
BGI−Fortran.text
~/programming/bgi−fortran/

1/2
09/06/2015

B G I − F O R T R A N
=========================

by Angelo Graziosi

I N T R O D U C T I O N
=======================

This document contains a few examples of fortran programs "using" the
Borland Graphics Interface (BGI) library.

BGI is a very simple graphics library with which one can write
interesting programs with minimum efforts. It allows also to learn the
basic principles of Graphics Programming.

We started using this library toward the end of the 1980s. Indeed it
was included with the early versions of the Borland Turbo Pascal
compiler. Then we continued to develop BGI programs until 2002−2003,
mainly using the Borland C++ 2.0 compiler.

Since BGI was, in some way, linked to the DOS world, its usage was
progressively abandoned (as the DOS OS) in favor of other systems. But
a few years ago we discovered a C++ interface (WinBGIm, using Windows
API) to BGI, so we developed a full fortran interface module (f03bgi,
not listed here) exploiting the new Fortran 2003 standard.

Recently, we found on the WEB new C ports of BGI: libXbgi and
SDL_bgi. So we started to write a new fortran interface (not yet
completed) to these libraries, and this document shows what we can do
with a minimal coding.

Notice that, while these C/C++ interfaces aim to recompile old BGI
programs without or with minimal changes, our goal is to have tools to
write new fortran graphics programs: indeed old BGI fortran programs
do not exist at all!

Now, a short description of the following examples. Usually they are
self−explanatory.

MANDELBROT
==========

"mandelbrot.f90" is a fortran rewriting of the C version one can find
in the source distribution of libXbgi and SDL_bgi libraries. Really,
it is NOT a simple rewriting, but we have restructured the code. In
its initial comment there is the description how it is built. Notice
that it uses what we can call "array of function pointers".

An historical note: the first time we wrote a program to generate a
Mandelbrot set (in Turbo Pascal, or C? we don’t remember...), using
BGI, it took about an hour on our old 286 without math
co−processor. After we bought the 80287 co−processor, it took about 10
minutes! That was on VGA 640x480, 16 colors and max. iter = 25. The
current mandelbrot.f90 runs with max. iter > 2000 and 256 colors, in a
1600x900 window, taking only few seconds! (On AMD Athlon X2 64)

BIOMORPH
========

The first time we learned about biomorphs, it was reading an article
((Ri)Creazioni al calcolatore, Le Scienze, italian edition of
Scientific American) in the August 1989. We wrote a programs which we
present anew here, only that now we have used the same approach we
adopted for mandelbrot.f90. Biomprh doesn’t use array of function
pointers but only function pointers.

BGI−Fortran.text
~/programming/bgi−fortran/

2/2
09/06/2015

SOLAR_SYSTEM
============

This programs was written, firstly, using GTK−FORTRAN, now we have
"translated" it using BGI. It uses SOFAlib, found on the WEB.

DYNAMICS2D
==========

This programs compute and display the trajectory of a point on which
is acting a two dimensional field of forces. The particularity is that
the force components are read from keyboard. It uses a "functions
parser". We have found on the WEB a functions parser written in C++
(http://warp.povusers.org/FunctionParser), and have interfaced it in
fortran using the Fortran >= 2003 standard. For a short documentation
see the other link on this WEB site.

DOUBLE_PENDULUM−DB
==================

This programs compute and display the motion of a double pendulum. It
uses the double buffering technique.

THOMAS_FERMI, LOGISTICS, etc..

BGI, BGIAPP
===========

These are the modules which underlie the above examples.

o bgi.f90 contains the modules interfacing libXbgi.

o bgiapp.f90 implements a few routines that allow to develop
fortran BGI programs in World Coordinate System.

To develop the above examples, we have used xbgi−364
(http://libxbgi.sourceforge.net), but this library still contains
bugs. We have tried to work around a few of them. We have also added
the extension to give an our title to the BGI window.

−−
This document has been created using EMACS (and some "friends"
tools like ps2pdf, pdftk etc..).

mandelbrot.f90
~/programming/bgi−fortran/demo/

1/5
09/06/2015

!
! Fortran Interface to the Xbgi−364p Library
! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi
!
! It is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
!
! HOW TO BUILD (GNU/Linux Mint)
!
! cd ~/work
! wget http://libxbgi.sourceforge.net/xbgi−364.tar.gz
! tar −xf xbgi−364.tar.gz
! cd xbgi−364/src
! make
! make demo
!
! ./demo
! make clean
! cd test
! make
! ./mandelbrot
!
! cd ..
! mv libXbgi.a ~/programming/lib
! cd ~/programming/bgi−fortran/demo
!
! rm −rf {*.mod,~/programming/modules/*} && \
! gfortran −O3 −Wall −J ~/programming/modules \
! ~/programming/basic−modules/basic_mods.f90 \
! ../{bgi.f90,bgiapp.f90} mandelbrot.f90 \
! −L ~/programming/lib −lXbgi −lX11 −lm −o mandelbrot.out
!
! ./mandelbrot.out
!

module mandelbrot_lib
 use kind_consts , only : DP
 use bgi , only : CENTER_TEXT, DEFAULT_FONT, GOTHIC_FONT, HORIZ_DIR, &
 KEY_ESC, LEFT_TEXT, TOP_TEXT, WHITE, WM_LBUTTONDOWN, WM_MBUTTONDOWN, &
 WM_MOUSEMOVE, WM_RBUTTONDOWN, WM_WHEELDOWN, WM_WHEELUP, &
 cleardevice, rgb_color, CString, fast_putpixel, getevent, &
 kbhit, mousex, mousey, outtextxy, refresh, setbkcolor, &
 setcolor, setrgbcolor, setrgbpalette, settextjustify, &
 settextstyle, textheight, usleep
 implicit none
 private

 abstract interface
 subroutine colors_palette ()
 end subroutine colors_palette
 end interface

 type palette_ptr
 procedure (colors_palette), pointer , nopass :: p => null()
 end type palette_ptr

 integer :: max_iter = 100, max_x, max_y
 type(palette_ptr) :: palette(3)

 public :: input_data, run_app

contains

 subroutine purple_palette ()
 integer :: c

 do c = 0, max_iter−1
 call setrgbpalette (c,50+2*c,c,max_iter−c)
 end do

 ! The Mandelbrot set is black
 call setrgbpalette (max_iter,0,0,0)
 end subroutine purple_palette

 subroutine blue_palette ()
 integer :: c

mandelbrot.f90
~/programming/bgi−fortran/demo/

2/5
09/06/2015

 do c = 0, max_iter−1
 call setrgbpalette (c,0,c,50+2*c)
 end do

 ! The Mandelbrot set is black
 call setrgbpalette (max_iter,0,0,0)
 end subroutine blue_palette

 subroutine amber_palette ()
 integer :: c

 do c = 0, max_iter−1
 call setrgbpalette (c,max_iter−c,50+2*c,c)
 end do

 ! The Mandelbrot set is purple
 call setrgbpalette (max_iter, int (Z ’30’),0, int (Z ’30’))
 end subroutine amber_palette

 subroutine input_data ()
 use get_data , only : get

 call get (’MAX_ITER = ’ ,max_iter)
 write (*,*)

 palette(1)%p => purple_palette
 palette(2)%p => blue_palette
 palette(3)%p => amber_palette
 end subroutine input_data

 subroutine explain ()
 integer , parameter :: MILLI_SECONDS = 1000
 integer :: i, inc, c, k

 ! Don’t use a palette
 call setbkcolor (rgb_color(0,0,32))
 call cleardevice ()
 call setcolor (rgb_color(255,255,0))

 call settextstyle (GOTHIC_FONT,HORIZ_DIR,1)
 call settextjustify (CENTER_TEXT,CENTER_TEXT)
 c = textheight (’H’)

 call outtextxy (max_x/2,max_y/2−3*c, &
 CString("Press ’1’, ’2’, or ’3’ to change the palette;"))
 call outtextxy (max_x/2,max_y/2−2*c, &
 CString(’left click to zoom in on a point;’))
 call outtextxy (max_x/2, max_y/2−c, &
 CString(’right click to zoom out;’))
 call outtextxy (max_x/2, max_y/2, &
 CString(’middle click to restore the initial boundary;’))
 call outtextxy (max_x/2, max_y/2+c, &
 CString("’i’ and ’d’ to increase/decrease max iterations;"))
 call outtextxy (max_x/2,max_y/2+2*c, &
 CString(’ESC to quit the program.’))

 i = 0
 inc = 1
 do while (kbhit() == 0)

 call setcolor (rgb_color(i,0,0))
 call outtextxy (max_x/2,max_y/2+4*c, CString(’PRESS A KEY TO BEGIN’))
 i = i+inc

 select case (i)
 case (255)
 inc = −1
 case (0)
 inc = 1
 end select
 k = usleep(1*MILLI_SECONDS)
 end do

 call cleardevice ()

 call settextstyle (DEFAULT_FONT,HORIZ_DIR,1)
 call settextjustify (LEFT_TEXT,TOP_TEXT)

mandelbrot.f90
~/programming/bgi−fortran/demo/

3/5
09/06/2015

 end subroutine explain

 subroutine mandelbrot_set (x1,y1,x2,y2)
 real (DP), intent (in) :: x1, y1, x2, y2
 !
 ! We assume that the point (x,y) is repesented by the center of the
 ! pixel box. For example, in the X direction we have that
 !
 ! the center of pixel−box 0 is the point (x1,y)
 ! the center of pixel−box 1 is the point (x1+dx,y)
 ! the center of pixel−box 2 is the point (x1+2*dx,y)
 ! ...
 ! the center of pixel−box max_x is the point (x1+max_x*dx == x2,y)
 !
 ! This means that dx = (x2−x1)/max_x. The same happens in Y direction, and
 ! dy = (y2−y1)/max_y
 !
 integer :: i, j, counter
 real (DP) :: dx, dy, x, y, a, b, tx, d
 logical :: confined

 dx = (x2−x1)/max_x
 dy = (y2−y1)/max_y

 x = x1
 do i = 0, max_x
 y = y1
 do j = 0, max_y

 counter = 0
 a = 0.0_DP
 b = 0.0_DP

 ! Iteration: z(n+1) = z(n)**2 + c; z = a+i*b; c = x+i*y
 confined = .true.
 do while (confined)
 tx = a*a−b*b+x
 b = 2.0_DP*a*b+y
 a = tx
 d = a*a+b*b
 counter = counter+1
 confined = ((d <= 4.0_DP) .and. (counter < max_iter))
 end do

 call setrgbcolor (counter)
 call fast_putpixel (i,j)
 y = y+dy
 end do
 x = x+dx
 end do
 end subroutine mandelbrot_set

 subroutine run_app
 use bgiapp , only : bgiapp_xmin, bgiapp_xmax, bgiapp_ymin, bgiapp_ymax, &
 bgiapp_width, bgiapp_height

 integer :: current_palette, key = −1000
 real (DP) :: xm, ym, xstep, ystep, x1, y1, x2, y2, &
 xm0, ym0, xstep0, ystep0
 logical :: init, flag, redraw
 character (len = 20) :: buf

 ! Getting the viewing region...
 x1 = bgiapp_xmin()
 x2 = bgiapp_xmax()
 y1 = bgiapp_ymin()
 y2 = bgiapp_ymax()
 max_x = bgiapp_width()
 max_y = bgiapp_height()

 ! Getting DEFAULT for initial boundary
 xm0 = 0.5_DP*(x1+x2)
 ym0 = 0.5_DP*(y1+y2)
 xstep0 = (x2−x1)/2
 ystep0 = (xstep0*max_y)/max_x

 max_x = max_x−1
 max_y = max_y−1

mandelbrot.f90
~/programming/bgi−fortran/demo/

4/5
09/06/2015

 ! Initial boundary
 xm = xm0
 ym = ym0
 xstep = xstep0
 ystep = ystep0

 init = .true.
 flag = .true.
 redraw = .true.

 call explain ()

 current_palette = 1
 call palette (current_palette)%p()

 do while (key /= KEY_ESC)

 x1 = xm−xstep
 y1 = ym−ystep
 x2 = xm+xstep
 y2 = ym+ystep

 if (redraw) then
 call mandelbrot_set (x1,y1,x2,y2)
 call refresh ()

 if (flag) then
 call setcolor (WHITE)
 write (buf,*) max_iter
 call outtextxy (0,max_y−20,CString(trim (adjustl (buf))))
 flag = .false.
 end if
 redraw = .false.
 end if

 ! Wait for a key or mouse click
 key = getevent ()

 select case (key)
 case (WM_LBUTTONDOWN, WM_WHEELUP)
 xm = x1+(x2−x1)*mousex()/max_x
 ym = y1+(y2−y1)*mousey()/max_y
 xstep = xstep/2
 ystep = ystep/2
 init = .false.
 redraw = .true.
 case (WM_RBUTTONDOWN, WM_WHEELDOWN)
 xstep = xstep*2
 ystep = ystep*2
 init = .false.
 redraw = .true.
 case (WM_MBUTTONDOWN)
 if (.not. init) then
 xm = xm0
 ym = ym0
 xstep = xstep0
 ystep = ystep0
 redraw = .true.
 end if
 case (ichar (’1’))
 if (current_palette /= 1) then
 current_palette = 1
 call palette (current_palette)%p()
 redraw = .true.
 end if
 case (ichar (’2’))
 if (current_palette /= 2) then
 current_palette = 2
 call palette (current_palette)%p()
 redraw = .true.
 end if
 case (ichar (’3’))
 if (current_palette /= 3) then
 current_palette = 3
 call palette (current_palette)%p()
 redraw = .true.
 end if

mandelbrot.f90
~/programming/bgi−fortran/demo/

5/5
09/06/2015

 case (ichar (’i’))
 max_iter = max_iter+50
 flag = .true.
 redraw = .true.

 ! Since the current palette depend on MAX_ITER,
 ! you HAVE TO reset it...
 call palette (current_palette)%p()
 case (ichar (’d’))
 max_iter = max_iter−50
 flag = .true.
 redraw = .true.

