dot (U_SUN,V_SUN,YELLOW)

end if

do k=1, NB
kp = 1+NDIM*(k-1)

call do_projection (y(kp:kp+2),u,v)
call bgiapp_dot (u,v,body_color(k))

end do

I We take an ode integrator step

if (id_method == RK4_ID) then
call rkdstep (NEQ,h,t,y,w,sub)

else

jsunp.f90
~/programming/nbody.apps/

6/6
16/06/2015

h=ho
tz =t+h
select case (id_method)
case (GBS_ID)
call deqgbs (NEQ,t,tz,y,h,eps,w,sub)
case (RKM_ID)
call degrkm (NEQ,t,tz,y,h,eps,w,sub)
case (RA15_ID)
call ral5 (t,tz,y(1:NV),y(NV+1:NEQ),h,force)
end select
t=1tz
end if
end do

! Switching OFF the Everhart integrator if it is ON...
if (id_method == RA15_ID) call radau_off ()
end subroutine run_app
end module jsunp_lib

program jsunp
use kind_consts , only : DP
use general_routines , only :system_time
use bgiapp , only : bgiapp_setup, bgiapp_init, bgiapp_close
use jsunp_lib
implicit none
real (DP): 1O, t1

call input_data ()
call bgiapp_setup (-50.0_DP,50.0_DP,-50.0_DP,50.0_DP,900,900)
call bgiapp_init (’'Outer Solar System in 3D’)

write (¥, '(A)’ ,advance= 'NO’) ’'Please wait, we are working...’
t0 = system_time()

call run_app ()
tl = system_time()

write (*,%)
write (*, '(A,F9.3,A)) 'Completedin’ J11-t0, ' seconds!

call bgiapp_close ()
end program jsunp

kepler_problem.f90
~/programming/nbody.apps/

1/5
16/06/2015

I Fortran Interface to the Xbgi—-364p Library

! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi

|

! It is distributed in the hope that it will be useful,
I but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
I'HOW TO BUILD (GNU/Linux Mint)
1

cd ~/work

wget http://libxbgi.sourceforge.net/xbgi—364.tar.gz

tar —xf xbgi—364.tar.gz

cd xbgi—364/src

make

make demo

./demo
make clean
cd test
make
./mandelbrot

mv libXbgi.a ~/programming/lib
cd ~/programming/nbody.apps

rm —rf {*. mod,~/programming/modules/*} && \

gfortran —O3 —Wall —=J ../modules \
../basic-modules/basic_mods.f90 \
..Jode-modules/{ode_integrators.f90,everhart_integrator.fo0} \
../bgi—fortran/{bgi.f90,bgiapp.fo0} kepler_problem.fo0 \
-L ../lib =IXbgi =IX11 —-Im —o kepler_problem.out

!

!

!

!

!

!

!

!

!

!

!

!

!

I cd..
!

!

!

!

!

!

!

!

!

!

I ./kepler_problem.out
!
1

| While developping, you should compile with these options:
!

I gfortran[-mp—4.9] ~Wall —Wextra —Wimplicit-interface —fPIC —fmax—errors=1\
! —g —fcheck=all —fbacktrace...

|

! Kepler's Problem from this note:

!

I http://inis.jinr.ru/sl/ivol1/CMC/

I Hairer,_Numerical_Geometric_Integration,1999.pdf

!

'and this

!

I http://wwwusers.ts.infn.it/~gregorio/lessons/cap_iii.pdf
!

module kepler_problem_lib

use kind_consts , only : DP
implicit none

private
|

i You can think that the units are suchthatm=1GM =mu =1, and
! egs. of motion become

!