 ! Since the current palette depend on MAX_ITER,
 ! you HAVE TO reset it...
 call palette (current_palette)%p()

 case default
 redraw = .false.

 end select
 end do
 end subroutine run_app
end module mandelbrot_lib

program mandelbrot
 use kind_consts , only : DP
 use general_routines , only : system_time
 use bgiapp , only : bgiapp_setup, bgiapp_init, bgiapp_close
 use mandelbrot_lib
 implicit none

 real (DP) :: t0, t1

 call input_data ()

 ! We assume the center at (−0.75,0) and size (4.4,2.475)
 call bgiapp_setup (−2.95_DP,1.45_DP,−1.2375_DP,1.2375_DP,1600,900)
 call bgiapp_init (’A tribute to Benoit Mandelbrot (1924−2010)’)

 write (*, ’(A)’ ,advance= ’NO’) ’Please wait, we are working...’

 t0 = system_time()
 call run_app ()
 t1 = system_time()

 write (*,*)
 write (*, ’(A,F8.3,A)’) ’Mandelbrot completed in ’ ,t1−t0, ’ seconds!’

 call bgiapp_close ()
end program mandelbrot

biomorph.f90
~/programming/bgi−fortran/demo/

1/6
09/06/2015

!
! Fortran Interface to the Xbgi−364p Library
! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi
!
! It is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
!
! HOW TO BUILD (GNU/Linux Mint)
!
! cd ~/work
! wget http://libxbgi.sourceforge.net/xbgi−364.tar.gz
! tar −xf xbgi−364.tar.gz
! cd xbgi−364/src
! make
! make demo
!
! ./demo
! make clean
! cd test
! make
! ./mandelbrot
!
! cd ..
! mv libXbgi.a ~/programming/lib
! cd ~/programming/bgi−fortran/demo
!
! rm −rf {*.mod,~/programming/modules/*} && \
! gfortran −O3 −Wall −J ~/programming/modules \
! ~/programming/basic−modules/basic_mods.f90 \
! ~/programming/fparser−fortran/fparser_cd.f90 \
! ../{bgi.f90,bgiapp.f90} biomorph.f90 \
! −L ~/programming/lib −lFParser −lstdc++ −lXbgi −lX11 −lm \
! −o biomorph.out
!
! ./biomorph.out
!
!
! EXAMPLES
!
! fcn(z,c) = z^3+c, c = (0.5,0), (0.44,0), (0.6,−0.2), (−0.6,−0.1)
! fcn(z,c) = z^z+z^5+c, c = (0.5,0)
! fcn(z,c) = sin(z)+z^z+c, c = (0.5,0)
! fcn(z,c) = sin(z)+exp(z)+c, c = (0.5,0)
! fcn(z,c) = z^5+c, c = (0.65,0)
! fcn(z,c) = z^7+z^5+c, c = (0.8,0)
!
! Notice that we could define the biomorph as fcn(z,c) = f(z) + c, with
!
! f(z) = z^3, z^z+z^5, sin(z)+z^z... etc.
!

module biomorph_lib
 use kind_consts , only : DP
 use fparser_cd , only : FunctionParser_cd_type, NewParser, Parse, &
 ErrorMsg, GetParseErrorType, DeleteParser, Eval
 use bgi , only : CENTER_TEXT, DEFAULT_FONT, GOTHIC_FONT, HORIZ_DIR, &
 KEY_ESC, LEFT_TEXT, TOP_TEXT, WHITE, WM_LBUTTONDOWN, WM_MBUTTONDOWN, &
 WM_MOUSEMOVE, WM_RBUTTONDOWN, WM_WHEELDOWN, WM_WHEELUP, &
 cleardevice, rgb_color, CString, fast_putpixel, &
 getevent, kbhit, mousex, mousey, &
 outtextxy, refresh, setbkcolor, setcolor, &
 setrgbcolor, setrgbpalette, settextjustify, settextstyle, &
 textheight, usleep
 implicit none
 private

 type(FunctionParser_cd_type) :: fp_biomorph
 integer :: max_iter = 100, num_colors = 0, max_x, max_y
 complex (DP) :: c = (0.5_DP,0.0_DP)

 public :: input_data, run_app

contains

 subroutine input_data ()
 use get_data , only : get, MAXLEN

biomorph.f90
~/programming/bgi−fortran/demo/

2/6
09/06/2015

 character (len = MAXLEN) :: biomorph_buf = ’z^3+c’
 integer :: res

 call get (’FCN(z,c) = ’ ,biomorph_buf)
 write (*,*)

 call get (’C = ’ ,c)
 write (*,*)

 ! Create the fparser for FCN(z,c)
 call NewParser (fp_biomorph)
 res = Parse(fp_biomorph,biomorph_buf, ’z,c’)
 if (res >= 0) then
 write (*,*) ’Failure creating fp_biomorph parser...’
 write (*,*)
 write (*, ’(A)’) ’FCN(z,c) = ’ // trim (biomorph_buf)
 write (*, ’(A)’) repeat (’ ’ ,res+10)// ’^’

 ! Remember : ErrorMsg() is an array of characters...
 write (*,*) ErrorMsg(fp_biomorph)
 write (*,*) ’Error type: ’ ,GetParseErrorType(fp_biomorph)
 write (*,*)
 stop
 end if
 end subroutine input_data

 subroutine explain ()
 integer , parameter :: MILLI_SECONDS = 1000
 integer :: i, inc, c, k

 ! Don’t use a palette
 call setbkcolor (rgb_color(0,0,32))
 call cleardevice ()
 call setcolor (rgb_color(255,255,0))

 call settextstyle (GOTHIC_FONT,HORIZ_DIR,1)
 call settextjustify (CENTER_TEXT,CENTER_TEXT)
 c = textheight (’H’)

 call outtextxy (max_x/2,max_y/2−3*c, &
 CString("Press ’1’ or ’2’ to change the palette;"))
 call outtextxy (max_x/2,max_y/2−2*c, &
 CString(’left click to zoom in on a point;’))
 call outtextxy (max_x/2, max_y/2−c, &
 CString(’right click to zoom out;’))
 call outtextxy (max_x/2, max_y/2, &
 CString(’middle click to restore the initial boundary;’))
 call outtextxy (max_x/2, max_y/2+c, &
 CString("’i’ and ’d’ to increase/decrease max iterations;"))
 call outtextxy (max_x/2,max_y/2+2*c, &
 CString(’ESC to quit the program.’))

 i = 0
 inc = 1
 do while (kbhit() == 0)

 call setcolor (rgb_color(i,0,0))
 call outtextxy (max_x/2,max_y/2+4*c, CString(’PRESS A KEY TO BEGIN’))
 i = i+inc

 select case (i)
 case (255)
 inc = −1
 case (0)
 inc = 1
 end select
 k = usleep(1*MILLI_SECONDS)
 end do

 call cleardevice ()

 call settextstyle (DEFAULT_FONT,HORIZ_DIR,1)
 call settextjustify (LEFT_TEXT,TOP_TEXT)
 end subroutine explain

 subroutine bgi_palette ()
 num_colors = 16

biomorph.f90
~/programming/bgi−fortran/demo/

3/6
09/06/2015

 call setrgbpalette (0,0,0,128) ! Blue
 call setrgbpalette (1,0,128,0) ! Green
 call setrgbpalette (2,0,128,128) ! Cyan

 call setrgbpalette (3,128,0,0) ! Red
 call setrgbpalette (4,128,0,128) ! Magenta
 call setrgbpalette (5,128,128,0) ! Brown
 call setrgbpalette (6,192,192,192) ! Light Gray

 call setrgbpalette (7,128,128,128) ! Dark Gray
 call setrgbpalette (8,0,0,255) ! Light Blue
 call setrgbpalette (9,0,255,0) ! Light Green
 call setrgbpalette (10,0,255,255) ! Light Cyan

 call setrgbpalette (11,255,0,0) ! Light Red
 call setrgbpalette (12,255,0,255) ! Light Magenta
 call setrgbpalette (13,255,255,0) ! Yellow
 call setrgbpalette (14,255,255,255) ! White

 ! Black is on the top
 call setrgbpalette (15,0,0,0) ! Black
 end subroutine bgi_palette

 subroutine bw_palette ()
 num_colors = 2

 call setrgbpalette (0,255,255,255) ! White
 call setrgbpalette (1,0,0,0) ! Black
 end subroutine bw_palette

 function fcn (z,c) result (ret)
 complex (DP) :: ret
 complex (DP), intent (in) :: z,c
 ret = Eval(fp_biomorph,[z,c])
 end function fcn

 subroutine biomorph_set (x1,y1,x2,y2)
 real (DP), intent (in) :: x1, y1, x2, y2
 !
 ! We assume that the point (x,y) is repesented by the center of the
 ! pixel box. For example, in the X direction we have that
 !
 ! the center of pixel−box 0 is the point (x1,y)
 ! the center of pixel−box 1 is the point (x1+dx,y)
 ! the center of pixel−box 2 is the point (x1+2*dx,y)
 ! ...
 ! the center of pixel−box max_x is the point (x1+max_x*dx == x2,y)
 !
 ! This means that dx = (x2−x1)/max_x. The same happens in Y direction, and
 ! dy = (y2−y1)/max_y
 !
 real (DP), parameter :: RADIUS = 10.0_DP, QRADIUS = RADIUS*RADIUS
 complex (DP), parameter :: JJ = (0,1)
 integer :: i, j, counter
 real (DP) :: dx, dy, x, y, a = 0, b = 0
 complex (DP) :: z

 dx = (x2−x1)/max_x
 dy = (y2−y1)/max_y

 x = x1
 do i = 0, max_x
 y = y1
 do j = 0, max_y
 z = x+JJ*y
 !
 ! The difference between this loop:
 !
 ! counter = 0
 ! do while (counter < max_iter)
 !
 ! if (condition) exit
 ! end do
 !
 ! and this loop:
 !
 ! do counter = 1, max_iter
 !

biomorph.f90
~/programming/bgi−fortran/demo/

4/6
09/06/2015

 ! if (condition) exit
 ! end do
 !
 ! is that in the first case, the loop is executed at most MAX_ITER
 ! times with COUNTER <= MAX_ITER after exiting the loop
 ! In the second case, the loop is execute at most MAX_ITER times too,
 ! but counter is max_iter+1 if CONDITION is not satisfied...
 !
 counter = 0
 do while (counter < max_iter)
 z = fcn(z,c)
 a = abs (real (z))
 b = abs (aimag (z))
 counter = counter+1
 !
 ! Notice that (’==>’ means ’implies’)
 !
 ! (a > RADIUS) ==> ((a*a+b*b) > QRADIUS)
 ! (b > RADIUS) ==> ((a*a+b*b) > QRADIUS)
 !
 ! so
 !
 ! (a > RADIUS) .or. (b > RADIUS) .or. ((a*a+b*b) > QRADIUS)
 !
 ! is equivalent to
 !
 ! ((a*a+b*b) > QRADIUS)
 !
 ! but if (a > RADIUS), we don’t need to evaluate (b > RADIUS) and
 ! ((a*a+b*b) > QRADIUS); if (b > RADIUS), we don’t need to evaluate
 ! ((a*a+b*b) > QRADIUS). In short, the long condition
 !
 ! if ((a > RADIUS) .or. (b > RADIUS) .or. ((a*a+b*b) > QRADIUS))
 !
 ! is a little faster than the short
 !
 ! if ((a*a+b*b) > QRADIUS))
 !
 if ((a > RADIUS) .or. (b > RADIUS) .or. ((a*a+b*b) > QRADIUS)) &
 exit
 end do

 if ((a < RADIUS) .or. (b < RADIUS)) then
 ! On the top there is BLACK... see setup_rgb_palette()
 call setrgbcolor (num_colors−1)
 else
 call setrgbcolor (mod(counter−1,num_colors−1))
 end if

 call fast_putpixel (i,j)

 y = y+dy
 end do
 x = x+dx
 end do
 end subroutine biomorph_set

 subroutine run_app
 use bgiapp , only : bgiapp_xmin, bgiapp_xmax, bgiapp_ymin, bgiapp_ymax, &
 bgiapp_width, bgiapp_height

 integer :: current_palette, key = −1000
 real (DP) :: xm, ym, xstep, ystep, x1, y1, x2, y2, &
 xm0, ym0, xstep0, ystep0
 logical :: init, flag, redraw
 character (len = 20) :: buf

 ! Getting the viewing region...
 x1 = bgiapp_xmin()
 x2 = bgiapp_xmax()
 y1 = bgiapp_ymin()
 y2 = bgiapp_ymax()
 max_x = bgiapp_width()
 max_y = bgiapp_height()

 ! Getting DEFAULT for initial boundary
 xm0 = 0.5_DP*(x1+x2)
 ym0 = 0.5_DP*(y1+y2)

biomorph.f90
~/programming/bgi−fortran/demo/

5/6
09/06/2015

 xstep0 = (x2−x1)/2
 ystep0 = (xstep0*max_y)/max_x

 max_x = max_x−1
 max_y = max_y−1

 ! Initial boundary
 xm = xm0
 ym = ym0
 xstep = xstep0
 ystep = ystep0

 init = .true.
 flag = .true.
 redraw = .true.

 call explain ()

 current_palette = 1
 call bgi_palette ()

 do while (key /= KEY_ESC)

 x1 = xm−xstep
 y1 = ym−ystep
 x2 = xm+xstep
 y2 = ym+ystep

 if (redraw) then
 call biomorph_set (x1,y1,x2,y2)
 call refresh ()

 if (flag) then
 call setcolor (WHITE)
 write (buf,*) max_iter
 call outtextxy (0,max_y−20,CString(trim (adjustl (buf))))
 flag = .false.
 end if
 redraw = .false.
 end if

 ! Wait for a key or mouse click
 key = getevent()

 select case (key)
 case (WM_LBUTTONDOWN, WM_WHEELUP)
 xm = x1+(x2−x1)*mousex()/max_x
 ym = y1+(y2−y1)*mousey()/max_y
 xstep = xstep/2
 ystep = ystep/2
 init = .false.
 redraw = .true.
 case (WM_RBUTTONDOWN, WM_WHEELDOWN)
 xstep = xstep*2
 ystep = ystep*2
 init = .false.
 redraw = .true.
 case (WM_MBUTTONDOWN)
 if (.not. init) then
 xm = xm0
 ym = ym0
 xstep = xstep0
 ystep = ystep0
 redraw = .true.
 end if
 case (ichar (’1’))
 if (current_palette /= 1) then
 current_palette = 1
 call bgi_palette ()
 redraw = .true.
 end if
 case (ichar (’2’))
 if (current_palette /= 2) then
 current_palette = 2
 call bw_palette ()
 redraw = .true.
 end if
 case (ichar (’i’))

biomorph.f90
~/programming/bgi−fortran/demo/

6/6
09/06/2015

 max_iter = max_iter+50
 flag = .true.
 redraw = .true.
 case (ichar (’d’))
 max_iter = max_iter−50
 flag = .true.
 redraw = .true.

 case default
 redraw = .false.

 end select
 end do
 call DeleteParser (fp_biomorph)
 end subroutine run_app
end module biomorph_lib

program biomorph
 use kind_consts , only : DP
 use general_routines , only : system_time
 use bgiapp , only : bgiapp_setup, bgiapp_init, bgiapp_close
 use biomorph_lib
 implicit none
 real (DP) :: t0,t1

 call input_data ()
 call bgiapp_setup (−4.0_DP,4.0_DP,−2.25_DP,2.25_DP,1600,900)
 call bgiapp_init ("A tribute to Clifford Pickover’s Biomorphs")

 write (*, ’(A)’ ,advance= ’NO’) ’Please wait, we are working...’

 t0 = system_time()
 call run_app ()
 t1 = system_time()

 write (*,*)
 write (*, ’(A,F8.3,A)’) ’Biomorph completed in ’ ,t1−t0, ’ seconds!’

 call bgiapp_close ()
end program biomorph

solar_system.f90
~/programming/bgi−fortran/apps/

1/3
09/06/2015

!
! Fortran Interface to the Xbgi−364p Library
! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi
!
! It is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
!
! HOW TO BUILD (GNU/Linux Mint)
!
! cd ~/work
! wget http://www.iausofa.org/2013_1202_F/sofa_f−20131202_b.tar.gz
! bsdtar −xvof sofa_f−20131202_b.tar.gz
! mv sofa/20131202_b/f77 SOFAlib
! apack SOFAlib−20131202_b−src.tar.xz SOFAlib
! touch −r sofa_f−20131202_b.tar.gz SOFAlib−20131202_b−src.tar.xz
! rm −rf sofa*
! cd SOFAlib/src
! make FC=gfortran[−mp−4.9] INSTALL_DIR=$HOME/work/SOFAlib
! make FC=gfortran[−mp−4.9] INSTALL_DIR=$HOME/work/SOFAlib test
! mv ~/work/SOFAlib/lib/libsofa.a ~/programming/lib/libSOFA.a
! make clean
! rm libsofa.a
!
! cd ~/work
! wget http://libxbgi.sourceforge.net/xbgi−364.tar.gz
! tar −xf xbgi−364.tar.gz
! cd xbgi−364/src
! make
! make demo
!
! ./demo
! make clean
! cd test
! make
! ./mandelbrot
!
! cd ..
! mv libXbgi.a ~/programming/lib
! cd ~/programming/bgi−fortran/apps
!
! rm −rf {*.mod,~/programming/modules/*} && \
! gfortran −O3 −Wall −J ~/programming/modules \
! ~/programming/basic−modules/basic_mods.f90 \
! ../{bgi.f90,bgiapp.f90} solar_system.f90 \
! −L ~/programming/lib −lSOFA −lXbgi −lX11 −lm \
! −o solar_system.out
!
! ./solar_system.out
!

module solar_system_lib
 use kind_consts , only : DP
 use get_data , only : get
 implicit none
 private

 real (DP) :: jd0, jd_tot = 36500.0_DP, jd_stp = 1.0_DP

 public :: input_data, run_app

contains

 function get_gregorian_date () result (jul)
 real (DP) :: jul
 integer :: year = 2000, month = 1, day = 1, ho = 12, mi = 0, se = 0, ierr
 real (DP) :: djm0, djm, day_frac

 write (*,*) ’IAU PLAN94 Planet Coordinates (See IAU SOFA Documentation)’
 write (*,*) ’Input Gregorian Date’
 call get (’ YEAR :’ ,year)
 call get (’ MONTH :’ ,month)
 call get (’ DAY :’ ,day)
 write (*,*) ’Input Time of Day’

 call get (’ HOURS :’ ,ho)
 call get (’ Minutes :’ ,mi)

solar_system.f90
~/programming/bgi−fortran/apps/

2/3
09/06/2015

 call get (’ SECONDS :’ ,se)
 day_frac = (ho+(mi/60.0_DP)+(se/3600.0_DP))/24.0_DP

 call iau_CAL2JD (year,month,day,djm0,djm,ierr)
 if (ierr == 0) then
 jul = djm0+djm+day_frac
 else
 write (*,*) ’An error occurred! Exiting...’
 stop
 end if
 end function get_gregorian_date

 subroutine input_data ()
 ! Starting Gregorian date in JD
 write (*,*) ’STARTING TIME:’
 write (*,*)

 jd0 = get_gregorian_date()
 write (*,*)

 call get (’Time intervall (JD) :’ ,jd_tot)
 write (*,*)

 call get (’Time step (JD) :’ ,jd_stp)
 write (*,*)
 end subroutine input_data

 subroutine run_app
 use bgi , only : YELLOW
 use bgiapp , only : bgiapp_dot
 integer , parameter :: MAXP = 9
 integer :: body_color(MAXP) = 0
 integer :: ierr, k ! error flag, planet id
 real (DP) :: x, y ! coordinates in the plane
 ! Julian time at which positions are computed; end intervall;
 ! positions and velocities
 real (DP) :: jd, jd1, pos(3,2)
 logical :: first

 ! Setup of the colors...
 do k = 1, MAXP
 body_color(k) = k
 end do

 first = .true.
 jd1 = jd0+jd_tot
 jd = jd0
 do while (jd <= jd1)

 !write(*,*) ’Current JD: ’, jd
 if (first) then
 first = .false.
 x = 0
 y = 0

 ! The SUN!!!
 call bgiapp_dot (x,y,YELLOW)
 end if

 do k = 1, MAXP
 call iau_PLAN94 (0.0_DP,jd,k,pos,ierr)
 if (ierr == 0) then
 x = pos(1,1)
 y = pos(2,1)

 ! Planet k...
 call bgiapp_dot (x,y,body_color(k))
 end if
 end do
 jd = jd+jd_stp
 end do
 end subroutine run_app
end module solar_system_lib

program solar_system
 use kind_consts , only : DP
 use general_routines , only : system_time
 use bgiapp , only : bgiapp_setup, bgiapp_init, bgiapp_close

solar_system.f90
~/programming/bgi−fortran/apps/

3/3
09/06/2015

 use solar_system_lib
 implicit none
 real (DP) :: t0,t1

 call input_data ()
 call bgiapp_setup (−40.0_DP,40.0_DP,−40.0_DP,40.0_DP)
 call bgiapp_init (’An example of SOFA anf BGI−Fortran usage’)

 write (*, ’(A)’ ,advance= ’NO’) ’Please wait, we are working...’

 t0 = system_time()
 call run_app ()
 t1 = system_time()

 write (*,*)
 write (*, ’(A,F8.3,A)’) ’Solar system completed in ’ ,t1−t0, ’ seconds!’

 call bgiapp_close ()
end program solar_system

dynamics2d.f90
~/programming/bgi−fortran/apps/

1/4
09/06/2015

!
! Fortran Interface to the Xbgi−364p/WinBGIm−6.0p Libraries
! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi
!
! It is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
!
! HOW TO BUILD XBGI (GNU/Linux Mint)
!
! cd ~/work
! wget http://libxbgi.sourceforge.net/xbgi−364.tar.gz
! tar −xf xbgi−364.tar.gz
! cd xbgi−364/src
! make
! make demo
!
! ./demo
! make clean
! cd test
! make
! ./mandelbrot
!
! cd ..
! mv libXbgi.a ~/programming/lib
!
! HOW TO BUILD WinBGIm−6.0 (MSYS2/MINGW64 shell)
!
! cd ~/work/WinBGIm−6.0
! make
! mv libbgi.a ~/programming/lib/mingw64/libWinBGIm6.0.a
!
! make clean
!
! cd all−tests
! g++ −O3 −Wall −mwindows −I .. test−bgidemo0.cxx \
! −L ~/programming/lib/mingw64 −lWinBGIm6.0 \
! −lgdi32 −lcomdlg32 −luuid −loleaut32 −lole32 −o test−bgidemo0
!
! HOW TO BUILD THE APP
!
! cd ~/programming/bgi−fortran/apps
!
! rm −rf {*.mod,~/programming/modules/*} && \
! gfortran −O3 −Wall $BLD_OPTS −J ~/programming/modules \
! ~/programming/basic−modules/basic_mods.f90 \
! ~/programming/fparser−fortran/fparser_dp.f90 \
! ../{bgi.f90,bgiapp.f90} dynamics2d.f90 \
! −L ~/programming/lib/$PLATFORM $LIBS −o dynamics2d$EXE
!
! ./dynamics2d$EXE
!
! where:
!
! BLD_OPTS =
! PLATFORM =
! LIBS = −lFParser −lstdc++ −lXbgi −lX11 −lm
! EXE = .out
!
! for the build on GNU/Linux
!
! $BLD_OPTS = −static [−mwindows]
! $PLATFORM = mingw64
! $LIBS = −lFParser −lWinBGIm6.0 \
! −lgdi32 −lcomdlg32 −luuid −loleaut32 −lole32 −lstdc++
! EXE =
!
! for the build on MSYS2/MINGW64
!
!
! EXAMPLES
!
! ax = ’−2*x’, ay = ’−3*y’, t in [0,100], h = 0.0005, P0(2,4), V0(−2,0)
!
! ax = ’−((x+2)/hypot(x+2,y)^3 + (x−2)/hypot(x−2,y)^3)’,
! ay = ’−(y/hypot(x+2,y)^3 + y/hypot(x−2,y)^3)’,
! t in [0,100], h = 0.005, P0(1,4), V0(−0.25,0)

dynamics2d.f90
~/programming/bgi−fortran/apps/

2/4
09/06/2015

!

module dynamics2d_lib
 use kind_consts , only : DP
 use fparser_dp , only : FunctionParser_type, NewParser, Parse, &
 ErrorMsg, GetParseErrorType, DeleteParser, Eval
 implicit none
 private

 type(FunctionParser_type) :: fp_ax, fp_ay
 integer , parameter :: NEQ = 4
 real (DP) :: t0 = 0.0_DP, t1 = 25.0_DP, h = 0.05_DP, h2, h6

 !
 ! The first implementation was with these meaning
 !
 ! y(1) = x, y(2) = vx, y(3) = y, y(4) = vy
 !
 ! i.e. the system to be integrated was
 !
 ! y’(1) = y(2)
 ! y’(2) = ax(y(1:3:2))
 ! y’(3) = y(4)
 ! y’(4) = ay(y(1:3:2))
 !
 ! Now we use
 !
 ! y(1) = x, y(2) = y, y(3) = vx, y(4) = vy
 !
 ! i.e. the system to be integrated IS
 !
 ! y’(1) = y(3)
 ! y’(2) = y(4)
 ! y’(3) = ax(y(1:2))
 ! y’(4) = ay(y(1:2))
 !

 ! w(:,:) work space to compute K1, K2, K3, K4. Notice that the method uses
 ! w(:,3) and NOT w(:,4)!
 !
 real (DP) :: y0(NEQ) = [1.0_DP, 4.0_DP, −2.0_DP, 0.0_DP], w(NEQ,3)

 public :: input_data, run_app

contains

 subroutine input_data ()
 use get_data , only : get, MAXLEN
 character (len = MAXLEN) :: ax_buf = ’−x’, ay_buf = ’−y’
 integer :: res

 call get (’AX(x,y) = ’ ,ax_buf)
 call get (’AY(x,y) = ’ ,ay_buf)
 write (*,*)

 call get (’T0 = ’ ,t0)
 call get (’T1 = ’ ,t1)
 call get (’H = ’ ,h)
 h2 = 0.5_DP*h
 h6 = h/6.0_DP
 write (*,*)

 call get (’X0 = ’ ,y0(1))
 call get (’Y0 = ’ ,y0(2))
 write (*,*)

 call get (’VX0 = ’ ,y0(3))
 call get (’VY0 = ’ ,y0(4))
 write (*,*)

 ! Create the fparser for AX(x,y)
 call NewParser (fp_ax)
 res = Parse(fp_ax,ax_buf, ’x,y’)

 if (res >= 0) then
 write (*,*) ’Failure creating fp_ax parser...’
 write (*,*)
 write (*, ’(A)’) ’AX(x,y) = ’ // trim (ax_buf)

dynamics2d.f90
~/programming/bgi−fortran/apps/

3/4
09/06/2015

 write (*, ’(A)’) repeat (’ ’ ,res+10)// ’^’

 ! Remember : ErrorMsg() is an array of characters...
 write (*,*) ErrorMsg(fp_ax)
 write (*,*) ’Error type: ’ ,GetParseErrorType(fp_ax)
 write (*,*)
 stop
 end if

 ! Create the fparser for AY(x,y)
 call NewParser (fp_ay)
 res = Parse(fp_ay,ay_buf, ’x,y’)
 if (res >= 0) then
 write (*,*) ’Failure creating fp_ay parser...’
 write (*,*)
 write (*, ’(A)’) ’AY(x,y) = ’ // trim (ay_buf)
 write (*, ’(A)’) repeat (’ ’ ,res+10)// ’^’

 ! Remember : ErrorMsg() is an array of characters...
 write (*,*) ErrorMsg(fp_ay)
 write (*,*) ’Error type: ’ ,GetParseErrorType(fp_ay)
 write (*,*)
 stop
 end if
 end subroutine input_data

 subroutine sub (x,y,f)
 real (DP), intent (in) :: x, y(:)
 real (DP), intent (out) :: f(:)
 f(1) = y(3)
 f(2) = y(4)

 f(3) = Eval(fp_ax,y(1:2))
 f(4) = Eval(fp_ay,y(1:2))
 end subroutine sub

 subroutine rk4step (x,y)
 real (DP), intent (inout) :: x, y(:)
 real (DP) :: xh, xh2
 !
 ! THIS SUBROUTINE REPLACES X BY X+H AND ADVANCES THE SOLUTION OF THE
 ! SYSTEM OF DIFFERENTIAL EQUATIONS DY/DX=F(X,Y) FROM Y(X) TO Y(X+H)
 ! USING A FIFTH−ORDER RUNGE−KUTTA METHOD.
 !
 ! SUB IS THE NAME OF A SUBROUTINE SUB(X,Y,F) WHICH SETS THE VECTOR F
 ! TO THE DERIVATIVE AT X OF THE VECTOR Y.
 !
 ! W IS A WORKING−SPACE ARRAY, TREATED AS CONSISTING OF THREE CONSEC−
 ! UTIVE WORKING VECTORS OF LENGTH NEQ.
 !
 ! Adapted from CERNLIB drkstp.F:
 !
 ! http://cernlib.sourcearchive.com/documentation/2005.05.09.dfsg/
 ! drkstp_8F_source.html
 !
 xh = x+h
 xh2 = x+h2

 ! Computing w(:,1) = K1
 call sub (x,y,w(:,1))

 ! Computing w(:,2) = y+H*K1/2
 w(:,2) = y(:)+h2*w(:,1)

 ! Computing w(:,3) = K2
 call sub (xh2,w(:,2),w(:,3))

 ! Computing w(:,1) = K1+2*K2
 w(:,1) = w(:,1)+2.0_DP*w(:,3)

 ! Computing w(:,2) = y+H*K2/2
 w(:,2) = y(:)+h2*w(:,3)

 ! Computing w(:,3) = K3
 call sub (xh2,w(:,2),w(:,3))

 ! Computing w(:,1) = (K1+2*K2)+2*K3
 w(:,1) = w(:,1)+2.0_DP*w(:,3)

dynamics2d.f90
~/programming/bgi−fortran/apps/

4/4
09/06/2015

 ! Computing w(:,2) = y+H*K3
 w(:,2) = y(:)+h*w(:,3)

 ! Computing w(:,3) = K4
 call sub (xh,w(:,2),w(:,3))

 ! Advance the solution Y(t+h) = Y(t) + H*[(K1+2*K2+2*K3)+K4]/6
 y(:)=y(:)+h6*(w(:,1)+w(:,3))

 x = xh
 end subroutine rk4step

 subroutine run_app ()
 use bgi , only : YELLOW
 use bgiapp , only : bgiapp_dot
 real (DP) :: t, y(NEQ)

 t = t0
 y = y0
 do while (t < t1)

 call bgiapp_dot (y(1),y(2),YELLOW)