Por'(l) = = mu*r()/r*3 = —r(:)/r*3

|

! where r(:) — [q1,92] (being a plane problem, qui stay on that plane..),
and r = |r(:)].
|

lin these units, the energy is

: H_0 = (1/2)*m*v**2 — mu/r = -mu/(2*a) = —1/(2*a)
: and tha angular momentum

: L_0 = sgrt(mu*p) = sqrt(p)

i with p = a*(1-e**2)

integer , parameter : NV =2, NEQ = 2*NV, NCLASS = -2

integer , parameter : RK4_ID=1,GBS ID=2,RKM_ID =3, RA15 ID=4

kepler_problem.f90
~/programming/nbody.apps/

215
16/06/2015

real (DP), parameter : Z0=0,Z1=1

integer :: id_method = RKM_ID, Il = 10

real (DP):: t0=20,t1=6.28 DP,t step=0.05 DP, eps = 1.0E-9 _DP,
e =0.6_DP, eps_closing = 1.0E-5_DP

I

I We adopt the variables with this meaning
!

|

I y(1:2) =q(1:2)
I y(3:4) =v(1:2)
!

being

[
!
P gl)=x q(2) =y

I v(1) = vx, v(2) = vy

real (DP):: yO(NEQ)=Z0
public ::input_data, run_app
contains

subroutine input_data ()
use get data , only :get
real (DP), parameter : MACHEPS = epsilon(Z1)

write (*,¥) 'Choose the method:’

write (*,*) " 1:RK#4

write (*,*) ' 2: GBS

write (*,%) " 3: RKM’

write (**) ' 4:RA15

call get ('ID_METHOD =" ,id_method)

! For GBS, RKM or RA15 step, the default initial T_STEP step can be

! greather..

if (id_method /= RK4_ID) t_step =0.1_DP

write (*,%)

call get ('TO=" ,t0)

call get('Ti=" 1)

call get ('T_STEP (D)=" ,t_step)

if (id_method == GBS_ID .or. id_method == RKM_1ID) then
write (*,*)
call get ('EPS=" ,eps)

if (eps < 1000*MACHEPS) then
write (*,*) 'EPS TOO SMALL! Exiting...’
stop
end if
end if
if (id_method == RA15_ID) then
write (*,%)
call get('LL=")
if (Il >20) then
write (*,*) ‘LL TOO HIGH! Exiting...’
stop
end if
end if
write (*,¥)

call get ((CE=" ,e)
write (*,¥)

if (e<=20 or. e>=Z71) then
write (**) 'E=" ,e, "NOT VALID FOR AN ELLIPTIC ORBIT! Exiting..."’

stop
end if
! Initial conditions
yO(1:NEQ) =[Z1-e, Z0, Z0, sgrt ((Z1+e)l(Z1-e))]
Icall get('eps_closing =’,eps_closing)
write(*,*)
end subroutine input_data
subroutine sub (x,y,f)
real (DP), intent (in):: X, Y()
real (DP), intent (out):: ()

real (DP), save : d(NV)

kepler_problem.f90
~/programming/nbody.apps/

3/5
16/06/2015

! Filling/initializing with speeds the first half of field f(:)
f(1:NV) = y(NV+1:NEQ)

! Filling with forces/accelerations the second half of field f(:)
Id =r(:)/r*3

d =y(1:NV)

f(NV+1:NEQ) = —d/ norm?2 (d)**3

end subroutine sub

subroutine force (t,x,v,f)
real (DP), intent (in):: t, X(), v(:)
real (DP), intent (out):: f(2)
real (DP), save : d(NV)

! Filling with forces/accelerations the field f(:)

Id =r(:)/r*3
d = x(1:NV)
f(L:NV) = -d/ norm?2 (d)**3
end subroutine force

subroutine run_app ()
use math_consts , only : TWO_PI
use bgi, only : YELLOW, WHITE
use bgiapp , only : bgiapp_dot
use ode_integrators , only :rk4step, deqgbs, deqrkm
use everhart_integrator , only :radau_on, ral5, radau_off
! For RK4 w(NEQ,3) would be sufficient...
I For RKM w(NEQ,6) would be sufficient...
! For GBS we need w(NEQ,36)...
real (DP): t,tz, y(NEQ), w(NEQ,36), t_step0, sgh, t_closing,
d(NV), dg, eps_closing_q
logical :: first

! Switching on the Everhart integrator if it has been selected...
ILL =12, NCLASS = -2

if (id_method == RA15_ID) call radau_on (NV,I,NCLASS)
! Initialization for forward/backward integration

t_step = sign (‘abs (t_step),t1-t0)

sgh = sign (Z1,t_step)

! General initialization for integration
t_stepO =t_step
t=t0
Yy(1:NEQ) = yO(1:NEQ)

! Initialization for orbit closure
t_closing = Z0
eps_closing_q = eps_closing*eps_closing

! Initialization for plotting the central body
first = true.

do while (sgh*(t+t_step0O-t1) < 0)

if (first) then
first = false.

! The Central Body!!!

call bgiapp_dot (Z0,Z0,WHITE)
end if
call bgiapp_dot (y(1),y(2),YELLOW)

I We take an ode integrator step

if (id_method == RK4_ID) then
call rkdstep (NEQ,t_step,ty,w,sub)
else
t_step =t_stepO
tz = t+t_step

select case (id_method)
case (GBS_ID)
call deqgbs (NEQ,t,tz,y,t_step,eps,w,sub)
case (RKM_ID)
call degrkm (NEQ,t,tz,y,t_step,eps,w,sub)
case (RA15_ID)
call ral5 (t,tz,y(1:NV),y(NV+1:NEQ),t_step,force)
end select

kepler_problem.f90 4/5
~/programming/nbody.apps/ 16/06/2015

t=1tz
end if

! This is a raw method to determine the error of clusure...
if (t>t_closing+Z1) then
d = y(1:NV)-y0(1:NV)
dg = dot_product (d,d)
if (dq <eps_closing_q) then
t_closing =t
write (*,*)
write (*,%) 'T_CLOSING =" ,t_closing, 'D_CLOSING =" , sqrt (dq), &
'EPS_CLOSING =" , eps_closing
end if
end if

end do

! Switching OFF the Everhart integrator if it is ON...
if (id_method == RA15_ID) call radau_off ()

=14
call radau_on (NV,I,NCLASS)

t_step0 =0.1_DP
t=20
tz = TWO_PI*8
y(1:NEQ) = yO(1:NEQ)
call ral5 (t,tz,y(1:NV),y(NV+1:NEQ),t_stepO,force)
d = y(1:NV)-y0(1:NV)
(**)

write

write (*,*

write (*,*) 'Method: EVERHART, LL ="’ al

write (*,%) ‘Error of closure after 8 revolution:’ , norm2 (d)
write (*,*

call ra’dau_off 0

t_step0 = 0.1_DP
t=20
tz=TWO_PI*8
y(1:NEQ) = yO(1:NEQ)
call deqgbs (NEQ,t,tz,y,t_step0,eps,w,sub)
d = y(1:NV)-yO(1:NV)
write (*,*)
write (*,*
write (*,%) 'Method: GBS, EPS =" , eps
write (*,*¥) ‘Error of closure after 8 revolution:’ , norm2 (d)
write (*,%)

t_step0 =0.1_DP
t=20
tz = TWO_PI*8
y(1:NEQ) = yO(1:NEQ)
call degrkm (NEQ,t,tz,y,t_step0,eps,w,sub)
d = y(1:NV)-y0(1:NV)

write (*,%)
write (*,*
write (*,¥) 'Method: RKM, EPS =" , eps
write (*,%) 'Error of closure after 8 revolution:’ , nhorm2 (d)
write (*,*)
end subroutine run_app

end module kepler_problem_lib

program kepler_problem
use kind_consts , only :DP
use general_routines , only :system_time
use bgiapp , only : bgiapp_setup, bgiapp_init, bgiapp_close
use kepler_problem_lib
implicit none

real (DP):: 10,1

call input_data ()

call bgiapp_setup (-2.2_DP,1.2_DP,-1.4 DP,1.4_DP,680,560)
call bgiapp_init ("Keplers's Problem")

write (¥, '(A)’ ,advance= 'NO’) ’'Please wait, we are working...’

t0 = system_time()

kepler_problem.f90 5/5
~/programming/nbody.apps/ 16/06/2015

call run_app ()
t1 = system_time()
write (*,*)
write (¥, '(A,F9.3,A)) 'Completed in’ t1-t0, ' seconds!

call bgiapp_close ()
end program kepler_problem