 ! We take a RK step
 call rk4step (t,y)
 end do

 call DeleteParser (fp_ax)
 call DeleteParser (fp_ay)
 end subroutine run_app
end module dynamics2d_lib

program dynamics2d
 use kind_consts , only : DP
 use general_routines , only : system_time
 use bgiapp , only : bgiapp_setup, bgiapp_init, bgiapp_close
 use dynamics2d_lib
 implicit none

 real (DP) :: t0, t1

 call input_data ()
 call bgiapp_setup (−5.0_DP,5.0_DP,−5.0_DP,5.0_DP)
 call bgiapp_init (’Dynamics in 2D’)

 write (*, ’(A)’ ,advance= ’NO’) ’Please wait, we are working...’

 t0 = system_time()
 call run_app ()
 t1 = system_time()

 write (*,*)
 write (*, ’(A,F8.3,A)’) ’Completed in ’ ,t1−t0, ’ seconds!’

 call bgiapp_close ()
end program dynamics2d

double_pendulum−DB.f90
~/programming/bgi−fortran/apps/

1/4
09/06/2015

!
! Fortran Interface to the Xbgi−364p Library
! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi
!
! It is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
!
! HOW TO BUILD (GNU/Linux Mint)
!
! cd ~/work
! wget http://libxbgi.sourceforge.net/xbgi−364.tar.gz
! tar −xf xbgi−364.tar.gz
! cd xbgi−364/src
! make
! make demo
!
! ./demo
! make clean
! cd test
! make
! ./mandelbrot
!
! cd ..
! mv libXbgi.a ~/programming/lib
! cd ~/programming/bgi−fortran/apps
!
! rm −rf {*.mod,~/programming/modules/*} && \
! gfortran −O3 −Wall −J ~/programming/modules \
! ~/programming/basic−modules/basic_mods.f90 \
! ../{bgi.f90,bgiapp.f90} double_pendulum−DB.f90 \
! −L ~/programming/lib −lXbgi −lX11 −lm −o double_pendulum−DB.out
!
! ./double_pendulum−DB.out
!
!
! EXAMPLES
!
! t in [0,25], h = 0.0005, m1 = 1.5, m2 = 1, l1 = 1, l2 = 0.5,
! th1 = th2 = 90, omg1 = omg2 = 0
!

module double_pendulum_lib
 use kind_consts , only : DP
 implicit none
 private

 ! Units for input data:
 !
 ! length in meters
 ! time in second
 ! mass in kg
 ! angle in deg
 ! omg in deg/sec
 !
 integer , parameter :: NEQ = 4
 real (DP), parameter :: KGRAV = 9.81_DP, &
 Z3 = 1.0_DP/3, Z43 = 4*Z3
 real (DP) :: t0 = 0.0_DP, t1 = 25.0_DP, h = 0.0005_DP, &
 m1 = 0.8_DP, m2 = 1.2_DP, & ! Kg
 rho1 = 10.49_DP, rho2 = 19.3_DP, & ! Ag, Au: in g/cm**3
 l1 = 0.5_DP, l2 = 1.1_DP, &
 h2, h6, &
 msum, msum1, r1, r2

 !
 ! We adopt the equation found in
 !
 ! http://www.myphysicslab.com/dbl_pendulum.html
 !
 ! i.e.
 !
 ! y(1) = th1, y(2) = th2, y(3) = omg1, y(4) = omg2
 !
 ! i.e. the system to be integrated IS
 !
 ! y’(1) = y(3)

double_pendulum−DB.f90
~/programming/bgi−fortran/apps/

2/4
09/06/2015

 ! y’(2) = y(4)
 ! y’(3) = a1(y(1:2))
 ! y’(4) = a2(y(1:2))
 !

 ! w(:,:) work space to compute K1, K2, K3, K4. Notice that the method uses
 ! w(:,3) and NOT w(:,4)!
 !
 real (DP) :: y0(NEQ) = [60.0_DP, 100.0_DP, 0.0_DP, 0.0_DP], w(NEQ,3)

 public :: input_data, run_app

contains

 subroutine input_data ()
 use math_consts , only : DEG2RAD, PI
 use get_data , only : get

 call get (’T0 (s) = ’ ,t0)
 call get (’T1 (s) = ’ ,t1)
 call get (’H (s) = ’ ,h)
 h2 = 0.5_DP*h
 h6 = h/6.0_DP
 write (*,*)

 call get (’M1 (kg) = ’ ,m1)
 call get (’M2 (kg) = ’ ,m2)
 msum = m1+m2
 msum1 = msum+m1
 write (*,*)

 call get (’RHO1 (g/cm**3) = ’ ,rho1)
 call get (’RHO2 (g/cm**3) = ’ ,rho2)
 ! mass in Kg, mass*1000 in g, rho in g/cm**3, radius in cm,
 ! radius/100 in m
 r1 = (((m1*1000/rho1)/(Z43*PI))**Z3)/100
 r2 = (((m2*1000/rho2)/(Z43*PI))**Z3)/100
 ! print *, r1, r2
 write (*,*)

 call get (’L1 (m) = ’ ,l1)
 call get (’L2 (m) = ’ ,l2)
 write (*,*)

 call get (’TH1 (deg) = ’ ,y0(1))
 call get (’TH2 (deg) = ’ ,y0(2))
 write (*,*)

 call get (’OMG1 (deg/s) = ’ ,y0(3))
 call get (’OMG2 (deg/s) = ’ ,y0(4))
 write (*,*)

 ! Converting ALL angles in radians
 y0 = y0*DEG2RAD
 end subroutine input_data

 subroutine sub (x,y,f)
 real (DP), intent (in) :: x, y(:)
 real (DP), intent (out) :: f(:)
 ! y(1) = th1, y(2) = th2, y(3) = omg1, y(4) = omg2
 real (DP), save :: a, b, c, d, e, g

 ! a = th1−th2
 a = y(1)−y(2)

 ! b = (omg1**2) * l1
 b = l1*y(3)**2

 ! c = (omg2**2) * l2
 c = l2*y(4)**2

 ! d = 2*sin(th1−th2)
 d = 2.0_DP* sin (a)

 ! e = cos(th1−th2)
 e = cos (a)

 ! g = msum1−m2*cos(2*th1−2*th2)

double_pendulum−DB.f90
~/programming/bgi−fortran/apps/

3/4
09/06/2015

 g = msum1−m2* cos (2.0_DP*a)

 ! We do not need th1−th2 any more. So a = sin(th1−2*th2))
 a = sin (a−y(2))

 ! Now computing the field
 f(1) = y(3)
 f(2) = y(4)
 f(3) = (−KGRAV*(msum1* sin (y(1))+m2*a)−m2*d*(c+b*e))/(l1*g)
 f(4) = (d*(msum*(b+KGRAV* cos (y(1)))+c*m2*e))/(l2*g)
 end subroutine sub

 subroutine rk4step (x,y)
 real (DP), intent (inout) :: x, y(:)
 real (DP) :: xh, xh2
 !
 ! THIS SUBROUTINE REPLACES X BY X+H AND ADVANCES THE SOLUTION OF THE
 ! SYSTEM OF DIFFERENTIAL EQUATIONS DY/DX=F(X,Y) FROM Y(X) TO Y(X+H)
 ! USING A FIFTH−ORDER RUNGE−KUTTA METHOD.
 !
 ! SUB IS THE NAME OF A SUBROUTINE SUB(X,Y,F) WHICH SETS THE VECTOR F
 ! TO THE DERIVATIVE AT X OF THE VECTOR Y.
 !
 ! W IS A WORKING−SPACE ARRAY, TREATED AS CONSISTING OF THREE CONSEC−
 ! UTIVE WORKING VECTORS OF LENGTH NEQ.
 !
 ! Adapted from CERNLIB drkstp.F:
 !
 ! http://cernlib.sourcearchive.com/documentation/2005.05.09.dfsg/
 ! drkstp_8F_source.html
 !
 xh = x+h
 xh2 = x+h2

 ! Computing w(:,1) = K1
 call sub (x,y,w(:,1))

 ! Computing w(:,2) = y+H*K1/2
 w(:,2) = y(:)+h2*w(:,1)

 ! Computing w(:,3) = K2
 call sub (xh2,w(:,2),w(:,3))

 ! Computing w(:,1) = K1+2*K2
 w(:,1) = w(:,1)+2.0_DP*w(:,3)

 ! Computing w(:,2) = y+H*K2/2
 w(:,2) = y(:)+h2*w(:,3)

 ! Computing w(:,3) = K3
 call sub (xh2,w(:,2),w(:,3))

 ! Computing w(:,1) = (K1+2*K2)+2*K3
 w(:,1) = w(:,1)+2.0_DP*w(:,3)

 ! Computing w(:,2) = y+H*K3
 w(:,2) = y(:)+h*w(:,3)

 ! Computing w(:,3) = K4
 call sub (xh,w(:,2),w(:,3))

 ! Advance the solution Y(t+h) = Y(t) + H*[(K1+2*K2+2*K3)+K4]/6
 y(:)=y(:)+h6*(w(:,1)+w(:,3))

 x = xh
 end subroutine rk4step

 subroutine run_app ()
 use bgi , only : BROWN, clearviewport, getvisualpage, RED, &
 setactivepage, setcolor, setfillstyle, SOLID_FILL, swapbuffers, &
 YELLOW, WHITE
 use bgiapp , only : bgiapp_fillellipse, bgiapp_line
 real (DP) :: t, y(NEQ), x1, y1, x2, y2

 ! By default, the current visual and active page is 0 (zero),
 ! so we select the off screen page for drawing
 call setactivepage (1)

double_pendulum−DB.f90
~/programming/bgi−fortran/apps/

4/4
09/06/2015

 t = t0
 y = y0
 do while (t < t1)
 ! The current active (off screen) page becomes the visual page
 ! and the current visual page becomes the off screen page, i.e.
 ! what is drawn on the off screen is outputted on the screen visible
 call swapbuffers ()

 ! We clear the off screen for the next drawing
 call clearviewport ()

 ! First pendulum: conversion from generalized to cartesian coordinates
 x1 = l1* sin (y(1))
 y1 = −l1* cos (y(1))

 ! Second pendulum: conversion from generalized to cartesian coordinates
 x2 = x1+l2* sin (y(2))
 y2 = y1−l2* cos (y(2))

 ! Draw arms positions on the off screen
 call setcolor (BROWN)
 call bgiapp_line (0.0_DP,0.0_DP,x1,y1)
 call bgiapp_line (x1,y1,x2,y2)

 ! Draw the origin on the off screen
 call setcolor (RED)
 call setfillstyle (SOLID_FILL,RED)
 call bgiapp_fillellipse (0.0_DP,0.0_DP,0.02_DP,0.02_DP)

 ! Draw the position of first pendulum on the off screen
 call setcolor (WHITE)
 call setfillstyle (SOLID_FILL,WHITE)
 call bgiapp_fillellipse (x1,y1,r1,r1)

 ! Draw the position of second pendulum on the off screen
 call setcolor (YELLOW)
 call setfillstyle (SOLID_FILL,YELLOW)
 call bgiapp_fillellipse (x2,y2,r2,r2)

 ! We take a RK step
 call rk4step (t,y)
 end do

 ! Making active page the same as visual page
 call setactivepage (getvisualpage())
 end subroutine run_app
end module double_pendulum_lib

program double_pendulum
 use kind_consts , only : DP
 use general_routines , only : system_time
 use bgiapp , only : bgiapp_setup, bgiapp_init, bgiapp_close
 use double_pendulum_lib
 implicit none

 real (DP) :: t0, t1

 call input_data ()
 call bgiapp_setup (−2.0_DP,2.0_DP,−2.0_DP,2.0_DP)
 call bgiapp_init (’Double Pendulum’)

 write (*, ’(A)’ ,advance= ’NO’) ’Please wait, we are working...’

 t0 = system_time()
 call run_app ()
 t1 = system_time()

 write (*,*)
 write (*, ’(A,F8.3,A)’) ’Completed in ’ ,t1−t0, ’ seconds!’

 call bgiapp_close ()
end program double_pendulum

thomas_fermi.f90
~/programming/bgi−fortran/apps/

1/5
09/06/2015

!
! Fortran Interface to the Xbgi−364p Library
! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi
!
! It is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
!
! HOW TO BUILD (GNU/Linux Mint)
!
! cd ~/work
! wget http://libxbgi.sourceforge.net/xbgi−364.tar.gz
! tar −xf xbgi−364.tar.gz
! cd xbgi−364/src
! make
! make demo
!
! ./demo
! make clean
! cd test
! make
! ./mandelbrot
!
! cd ..
! mv libXbgi.a ~/programming/lib
! cd ~/programming/bgi−fortran/apps
!
! rm −rf {*.mod,~/programming/modules/*} && \
! gfortran −O3 −Wall −J ~/programming/modules \
! ~/programming/basic−modules/basic_mods.f90 \
! ~/programming/ode−modules/ode_integrators.f90 \
! ../{bgi.f90,bgiapp.f90} thomas_fermi.f90 \
! −L ~/programming/lib −lXbgi −lX11 −lm −o thomas_fermi.out
!
! ./thomas_fermi.out
!
!
! DESCRIPTION
! BEST SLOPE for decreasing function u(x) (>= 0) satisying the
! Thomas−Fermi equation and u(0) = 1 condition.
! With GBS method and MU_ERR = 5.0E−9, we find
!
! u’(0) = −MU = −1.5880710214376457 +− 2.9802322387695339E−009
!
! (in X[0,69.491249999966996]) to be compared with
!
! u’(0) = −1.588071022611375312718684508
!
! as reported in
!
! P.Amore et al., Accurate calculation of the solutions to the Thomas−Fermi,
! http://arxiv.org/pdf/1205.1704v2.pdf (http://arxiv.org/abs/1205.1704)
!

module thomas_fermi_lib
 use kind_consts , only : DP
 implicit none
 private

 integer :: id_method = 2
 integer , parameter :: NEQ = 2, NC_MAX = 500
 real (DP), parameter :: Z0 = 0, Z1 = 1, Z4 = 4, &
 Q2 = Z1/2, Q43 = Z4/3
 integer :: nc_majo = 100
 real (DP) :: h = 0.00005_DP, eps = 1.0E−12_DP, mu_err = 5.0E−9_DP

 !
 ! To avoid the singularity at the origin, we use this transformation
 !
 ! u(x) = (1+(4/3) * x**(3/2))*y(x)
 !
 ! and the Thomas−Fermi eq. for u(x),
 !
 ! u’’(x) = u(x) ** (3/2) / sqrt(x)
 !
 ! becomes, for y(x),
 !

thomas_fermi.f90
~/programming/bgi−fortran/apps/

2/5
09/06/2015

 ! (1+(4/3) * x**(3/2))*y’’(x) + 4*sqrt(x)*y’(x)
 !
 ! + (y(x)/sqrt(x))*(1−sqrt(y(x))*(1+(4/3) * x**(3/2))**(3/2)) = 0
 !
 ! Notice, the boundary conditions for neutral atoms satisfied by u(x),
 !
 ! u(0) = 1, u(+inf) = 0
 !
 ! are the same for y(x), y(0) = 1, y(+inf) = 0
 !
 ! Notice also, that u’(0) = y’(0).
 !

 public :: input_data, run_app

contains

 subroutine input_data ()
 use get_data , only : get
 real (DP), parameter :: MACHEPS = epsilon(1.0_DP)

 write (*,*) ’Choose the method:’
 write (*,*) ’ 1 : RK4’
 write (*,*) ’ 2 : GBS’
 write (*,*) ’ 3 : RKM’
 call get (’ID_METHOD =’ ,id_method)
 ! For GBS or RKM step, the default initial H step can be greather..
 if (id_method == 2 .or. id_method == 3) h = 0.005_DP
 write (*,*)

 call get (’MU_ERR = ’ ,mu_err)
 call get (’H = ’ ,h)
 if (id_method == 2 .or. id_method == 3) then
 write (*,*)
 call get (’EPS = ’ ,eps)
 if (eps < 1000*MACHEPS) then
 write (*,*) ’EPS TOO SMALL! Exiting... ’
 stop
 end if
 end if
 write (*,*)

 call get (’NC_MAJO =’ ,nc_majo)
 if (nc_majo < 3) nc_majo = 10
 if (nc_majo > NC_MAX) nc_majo = NC_MAX
 write (*,*)
 end subroutine input_data

 subroutine sub (x,y,f)
 real (DP), intent (in) :: x, y(:)
 real (DP), intent (out) :: f(:)
 real (DP), save :: a, b

 ! Now computing the field
 f(1) = y(2)

 if (x == Z0) then
 f(2) = Z0
 else
 a = sqrt (x)
 b = Z1+Q43*x*a

 ! We use abs(y(1)) as argument of sqrt() to avoid troubles when y(1) < 0
 f(2) = (y(1)*(b* sqrt (abs (y(1))*b)−Z1)−Z4*x*y(2))/(a*b)
 end if
 end subroutine sub

 subroutine majo_result ()
 real (DP), parameter :: Z3 = 3, Z73 = 73, &
 R73 = sqrt (Z73), &
 A1 = 9−R73, A2 = (6497−755*R73)/152, &
 Q3_16 = Z3/16, Q3 = Z1/Z3, R3_16 = Q3_16 ** Q3
 !
 ! A simple implementation of the Majorana method as described in
 !
 ! S. Esposito, Majorana solution of the Thomas−Fermi equation,
 ! Am. J. Phys. 70, 852 (2002).
 !

thomas_fermi.f90
~/programming/bgi−fortran/apps/

3/5
09/06/2015

 integer , save :: m, n, &
 mm2, mm1, nm1, &
 m1, m3_2, m6, m7, m8_2, &
 n1, n4_2, n7
 real (DP), save :: sum_val, a(0:NC_MAX), tt(NC_MAX−2)

 write (*,*)
 write (*, ’(A)’ ,advance= ’NO’) ’Computing MU with Majorana method...’

 a(0:2) = [Z1, A1, A2]
 ! print *
 ! print *, a(0)
 ! print *, a(1)
 ! print *, a(2)

 do m = 3, nc_majo
 mm1 = m−1
 mm2 = m−2
 m1 = m+1
 m3_2 = 2*(m+3)
 m6 = m+6
 m7 = m+7
 m8_2 = 2*(m+8)

 n = mm2
 nm1 = n−1
 n1 = n+1
 n4_2 = 2*(n+4)
 n7 = n+7
 tt(n) = n1*a(n1)−n4_2*a(n)+n7*a(nm1)

 sum_val = Z0
 do n = 1, mm2
 sum_val = sum_val+a(m−n)*tt(n)
 end do

 ! Partial value
 a(m) = sum_val+a(mm1)*(m7−m3_2*A1)+a(mm2)*m6*A1

 ! Final value
 a(m) = a(m)/(m8_2−m1*A1)
 !print *, a(m)
 end do

 ! The MU value as computed with Majorana method
 sum_val = R3_16* sum(a(:nc_majo))

 write (*,*)
 write (*,*) ’MU(MAJO) = ’ , sum_val, &
 ’with N = ’ , nc_majo+1, ’coefficients...’
 end subroutine majo_result

 subroutine run_app ()
 use bgi , only : YELLOW
 use bgiapp , only : bgiapp_dot
 use ode_integrators , only : rk4step, deqgbs, deqrkm

 ! For RK4 w(NEQ,3) would be sufficient...
 ! For RKM w(NEQ,6) would be sufficient...
 ! For GBS we need w(NEQ,36)...
 !
 ! We assume mu in (1.5,1.6) and an initial guess mu = 1.6
 !
 real (DP) :: x, xz, y1_old, y(NEQ), w(NEQ,36), h0, &
 mu = 1.6_DP, delta_mu = 1.6_DP−1.5_DP

 do
 h0 = h
 x = Z0
 y = [Z1, −mu]

 ! Just a little greater, so that the follwing loop is executed
 ! at least one time
 y1_old = y(1)+0.1_DP

 do while (y(1) >= Z0 .and. y(1) < y1_old)

 call bgiapp_dot (x,y(1),YELLOW)

thomas_fermi.f90
~/programming/bgi−fortran/apps/

4/5
09/06/2015

 ! We take an ode integrator step
 y1_old = y(1)
 if (id_method == 1) then
 call rk4step (NEQ,h,x,y,w,sub)
 else
 h = h0
 xz = x+h
 if (id_method == 2) then
 call deqgbs (NEQ,x,xz,y,h,eps,w,sub)
 else
 call deqrkm (NEQ,x,xz,y,h,eps,w,sub)
 end if
 x = xz
 end if
 !print *, x,y(1)
 end do

 write (*,*) ’MU = ’ , mu, ’X = ’ , x

 if (abs (delta_mu) < mu_err) exit

 delta_mu = sign (abs (Q2*delta_mu),y(1))
 mu = mu+delta_mu
 end do

 write (*,*)
 write (*,*) ’MU = ’ , mu, ’DELTA_MU = ’ , delta_mu
 write (*,*) ’X = ’ , x, ’y(X) = ’ , y(1)

 call majo_result ()
 end subroutine run_app

 ! subroutine majo_result()
 ! real(DP), parameter :: Z3 = 3, Z73 = 73, &
 ! R73 = sqrt(Z73), &
 ! A1 = 9−R73, A2 = (6497−755*R73)/152, &
 ! Q3_16 = Z3/16, Q3 = Z1/Z3, R3_16 = Q3_16 ** Q3
 ! !
 ! ! A simple implementation of the Majorana method as described in
 ! !
 ! ! S. Esposito, Majorana solution of the Thomas−Fermi equation,
 ! ! Am. J. Phys. 70, 852 (2002).
 ! !
 ! integer, save :: m, n, &
 ! mm2, mm1, nm1, &
 ! m1, m3_2, m6, m7, m8_2, &
 ! n1, n4_2, n7
 ! real(DP), save :: sum_val, a(0:NC_MAX)

 ! write(*,*)
 ! write(*,’(A)’,advance=’NO’) ’Computing MU with Majorana method...’

 ! a(0:2) = [Z1, A1, A2]
 ! ! print *
 ! ! print *, a(0)
 ! ! print *, a(1)
 ! ! print *, a(2)

 ! do m = 3, nc_majo
 ! mm1 = m−1
 ! mm2 = m−2
 ! m1 = m+1
 ! m3_2 = 2*(m+3)
 ! m6 = m+6
 ! m7 = m+7
 ! m8_2 = 2*(m+8)

 ! sum_val = Z0
 ! do n = 1, mm2
 ! nm1 = n−1
 ! n1 = n+1
 ! n4_2 = 2*(n+4)
 ! n7 = n+7

 ! sum_val = sum_val+(a(m−n)*(n1*a(n1)−n4_2*a(n)+n7*a(nm1)))
 ! end do

thomas_fermi.f90
~/programming/bgi−fortran/apps/

5/5
09/06/2015

 ! ! Partial value
 ! a(m) = sum_val+a(mm1)*(m7−m3_2*A1)+a(mm2)*m6*A1

 ! ! Final value
 ! a(m) = a(m)/(m8_2−m1*A1)
 ! !print *, a(m)
 ! end do

 ! ! The MU value as computed with Majorana method
 ! sum_val = R3_16*sum(a(:nc_majo))

 ! write(*,*)
 ! write(*,*) ’MU(MAJO) = ’, sum_val, &
 ! ’with N = ’, nc_majo+1, ’coefficients...’
 ! end subroutine majo_result
end module thomas_fermi_lib

program thomas_fermi
 use kind_consts , only : DP
 use general_routines , only : system_time
 use bgiapp , only : bgiapp_setup, bgiapp_init, bgiapp_close
 use thomas_fermi_lib
 implicit none
 real (DP) :: t0, t1

 call input_data ()
 call bgiapp_setup (0.0_DP,100.0_DP,−0.1_DP,1.1_DP,1000,500)
 call bgiapp_init (’Thomas−Fermi Functions’)

 write (*,*) ’Please wait, we are working...’

 t0 = system_time()
 call run_app ()
 t1 = system_time()

 write (*,*)
 write (*, ’(A,F8.3,A)’) ’Completed in ’ ,t1−t0, ’ seconds!’

 call bgiapp_close ()
end program thomas_fermi

logistics.f90
~/programming/bgi−fortran/apps/

1/2
09/06/2015

!
! Fortran Interface to the Xbgi−364p Library
! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi
!
! It is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
!
! HOW TO BUILD (GNU/Linux Mint)
!
! cd ~/work
! wget http://libxbgi.sourceforge.net/xbgi−364.tar.gz
! tar −xf xbgi−364.tar.gz
! cd xbgi−364/src
! make
! make demo
!
! ./demo
! make clean
! cd test
! make
! ./mandelbrot
!
! cd ..
! mv libXbgi.a ~/programming/lib
! cd ~/programming/bgi−fortran/apps
!
! rm −rf {*.mod,~/programming/modules/*} && \
! gfortran −O3 −Wall −J ~/programming/modules \
! ~/programming/basic−modules/basic_mods.f90 \
! ../{bgi.f90,bgiapp.f90} logistics.f90 \
! −L ~/programming/lib −lXbgi −lX11 −lm −o logistics.out
!
! ./logistics.out
!
!
! DESCRIPTION
! We iterate the logistic equation,
!
! p(t+1) = r * p(t) * (1−p(t))
!
! max_iter times to say we have reached the convergence, then we plot the
! next npoint iterations. All this with r parameter varying in the interval
! [r_min,r_max], at steps of r_stp
!
! A SAMPLE OF INPUT PARAMETERS
! p0 = 0.7, r in [2.9,3.9], r_stp = 0.001, max_iter = 1000, npoints = 100
! p0 = 0.7, r in [0.0,4.0], r_stp = 0.001, max_iter = 1000, npoints = 100
! in a window 1000 x 268 pixels
!

module logistics_lib
 use kind_consts , only : DP
 implicit none
 private

 integer :: max_iter = 1000, npoints = 100
 real (DP) :: p0 = 0.7_DP, r_min = 2.9_DP, r_max = 3.9_DP, &
 r_stp = 0.001_DP

 public :: input_data, run_app

contains

 subroutine input_data ()
 use get_data , only : get
 !
 ! YOU CANNOT CALL BGI ROUTINES HERE!
 !
 call get (’MAX_ITER = ’ ,max_iter)
 call get (’NPOINTS = ’ ,npoints)
 write (*,*)

 call get (’P0 = ’ ,p0)
 write (*,*)

 call get (’R_MIN = ’ ,r_min)

logistics.f90
~/programming/bgi−fortran/apps/

2/2
09/06/2015

 call get (’R_MAX = ’ ,r_max)
 call get (’R_STP = ’ ,r_stp)
 write (*,*)
 end subroutine input_data

 subroutine run_app
 use bgi , only : YELLOW
 use bgiapp , only : bgiapp_dot
 integer :: k, l, n_rstp
 real (DP) :: r, p

 ! Number of r steps, rounding up
 n_rstp = 1+ int ((r_max−r_min)/r_stp)

 r = r_min
 do l = 1, n_rstp
 p = p0
 do k = 1, max_iter
 p = r*p*(1.0_DP−p)
 end do

 ! Now we assume having reached the "convergence", i.e. a fix,
 ! oscillating or chaotic limit. So we can plot at most npoints points
 do k = 1, npoints
 p = r*p*(1.0_DP−p)

 ! Drawing point k...
 call bgiapp_dot (r,p,YELLOW)
 end do

 r = r+r_stp
 end do
 end subroutine run_app
end module logistics_lib

program logistics
 use kind_consts , only : DP
 use general_routines , only : system_time
 use bgiapp , only : bgiapp_setup, bgiapp_init, bgiapp_close
 use logistics_lib
 implicit none
 real (DP) :: t0,t1

 call input_data ()
 call bgiapp_setup (2.85_DP,3.95_DP,−0.05_DP,1.05_DP)
 call bgiapp_init (’Logistics Equation Iterations, P(t) vs R’)

 write (*, ’(A)’ ,advance= ’NO’) ’Please wait, we are working...’

 t0 = system_time()
 call run_app ()
 t1 = system_time()

 write (*,*)
 write (*, ’(A,F8.3,A)’) ’Completed in ’ ,t1−t0, ’ seconds!’

 call bgiapp_close ()
end program logistics

radio_decay.f90
~/programming/bgi−fortran/apps/

1/3
09/06/2015

!
! Fortran Interface to the Xbgi−364p/WinBGIm−6.0 Library
! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi
!
! It is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
!
! HOW TO BUILD XBGI (GNU/Linux Mint)
!
! cd ~/work
! wget http://libxbgi.sourceforge.net/xbgi−364.tar.gz
! tar −xf xbgi−364.tar.gz
! cd xbgi−364/src
! make
! make demo
!
! ./demo
! make clean
! cd test
! make
! ./mandelbrot
!
! cd ..
! mv libXbgi.a ~/programming/lib
!
! HOW TO BUILD WinBGIm−6.0 (MSYS2/MINGW64 shell)
!
! cd ~/work/WinBGIm−6.0
! make
! mv libbgi.a ~/programming/lib/mingw64/libWinBGIm6.0.a
!
! make clean
!
! cd all−tests
! g++ −O3 −Wall −mwindows −I .. test−bgidemo0.cxx \
! −L ~/programming/lib/mingw64 −lWinBGIm6.0 \
! −lgdi32 −lcomdlg32 −luuid −loleaut32 −lole32 −o test−bgidemo0
!
! HOW TO BUILD THE APP
!
! cd ~/programming/bgi−fortran/apps
!
! rm −rf {*.mod,~/programming/modules/*} && \
! gfortran −O3 −Wall $BLD_OPTS −J ~/programming/modules \
! ~/programming/basic−modules/basic_mods.f90 \
! ../{bgi.f90,bgiapp.f90} radio_decay.f90 \
! −L ~/programming/lib/$PLATFORM $LIBS −o radio_decay$EXE
!
! ./radio_decay$EXE
!
! where:
!
! BLD_OPTS =
! PLATFORM =
! LIBS = −lXbgi −lX11 −lm
! EXE = .out
!
! for the build on GNU/Linux
!
! $BLD_OPTS = −static [−mwindows]
! $PLATFORM = mingw64
! $LIBS = −lWinBGIm6.0 −lgdi32 −lcomdlg32 −luuid −loleaut32 −lole32 \
! −lstdc++
! EXE =
!
! for the build on MSYS2/MINGW64
!
!
! NOTES
!
! An idea from
!
! Dean Karlen ""Physics 75.502/487 − Computational Physics −
! Fall/Winter 1998/99""
!

radio_decay.f90
~/programming/bgi−fortran/apps/

2/3
09/06/2015

module radio_decay_lib
 use kind_consts , only : DP
 implicit none
 private
 integer :: num_nuclei = 100
 real (DP) :: alpha = 0.01_DP, t_step = 1, total_time = 300
 real (DP) :: t_min, t_max, n_min, n_max

 public :: input_data, run_app, t_min, t_max, n_min, n_max

contains

 subroutine input_data ()
 use get_data , only : get
 call get (’NUM_NUCLEI = ’ ,num_nuclei)
 write (*,*)
 call get (’ALPHA = ’ ,alpha)
 write (*,*)
 call get (’T_STEP = ’ ,t_step)
 write (*,*)
 call get (’TOTAL_TIME =’ ,total_time)
 write (*,*)

 ! We take a margin of about 5% over the interval
 t_min = 0.05_DP*total_time
 t_max = 0 + (total_time+t_min)
 t_min = 0 − t_min

 n_min = 0.05_DP*num_nuclei
 n_max = 0 + (num_nuclei+n_min)
 n_min = 0 − n_min
 end subroutine input_data

 subroutine run_app ()
 use bgi , only : LIGHTRED, setcolor, YELLOW
 use bgiapp , only : bgiapp_line
 integer :: i, n_parents, n
 real (DP) :: r, p, t1, t, n1_exp, n_exp, n1_the, n_the

 ! Initialization...
 p = alpha*t_step
 n_parents = num_nuclei
 n = n_parents

 t = 0

 ! Initializing "prev" variables, i.e. variables at "previous" time
 t1 = t
 n1_exp = n_parents
 n1_the = n_parents

 ! LOOP over time..
 do while (t < total_time)
 ! LOOP over each remaining parent nucleus
 do i = 1, n
 call random_number (r)

 ! Decide if the nucleus decays..
 ! If it decays, reduce the number of parents by 1
 if (r < p) n_parents = n_parents−1
 end do

 ! Update time to current
 t = t+t_step

 ! The "experimental" result at current time
 n_exp = n_parents

 ! The "expected" result at current time
 n_the = num_nuclei* exp (−alpha*t)

 ! PLOT N vs. t : "experimental"...
 call setcolor (YELLOW)
 call bgiapp_line (t1,n1_exp,t,n_exp)

 ! ..."expected" or "theoretical"
 call setcolor (LIGHTRED)
 call bgiapp_line (t1,n1_the,t,n_the)

radio_decay.f90
~/programming/bgi−fortran/apps/

3/3
09/06/2015

 ! Update current number of nuclei and the plotting "positions"..
 n = n_parents
 t1 = t
 n1_exp = n_exp
 n1_the = n_the
 end do
 end subroutine run_app
end module radio_decay_lib

program radio_decay
 use kind_consts , only : DP
 use general_routines , only : system_time
 use randoms , only : init_random_seed
 use bgiapp , only : bgiapp_setup, bgiapp_init, bgiapp_close
 use radio_decay_lib
 implicit none
 real (DP) :: t0, t1

 call init_random_seed ()

 call input_data ()
 call bgiapp_setup (t_min,t_max,n_min,n_max,900,900)
 call bgiapp_init (’Simulating Radioactive Decay’)

 write (*,*) ’Please wait, we are working...’

 t0 = system_time()
 call run_app ()
 t1 = system_time()

 write (*,*)
 write (*, ’(A,F8.3,A)’) ’Completed in ’ ,t1−t0, ’ seconds!’

 call bgiapp_close ()
end program radio_decay

joule_expansion.f90
~/programming/bgi−fortran/apps/

1/3
09/06/2015

!
! Fortran Interface to the Xbgi−364p/WinBGIm−6.0p Libraries
! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi
!
! It is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
!
! HOW TO BUILD XBGI (GNU/Linux Mint)
!
! cd ~/work
! wget http://libxbgi.sourceforge.net/xbgi−364.tar.gz
! tar −xf xbgi−364.tar.gz
! cd xbgi−364/src
! make
! make demo
!
! ./demo
! make clean
! cd test
! make
! ./mandelbrot
!
! cd ..
! mv libXbgi.a ~/programming/lib
!
! HOW TO BUILD WinBGIm−6.0 (MSYS2/MINGW64 shell)
!
! cd ~/work/WinBGIm−6.0
! make
! mv libbgi.a ~/programming/lib/mingw64/libWinBGIm6.0.a
!
! make clean
!
! cd all−tests
! g++ −O3 −Wall −mwindows −I .. test−bgidemo0.cxx \
! −L ~/programming/lib/mingw64 −lWinBGIm6.0 \
! −lgdi32 −lcomdlg32 −luuid −loleaut32 −lole32 −o test−bgidemo0
!
! HOW TO BUILD THE APP
!
! cd ~/programming/bgi−fortran/apps
!
! rm −rf {*.mod,~/programming/modules/*} && \
! gfortran −O3 −Wall $BLD_OPTS −J ~/programming/modules \
! ~/programming/basic−modules/basic_mods.f90 \
! ../{bgi.f90,bgiapp.f90} joule_expansion.f90 \
! −L ~/programming/lib/$PLATFORM $LIBS −o joule_expansion$EXE
!
! ./joule_expansion$EXE
!
! where:
!
! BLD_OPTS =
! PLATFORM =
! LIBS = −lXbgi −lX11 −lm
! EXE = .out
!
! for the build on GNU/Linux
!
! $BLD_OPTS = −static [−mwindows]
! $PLATFORM = mingw64
! $LIBS = −lWinBGIm6.0 −lgdi32 −lcomdlg32 −luuid −loleaut32 −lole32 \
! −lstdc++
! EXE =
!
! for the build on MSYS2/MINGW64
!

module joule_expansion_lib
 use kind_consts , only : DP
 implicit none
 private

 integer :: natoms = 1000 ! Number of atoms
 real (DP) :: x0 = 0.25_DP, l = 3, h ! boxes offset, size, half size

joule_expansion.f90
~/programming/bgi−fortran/apps/

2/3
09/06/2015

 public :: input_data, run_app

contains

 subroutine input_data ()
 use get_data , only : get

 call get (’NATOMS = ’ ,natoms)
 call get (’X0 = ’ ,x0)
 call get (’L = ’ ,l)
 write (*,*)

 h = l*0.5_DP
 end subroutine input_data

 subroutine draw_gasbox (n,a,b)
 use bgi , only : CENTER_TEXT, RED, setcolor, settextjustify, TOP_TEXT, &
 YELLOW, WHITE
 use bgiapp , only : bgiapp_box, bgiapp_dot, bgiapp_text
 integer , intent (in) :: n
 real (DP), intent (in) :: a(:), b(:) ! The top−left and bottom−right corners
 integer :: i
 real (DP) :: x1, x2, y1, y2, x, y, u(2)
 character (len = 20) :: buf

 x1 = a(1)
 x2 = b(1)
 y1 = b(2)
 y2 = a(2)
 write (buf,*) n

 call setcolor (RED)
 call bgiapp_box (x1,x2,y1,y2)

 call settextjustify (CENTER_TEXT,TOP_TEXT)
 call setcolor (WHITE)
 call bgiapp_text ((x1+x2)/2,y1−h/4, trim (adjustl (buf)))

 do i = 1, n
 call random_number (u)

 x = x1+u(1)*(x2−x1)
 y = y1+u(2)*(y2−y1)

 call bgiapp_dot (x,y,YELLOW)
 end do
 end subroutine draw_gasbox

 subroutine run_app ()
 use bgi , only : clearviewport, delay, getvisualpage, quit, setactivepage, &
 swapbuffers
 real (DP), dimension (2) :: a1, b1, c1, d1, a2, b2, c2, d2, dx, dy
 real (DP) :: u, p
 integer :: n1, n2

 ! Steps to "build" the boxes
 dx = [l, 0.0_DP]
 dy = [0.0_DP, l]

 ! Boxes initialization
 ! first...
 a1 = [−x0, −h]
 b1 = a1−dx
 c1 = b1+dy
 d1 = c1+dx

 ! second...
 a2 = [x0, −h]
 b2 = a2+dx
 c2 = b2+dy
 d2 = c2−dx

 ! Initialization of the number of atoms in boxes
 n1 = natoms
 n2 = 0

 ! By default, the current visual and active page is 0 (zero),
 ! so we select the off screen page for drawing

joule_expansion.f90
~/programming/bgi−fortran/apps/

3/3
09/06/2015

 call setactivepage (1)

 ! Draw gas boxes on the off screen
 call draw_gasbox (n1,c1,a1)
 call draw_gasbox (n2,d2,b2)

 ! Main loop
 do while (.not. quit())
 ! The current active (off screen) page becomes the visual page
 ! and the current visual page becomes the off screen page, i.e.
 ! what is drawn on the off screen is outputted on the screen visible
 call swapbuffers ()

 ! We clear the off screen forq the next drawing
 call clearviewport ()

 ! Computing the expansion...
 p = (n1+0.0_DP)/natoms
 call random_number (u)

 if (u < p) then
 if (n1 > 0) n1 = n1−1
 else
 if (n1 < natoms) n1 = n1+1
 end if
 n2 = natoms−n1

 ! Draw gas expansion boxes on the off screen
 call draw_gasbox (n1,c1,a1)
 call draw_gasbox (n2,d2,b2)

 call delay (1)
 end do

 ! Making active page the same as visual page
 call setactivepage (getvisualpage())
 end subroutine run_app
end module joule_expansion_lib

program joule_expansion
 use kind_consts , only : DP
 use general_routines , only : system_time
 use randoms , only : init_random_seed
 use bgiapp , only : bgiapp_setup, bgiapp_init, bgiapp_close
 use joule_expansion_lib
 implicit none

 real (DP) :: t0, t1

 call init_random_seed ()

 call input_data ()
 call bgiapp_setup (−4.0_DP,4.0_DP,−3.0_DP,3.0_DP,800,600)
 call bgiapp_init (’Joule Expansion’)

 write (*, ’(A)’ ,advance= ’NO’) ’Please wait, we are working...’

 t0 = system_time()
 call run_app ()
 t1 = system_time()

 write (*,*)
 write (*, ’(A,F9.3,A)’) ’Completed in ’ ,t1−t0, ’ seconds!’

 call bgiapp_close ()
end program joule_expansion

balls_sim.f90
~/programming/bgi−fortran/apps/

1/4
09/06/2015

!
! Fortran Interface to the Xbgi−364p Library
! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi
!
! It is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
!
! HOW TO BUILD (GNU/Linux Mint)
!
! cd ~/work
! wget http://libxbgi.sourceforge.net/xbgi−364.tar.gz
! tar −xf xbgi−364.tar.gz
! cd xbgi−364/src
! make
! make demo
!
! ./demo
! make clean
! cd test
! make
! ./mandelbrot
!
! cd ..
! mv libXbgi.a ~/programming/lib
! cd ~/programming/bgi−fortran/apps
!
! rm −rf {*.mod,~/programming/modules/*} && \
! gfortran −O3 −Wall −J ~/programming/modules \
! ~/programming/basic−modules/basic_mods.f90 \
! ../{bgi.f90,bgiapp.f90} balls_sim.f90 \
! −L ~/programming/lib −lXbgi −lX11 −lm −o balls_sim.out
!
! ./balls_sim.out
!

module balls_sim_lib
 use kind_consts , only : DP
 implicit none
 private

 type ball_type
 real (DP) :: mass = 0.0_DP, &
 density = 0.0_DP, &
 radius = 0.0_DP
 real (DP), dimension (2) :: frc = 0.0_DP, &
 acc = 0.0_DP, &
 vel = 0.0_DP, &
 pos = 0.0_DP
 end type ball_type

 integer :: nballs = 12
 real (DP) :: density = 0.01_DP, stiffnes = 5.0E5_DP
 real (DP) :: m0 = 400.0_DP, m1 = 8000.0_DP, &
 tstep = 1.0_DP/512 ! 1.953125E−03 = 0.000000001_2
 real (DP) :: box_xmin, box_xmax, box_ymin, box_ymax
 type(ball_type) , allocatable :: ball(:)

 public :: balls_on, balls_off, input_data, run_app, setup_balls

contains

 subroutine balls_on ()
 integer :: ierr

 allocate (ball(nballs),stat=ierr)
 if (ierr /= 0) then
 write (*,*) ’*** FATAL ERROR ***’
 write (*,*) ’BALL: Allocation request denied’
 stop
 end if
 end subroutine balls_on

 subroutine balls_off ()
 integer :: ierr

 if (allocated (ball)) deallocate (ball,stat=ierr)

balls_sim.f90
~/programming/bgi−fortran/apps/

2/4
09/06/2015

 if (ierr /= 0) then
 write (*,*) ’*** FATAL ERROR ***’
 write (*,*) ’BALL: Deallocation request denied’
 stop
 end if
 end subroutine balls_off

 subroutine input_data ()
 use get_data , only : get

 call get (’NBALLS = ’ ,nballs)
 call get (’DENSITY = ’ ,density)
 call get (’STIFFNES = ’ ,stiffnes)
 call get (’TSTEP = ’ ,tstep)
 write (*,*)

 call get (’M0 = ’ ,m0)
 call get (’M1 = ’ ,m1)
 end subroutine input_data

 subroutine setup_balls ()
 use math_consts , only : PI
 use randoms , only : init_random_seed
 use bgi , only : setrgbpalette
 use bgiapp , only : bgiapp_xmin, bgiapp_xmax, bgiapp_ymin, bgiapp_ymax
 real (DP), parameter :: Z3 = 1.0_DP/3, Z43PI = 4*Z3*PI
 real (DP) :: u(9)
 integer :: i

 ! Getting the box boundaries...
 box_xmin = bgiapp_xmin()
 box_xmax = bgiapp_xmax()
 box_ymin = bgiapp_ymin()
 box_ymax = bgiapp_ymax()

 ! Use timer to generate random numbers
 call init_random_seed ()

 ! Set startup conditions of elastic balls
 do i = 1, nballs
 call random_number (u)

 ! The RGB color for i−ball
 call setrgbpalette (i, int (64+u(1)*192), int (64+u(2)*192), int (64+u(3)*192))

 ball(i)%mass = m0+(i−1)*(m1−m0)/(nballs−1)
 ball(i)%density = density

 ball(i)%radius = ((ball(i)%mass/ball(i)%density)/Z43PI)**Z3

 ball(i)%pos = [(1.0_DP−u(4))*(box_xmin+ball(i)%radius) &
 +u(4)*(box_xmax−ball(i)%radius), &
 (1.0_DP−u(5))*(box_ymin+ball(i)%radius) &
 +u(5)*(box_ymax−ball(i)%radius)]

 ball(i)%vel = 200*[u(6)−u(7), u(8)−u(9)]
 end do
 end subroutine setup_balls

 subroutine draw_ball (p,r,col)
 use bgi , only : setrgbcolor
 use bgiapp , only : bgiapp_circle
 real (DP), intent (in) :: p(:), r
 integer , intent (in) :: col

 call setrgbcolor (col)
 call bgiapp_circle (p(1),p(2),r)
 call bgiapp_circle (p(1),p(2),r−0.5_DP)
 call bgiapp_circle (p(1),p(2),r−1.0_DP)
 end subroutine draw_ball

 subroutine run_app ()
 use bgi , only : clearviewport, delay, getvisualpage, quit, setactivepage, &
 swapbuffers
 real (DP) :: force(2), ball_distance, dist_min, dst(2)
 integer :: i, j

 ! By default, the current visual and active page is 0 (zero),

balls_sim.f90
~/programming/bgi−fortran/apps/

3/4
09/06/2015

 ! so we select the off screen page for drawing
 call setactivepage (1)

 ! Draw elastic balls on the off screen page
 do i = 1, nballs
 call draw_ball (ball(i)%pos,ball(i)%radius,i)
 end do

 ! Main loop
 do while (.not. quit())
 ! The current active (off screen) page becomes the visual page
 ! and the current visual page becomes the off screen page, i.e.
 ! what is drawn on the off screen is outputted on the screen visible
 call swapbuffers ()

 ! We clear the off screen for the next drawing
 call clearviewport ()

 ! Test all elastic balls against each other.
 ! Calculate forces if they touch.
 do i = 1, nballs−1
 do j = i+1, nballs
 ! Distance between elastic balls (Pythagoras’ theorem)
 dst = ball(j)%pos−ball(i)%pos
 ball_distance = norm2 (dst)
 dist_min = ball(i)%radius+ball(j)%radius

 if (ball_distance < dist_min) then
 ! Cosine and sine to the angle between ball i and j
 ! (trigonometry): here ’force’ is a unit vector!
 force = dst/ball_distance

 ! Spring force (Hooke’s law of elasticity)
 ! Here ’force’ is the total force of ’i’ on ’j’
 ! (All capital letters are vectors)
 !
 ! F(i −> j) = −k * S = −k*(Bd−Dm) = −k*(|Bd|−|Dm|)*U
 ! U = Bd/|Bd|
 force = −stiffnes*(ball_distance−dist_min)*force

 ! F(i) = F(i)+F(j,i) = F(i)−F(i,j), F(j) = F(j)+F(i,j)
 ! being F(i,j) the force of ’i’ on ’j’
 ball(i)%frc = ball(i)%frc−force
 ball(j)%frc = ball(j)%frc+force
 end if
 end do
 end do

 ! Update acceleration, velocity, and position of elastic balls
 ! (using the Euler−Cromer 1st order integration algorithm)
 do i = 1, nballs
 ! Accelerate balls (acceleration = force / mass)
 ball(i)%acc = ball(i)%frc/ball(i)%mass

 ! Reset force vector
 ball(i)%frc = 0.0_DP

 ! Update velocity
 ! delta velocity = acceleration * delta time
 ! new velocity = old velocity + delta velocity
 ball(i)%vel = ball(i)%vel+ball(i)%acc*tstep

 ! Update position
 ! delta position = velocity * delta time
 ! new position = old position + delta position
 ball(i)%pos = ball(i)%pos+ball(i)%vel*tstep
 end do

 ! Keep elastic balls within screen boundaries
 do i = 1, nballs
 ! Right
 if (ball(i)%pos(1) > box_xmax−ball(i)%radius) then
 ball(i)%vel(1) = −ball(i)%vel(1)
 ball(i)%pos(1) = box_xmax−ball(i)%radius
 end if

 ! Left
 if (ball(i)%pos(1) < box_xmin+ball(i)%radius) then

balls_sim.f90
~/programming/bgi−fortran/apps/

4/4
09/06/2015

 ball(i)%vel(1) = −ball(i)%vel(1)
 ball(i)%pos(1) = box_xmin+ball(i)%radius
 end if

 ! Top
 if (ball(i)%pos(2) > box_ymax−ball(i)%radius) then
 ball(i)%vel(2) = −ball(i)%vel(2)
 ball(i)%pos(2) = box_ymax−ball(i)%radius
 end if

 ! Bottom
 if (ball(i)%pos(2) < box_ymin+ball(i)%radius) then
 ball(i)%vel(2) = −ball(i)%vel(2)
 ball(i)%pos(2) = box_ymin+ball(i)%radius
 end if
 end do

 ! Draw elastic balls update positions on the off screen
 do i = 1, nballs
 call draw_ball (ball(i)%pos,ball(i)%radius,i)
 end do
 call delay (1)
 end do

 ! Making active page the same as visual page
 call setactivepage (getvisualpage())
 end subroutine run_app
end module balls_sim_lib

program balls_sim
 use kind_consts , only : DP
 use general_routines , only : system_time
 use bgiapp , only : bgiapp_setup, bgiapp_init, bgiapp_close
 use balls_sim_lib
 implicit none

 real (DP) :: t0, t1

 call input_data ()
 call balls_on ()

 call bgiapp_setup (−400.0_DP,400.0_DP,−300.0_DP,300.0_DP,800,600)
 call bgiapp_init (’Bouncing Balls Simulation’)
 call setup_balls ()

 write (*, ’(A)’ ,advance= ’NO’) ’Please wait, we are working...’

 t0 = system_time()
 call run_app ()
 t1 = system_time()

 write (*,*)
 write (*, ’(A,F9.3,A)’) ’Completed in ’ ,t1−t0, ’ seconds!’

 call bgiapp_close ()
 call balls_off ()
end program balls_sim

hopalong.f90
~/programming/bgi−fortran/demo/

1/2
09/06/2015

!
! Fortran Interface to the Xbgi−364p Library
! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi
!
! It is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
!
! HOW TO BUILD (GNU/Linux Mint)
!
! cd ~/work
! wget http://libxbgi.sourceforge.net/xbgi−364.tar.gz
! tar −xf xbgi−364.tar.gz
! cd xbgi−364/src
! make
! make demo
!
! ./demo
! make clean
! cd test
! make
! ./mandelbrot
!
! cd ..
! mv libXbgi.a ~/programming/lib
! cd ~/programming/bgi−fortran/demo

! rm −rf {*.mod,~/programming/modules/*} && \
! gfortran −O3 −Wall −J ~/programming/modules \
! ../bgi.f90 hopalong.f90 \
! −L ~/programming/lib −lXbgi −lX11 −lm −o hopalong.out
!
! ./hopalong.out
!

program hopalong
 use bgi , only : BLACK, X11, X11_1280x1024, YELLOW, &
 cleardevice, closegraph, rgb_color, CString, detectgraph, &
 getmaxx, getmaxy, initgraph, kbhit, outtextxy, fast_putpixel, &
 refresh, setbkcolor, setcolor
 implicit none

 integer :: gd = X11, gm = X11_1280x1024, counter
 real :: j, k, x, y, xx, xp, yp, xoffs, yoffs, u(3)
 logical :: stop_app

 call init_random_seed ()

 !call detect_graph(gd,gm)
 call initgraph (gd,gm,CString(’’))

 call setbkcolor (BLACK)
 call cleardevice ()
 call setcolor (YELLOW)
 call outtextxy (0,0,CString(’Press a key to exit...’))

 xoffs = getmaxx() / 2.
 yoffs = getmaxy() / 3.

 call random_number (u(1:2))

 j = u(1)*100.
 k = u(2)*100.

 x = 0.
 y = 0.
 xx = 0.
 xp = 0.
 yp = 0.

 ! Random RGB
 call random_number (u(1:3))
 call setcolor (rgb_color(int (u(1)*256.), int (u(2)*256.), int (u(3)*256.)))

 counter = 0
 stop_app = .false.
 do while (.not. stop_app)

hopalong.f90
~/programming/bgi−fortran/demo/

2/2
09/06/2015

 xx = sqrt (abs (k*x−1.))
 xx = y− sign (xx,x)
 y = j−x
 x = xx
 xp = 2*x+xoffs
 yp = 2*y+yoffs
 call fast_putpixel (int (xp), int (yp))
 counter = counter+1
 if (counter == 50000) then
 counter = 0

 ! Random RGB
 call random_number (u(1:3))
 call setcolor (rgb_color(int (u(1)*256.), int (u(2)*256.), int (u(3)*256.)))

 call refresh ()
 if (kbhit() /= 0) stop_app = .true.
 end if
 end do

 call closegraph ()

contains

 subroutine init_random_seed ()
 integer :: i = 0,n,clock
 integer , dimension (:), allocatable :: seed
 call random_seed (size = n)
 allocate (seed(n))
 clock = time()
 !call system_clock(count = clock)
 seed = clock+37*(/ (i−1, i = 1,n) /)
 call random_seed (put = seed)
 deallocate (seed)
 end subroutine init_random_seed
end program hopalong

bgi.f90
~/programming/bgi−fortran/

1/15
09/06/2015

!
! Fortran Interface to the Xbgi−364p Library
! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi
!
! It is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
!
! This is the ’bgi’ module.
!

module bgi
 use , intrinsic :: iso_c_binding , only : c_associated, C_BOOL, C_CHAR, &
 C_FUNPTR, c_f_pointer, C_INT, c_loc, C_NULL_CHAR, C_PTR, &
 C_SIGNED_CHAR, C_SIZE_T
 implicit none
 private

 ! =================
 ! BGI CONSTANTS
 ! =================

 integer , parameter , public :: MAXBUF = 256

 ! BGI colors
 integer (C_INT), parameter , public :: BLACK = 0
 integer (C_INT), parameter , public :: BLUE = 1
 integer (C_INT), parameter , public :: GREEN = 2
 integer (C_INT), parameter , public :: CYAN = 3
 integer (C_INT), parameter , public :: RED = 4
 integer (C_INT), parameter , public :: MAGENTA = 5
 integer (C_INT), parameter , public :: BROWN = 6
 integer (C_INT), parameter , public :: LIGHTGRAY = 7
 integer (C_INT), parameter , public :: DARKGRAY = 8
 integer (C_INT), parameter , public :: LIGHTBLUE = 9
 integer (C_INT), parameter , public :: LIGHTGREEN = 10
 integer (C_INT), parameter , public :: LIGHTCYAN = 11
 integer (C_INT), parameter , public :: LIGHTRED = 12
 integer (C_INT), parameter , public :: LIGHTMAGENTA = 13
 integer (C_INT), parameter , public :: YELLOW = 14
 integer (C_INT), parameter , public :: WHITE = 15

 integer (C_INT), parameter , public :: CGA_LIGHTGREEN = 1
 integer (C_INT), parameter , public :: CGA_LIGHTRED = 2
 integer (C_INT), parameter , public :: CGA_YELLOW = 3

 integer (C_INT), parameter , public :: CGA_LIGHTCYAN = 1
 integer (C_INT), parameter , public :: CGA_LIGHTMAGENTA = 2
 integer (C_INT), parameter , public :: CGA_WHITE = 3

 integer (C_INT), parameter , public :: CGA_GREEN = 1
 integer (C_INT), parameter , public :: CGA_RED = 2
 integer (C_INT), parameter , public :: CGA_BROWN = 3

 integer (C_INT), parameter , public :: CGA_CYAN = 1
 integer (C_INT), parameter , public :: CGA_MAGENTA = 2
 integer (C_INT), parameter , public :: CGA_LIGHTGRAY = 3

 integer (C_INT), parameter , public :: EGA_BLACK = 0
 integer (C_INT), parameter , public :: EGA_BLUE = 1
 integer (C_INT), parameter , public :: EGA_GREEN = 2
 integer (C_INT), parameter , public :: EGA_CYAN = 3
 integer (C_INT), parameter , public :: EGA_RED = 4
 integer (C_INT), parameter , public :: EGA_MAGENTA = 5
 integer (C_INT), parameter , public :: EGA_LIGHTGRAY = 7
 integer (C_INT), parameter , public :: EGA_BROWN = 20
 integer (C_INT), parameter , public :: EGA_DARKGRAY = 56
 integer (C_INT), parameter , public :: EGA_LIGHTBLUE = 57
 integer (C_INT), parameter , public :: EGA_LIGHTGREEN = 58
 integer (C_INT), parameter , public :: EGA_LIGHTCYAN = 59
 integer (C_INT), parameter , public :: EGA_LIGHTRED = 60
 integer (C_INT), parameter , public :: EGA_LIGHTMAGENTA = 61
 integer (C_INT), parameter , public :: EGA_YELLOW = 62
 integer (C_INT), parameter , public :: EGA_WHITE = 63

 integer (C_INT), parameter , public :: MAXCOLORS = 15
 integer (C_INT), parameter , public :: MAXRGBCOLORS = 4096

bgi.f90
~/programming/bgi−fortran/

2/15
09/06/2015

 integer (C_INT), parameter , public :: EMPTY_FILL = 0
 integer (C_INT), parameter , public :: SOLID_FILL = 1
 integer (C_INT), parameter , public :: LINE_FILL = 2
 integer (C_INT), parameter , public :: LTSLASH_FILL = 3
 integer (C_INT), parameter , public :: SLASH_FILL = 4
 integer (C_INT), parameter , public :: BKSLASH_FILL = 5
 integer (C_INT), parameter , public :: LTBKSLASH_FILL = 6
 integer (C_INT), parameter , public :: HATCH_FILL = 7
 integer (C_INT), parameter , public :: XHATCH_FILL = 8
 integer (C_INT), parameter , public :: INTERLEAVE_FILL = 9
 integer (C_INT), parameter , public :: WIDE_DOT_FILL = 10
 integer (C_INT), parameter , public :: CLOSE_DOT_FILL = 11
 integer (C_INT), parameter , public :: USER_FILL = 12

 ! Line styles
 integer (C_INT), parameter , public :: SOLID_LINE = 0
 integer (C_INT), parameter , public :: DOTTED_LINE = 1
 integer (C_INT), parameter , public :: CENTER_LINE = 2
 integer (C_INT), parameter , public :: DASHED_LINE = 3
 integer (C_INT), parameter , public :: USERBIT_LINE = 4

 integer (C_INT), parameter , public :: NORM_WIDTH = 1
 integer (C_INT), parameter , public :: THICK_WIDTH = 3

 integer (C_INT), parameter , public :: DOTTEDLINE_LENGTH = 2
 integer (C_INT), parameter , public :: CENTRELINE_LENGTH = 4
 integer (C_INT), parameter , public :: DASHEDLINE_LENGTH = 2
 integer (C_INT), parameter , public :: USERBITLINE_LENGTH = 16 ! GG

 ! Fonts
 integer (C_INT), parameter , public :: DEFAULT_FONT = 0
 integer (C_INT), parameter , public :: TRIPLEX_FONT = 1
 integer (C_INT), parameter , public :: SMALL_FONT = 2
 integer (C_INT), parameter , public :: SANSSERIF_FONT = 3
 integer (C_INT), parameter , public :: GOTHIC_FONT = 4
 integer (C_INT), parameter , public :: BIG_FONT = 5
 integer (C_INT), parameter , public :: SCRIPT_FONT = 6
 integer (C_INT), parameter , public :: SIMPLEX_FONT = 7
 integer (C_INT), parameter , public :: TRIPLEX_SCR_FONT = 8
 integer (C_INT), parameter , public :: COMPLEX_FONT = 9
 integer (C_INT), parameter , public :: EUROPEAN_FONT = 10
 integer (C_INT), parameter , public :: BOLD_FONT = 11

 ! Direction constants
 integer (C_INT), parameter , public :: HORIZ_DIR = 0
 integer (C_INT), parameter , public :: VERT_DIR = 1

 ! Justifications
 integer (C_INT), parameter , public :: LEFT_TEXT = 0
 integer (C_INT), parameter , public :: CENTER_TEXT = 1
 integer (C_INT), parameter , public :: RIGHT_TEXT = 2
 integer (C_INT), parameter , public :: BOTTOM_TEXT = 0
 integer (C_INT), parameter , public :: TOP_TEXT = 2

 ! Writing modes
 integer (C_INT), parameter , public :: COPY_PUT = 0
 integer (C_INT), parameter , public :: XOR_PUT = 1
 integer (C_INT), parameter , public :: OR_PUT = 2
 integer (C_INT), parameter , public :: AND_PUT = 3
 integer (C_INT), parameter , public :: NOT_PUT = 4

 ! Pages
 integer (C_INT), parameter , public :: MAX_PAGES = 4

 ! Graphics errors
 integer (C_INT), parameter , public :: grOk = 0
 integer (C_INT), parameter , public :: grNoInitGraph = −1
 integer (C_INT), parameter , public :: grNotDetected = −2
 integer (C_INT), parameter , public :: grFileNotFound = −3
 integer (C_INT), parameter , public :: grInvalidDriver = −4
 integer (C_INT), parameter , public :: grNoLoadMem = −5
 integer (C_INT), parameter , public :: grNoScanMem = −6
 integer (C_INT), parameter , public :: grNoFloodMem = −7
 integer (C_INT), parameter , public :: grFontNotFound = −8
 integer (C_INT), parameter , public :: grNoFontMem = −9
 integer (C_INT), parameter , public :: grInvalidMode = −10
 integer (C_INT), parameter , public :: grError = −11

bgi.f90
~/programming/bgi−fortran/

3/15
09/06/2015

 integer (C_INT), parameter , public :: grIOerror = −12
 integer (C_INT), parameter , public :: grInvalidFont = −13
 integer (C_INT), parameter , public :: grInvalidFontNum = −14
 integer (C_INT), parameter , public :: grInvalidDeviceNum = −15
 integer (C_INT), parameter , public :: grInvalidVersion = −18

 ! Graphics drivers constants, includes X11 which is particular to XBGI.
 integer (C_INT), parameter , public :: DETECT = 0
 integer (C_INT), parameter , public :: CGA = 1
 integer (C_INT), parameter , public :: MCGA = 2
 integer (C_INT), parameter , public :: EGA = 3
 integer (C_INT), parameter , public :: EGA64 = 4
 integer (C_INT), parameter , public :: EGAMONO = 5
 integer (C_INT), parameter , public :: IBM8514 = 6
 integer (C_INT), parameter , public :: HERCMONO = 7
 integer (C_INT), parameter , public :: ATT400 = 8
 integer (C_INT), parameter , public :: VGA = 9
 integer (C_INT), parameter , public :: PC3270 = 10
 integer (C_INT), parameter , public :: X11 = 11

 ! Graphics modes constants.
 integer (C_INT), parameter , public :: CGAC0 = 0
 integer (C_INT), parameter , public :: CGAC1 = 1
 integer (C_INT), parameter , public :: CGAC2 = 2
 integer (C_INT), parameter , public :: CGAC3 = 3
 integer (C_INT), parameter , public :: CGAHI = 4

 integer (C_INT), parameter , public :: MCGAC0 = 0
 integer (C_INT), parameter , public :: MCGAC1 = 1
 integer (C_INT), parameter , public :: MCGAC2 = 2
 integer (C_INT), parameter , public :: MCGAC3 = 3
 integer (C_INT), parameter , public :: MCGAMED = 4
 integer (C_INT), parameter , public :: MCGAHI = 5

 integer (C_INT), parameter , public :: EGALO = 0
 integer (C_INT), parameter , public :: EGAHI = 1

 integer (C_INT), parameter , public :: EGA64LO = 0
 integer (C_INT), parameter , public :: EGA64HI = 1

 integer (C_INT), parameter , public :: EGAMONOHI= 3

 integer (C_INT), parameter , public :: HERCMONOHI = 0

 integer (C_INT), parameter , public :: ATT400C0 = 0
 integer (C_INT), parameter , public :: ATT400C1 = 1
 integer (C_INT), parameter , public :: ATT400C2 = 2
 integer (C_INT), parameter , public :: ATT400C3 = 3
 integer (C_INT), parameter , public :: ATT400MED = 4
 integer (C_INT), parameter , public :: ATT400HI = 5

 integer (C_INT), parameter , public :: VGALO = 0
 integer (C_INT), parameter , public :: VGAMED = 1
 integer (C_INT), parameter , public :: VGAHI = 2

 integer (C_INT), parameter , public :: PC3270HI = 0

 integer (C_INT), parameter , public :: IBM8514LO = 0
 integer (C_INT), parameter , public :: IBM8514HI = 1

 integer (C_INT), parameter , public :: X11_CGALO = 0
 integer (C_INT), parameter , public :: X11_CGAHI = 1
 integer (C_INT), parameter , public :: X11_EGA = 2
 integer (C_INT), parameter , public :: X11_VGA = 3
 integer (C_INT), parameter , public :: X11_640x480 = 3
 integer (C_INT), parameter , public :: X11_HERC = 4
 integer (C_INT), parameter , public :: X11_PC3270 = 5
 integer (C_INT), parameter , public :: X11_SVGALO = 6
 integer (C_INT), parameter , public :: X11_800x600 = 6
 integer (C_INT), parameter , public :: X11_SVGAMED1 = 7
 integer (C_INT), parameter , public :: X11_1024x768 = 7
 integer (C_INT), parameter , public :: X11_SVGAMED2 = 8
 integer (C_INT), parameter , public :: X11_1152x900 = 8
 integer (C_INT), parameter , public :: X11_SVGAHI = 9
 integer (C_INT), parameter , public :: X11_1280x1024 = 9
 integer (C_INT), parameter , public :: X11_WXGA = 10
 integer (C_INT), parameter , public :: X11_1366x768 = 10
 integer (C_INT), parameter , public :: X11_USER = 11

bgi.f90
~/programming/bgi−fortran/

4/15
09/06/2015

 integer (C_INT), parameter , public :: X11_FULLSCREEN = 12

 ! Key codes
 integer (C_INT), parameter , public :: KEY_HOME = 80
 integer (C_INT), parameter , public :: KEY_LEFT = 81
 integer (C_INT), parameter , public :: KEY_UP = 82
 integer (C_INT), parameter , public :: KEY_RIGHT = 83
 integer (C_INT), parameter , public :: KEY_DOWN = 84
 integer (C_INT), parameter , public :: KEY_PGUP = 85
 integer (C_INT), parameter , public :: KEY_PGDN = 86
 integer (C_INT), parameter , public :: KEY_END = 87
 integer (C_INT), parameter , public :: KEY_INSERT = 99
 integer (C_INT), parameter , public :: KEY_DELETE = −1
 integer (C_INT), parameter , public :: KEY_F1 = −66
 integer (C_INT), parameter , public :: KEY_F2 = −65
 integer (C_INT), parameter , public :: KEY_F3 = −64
 integer (C_INT), parameter , public :: KEY_F4 = −63
 integer (C_INT), parameter , public :: KEY_F5 = −62
 integer (C_INT), parameter , public :: KEY_F6 = −61
 integer (C_INT), parameter , public :: KEY_F7 = −60
 integer (C_INT), parameter , public :: KEY_F8 = −59
 integer (C_INT), parameter , public :: KEY_F9 = −58
 integer (C_INT), parameter , public :: KEY_F10 = −57
 integer (C_INT), parameter , public :: KEY_F11 = −56
 integer (C_INT), parameter , public :: KEY_F12 = −55
 integer (C_INT), parameter , public :: KEY_LEFT_CTRL = −29
 integer (C_INT), parameter , public :: KEY_RIGHT_CTRL = −28
 integer (C_INT), parameter , public :: KEY_LEFT_SHIFT = −31
 integer (C_INT), parameter , public :: KEY_RIGHT_SHIFT = −30
 integer (C_INT), parameter , public :: KEY_LEFT_ALT = −23
 integer (C_INT), parameter , public :: KEY_LEFT_WIN = −21
 integer (C_INT), parameter , public :: KEY_RIGHT_WIN = −20
 integer (C_INT), parameter , public :: KEY_ALT_GR = 3
 integer (C_INT), parameter , public :: KEY_TAB = 8
 integer (C_INT), parameter , public :: KEY_BS = 9
 integer (C_INT), parameter , public :: KEY_RET = 13
 integer (C_INT), parameter , public :: KEY_PAUSE = 19
 integer (C_INT), parameter , public :: KEY_SCR_LOCK = 20
 integer (C_INT), parameter , public :: KEY_ESC = 27

 ! Mouse constants
 integer (C_INT), parameter , public :: WM_LBUTTONDOWN = 1 ! left button
 integer (C_INT), parameter , public :: WM_MBUTTONDOWN = 2 ! middle button
 integer (C_INT), parameter , public :: WM_RBUTTONDOWN = 3 ! right button
 integer (C_INT), parameter , public :: WM_WHEELUP = 4 ! wheel up
 integer (C_INT), parameter , public :: WM_WHEELDOWN = 5 ! wheel down
 integer (C_INT), parameter , public :: WM_MOUSEMOVE = 6 ! motion

 ! =============
 ! BGI TYPES
 ! =============

 ! This type records information about the last call to arc. It is used
 ! by getarccoords to get the location of the endpoints of the arc
 type , bind (c) :: arccoordstype
 integer (C_INT) :: x, y ! Center point of the arc
 integer (C_INT) :: xstart, ystart ! The starting position of the arc
 integer (C_INT) :: xend, yend ! The ending position of the arc
 end type arccoordstype

 ! This type defines the fill style for the current window. Pattern is
 ! one of the system patterns such as SOLID_FILL. Color is the color to
 ! fill with
 type , bind (c) :: fillsettingstype
 integer (C_INT) :: pattern ! Current fill pattern
 integer (C_INT) :: color ! Current fill color
 end type fillsettingstype

 ! This type records information about the current line style.
 ! linestyle is one of the line styles such as SOLID_LINE, upattern is a
 ! 16−bit pattern for user defined lines, and thickness is the width of the
 ! line in pixels
 type , bind (c) :: linesettingstype
 integer (C_INT) :: linestyle ! Current line style
 integer (C_INT) :: upattern ! 16−bit user line pattern (unsigned!)
 integer (C_INT) :: thickness ! Width of the line in pixels
 end type linesettingstype

bgi.f90
~/programming/bgi−fortran/

5/15
09/06/2015

 ! This type records information about the text settings
 type , bind (c) :: textsettingstype
 integer (C_INT) :: font ! The font in use
 integer (C_INT) :: direction ! Text direction
 integer (C_INT) :: charsize ! Character size
 integer (C_INT) :: horiz ! Horizontal text justification
 integer (C_INT) :: vert ! Vertical text justification
 end type textsettingstype

 ! This type records information about the viewport
 type , bind (c) :: viewporttype
 ! Viewport bounding box
 integer (C_INT) :: left, top, right, bottom

 ! Whether to clip image to viewport
 integer (C_INT) :: clip
 end type viewporttype

 ! This type records information about the palette
 type , bind (c) :: palettetype
 integer (C_SIGNED_CHAR) :: size
 integer (C_SIGNED_CHAR) :: colors(0:MAXCOLORS)
 end type palettetype

 ! This type records information about the (bitmap)image
 type :: imagetype
 ! Pointer to the data
 type(C_PTR) :: image_ptr

 integer :: width
 integer :: height
 end type imagetype

 ! =================
 ! BGI INTERFACE
 ! =================

 interface

 ! Drawing routines...
 subroutine arc (x,y,stangle,endangle,radius) bind (c)
 import :: C_INT
 integer (C_INT), value :: x, y, stangle, endangle, radius
 end subroutine arc

 subroutine bar (left,top,right,bottom) bind (c)
 import :: C_INT
 integer (C_INT), value :: left, top, right, bottom
 end subroutine bar

 subroutine bar3d (left,top,right,bottom,depth,topflag) bind (c)
 import :: C_INT
 integer (C_INT), value :: left, top, right, bottom, depth, topflag
 end subroutine bar3d

 subroutine circle (x,y,radius) bind (c)
 import :: C_INT
 integer (C_INT), value :: x, y, radius
 end subroutine circle

 subroutine cleardevice () bind (c)
 end subroutine cleardevice

 subroutine clearviewport () bind (c)
 end subroutine clearviewport

 subroutine c_drawpoly (numpoints,polypoints) bind (c, name= ’drawpoly’)
 import :: C_INT
 integer (C_INT), value :: numpoints

 ! polypoints should be an array of 2*numpoints elements
 integer (C_INT), intent (in) :: polypoints(*)
 end subroutine c_drawpoly

 subroutine ellipse (x,y,stangle,endangle,xradius,yradius) bind (c)
 import :: C_INT
 integer (C_INT), value :: x, y, stangle, endangle, xradius, yradius
 end subroutine ellipse

bgi.f90
~/programming/bgi−fortran/

6/15
09/06/2015

 subroutine fillellipse (x,y,xradius,yradius) bind (c)
 import :: C_INT
 integer (C_INT), value :: x, y, xradius, yradius
 end subroutine fillellipse

 subroutine c_fillpoly (numpoints,polypoints) bind (c, name= ’fillpoly’)
 import :: C_INT
 integer (C_INT), value :: numpoints

 ! polypoints should be an array of 2*numpoints elements
 integer (C_INT), intent (in) :: polypoints(*)
 end subroutine c_fillpoly

 subroutine floodfill (x,y,border) bind (c)
 import :: C_INT
 integer (C_INT), value :: x, y, border
 end subroutine floodfill

 subroutine line (x1,y1,x2,y2) bind (c)
 import :: C_INT
 integer (C_INT), value :: x1, y1, x2, y2
 end subroutine line

 subroutine linerel (dx,dy) bind (c)
 import :: C_INT
 integer (C_INT), value :: dx, dy
 end subroutine linerel

 subroutine lineto (x,y) bind (c)
 import :: C_INT
 integer (C_INT), value :: x, y
 end subroutine lineto

 subroutine pieslice (x,y,stangle,endangle,radius) bind (c)
 import :: C_INT
 integer (C_INT), value :: x, y, stangle, endangle, radius
 end subroutine pieslice

 subroutine fast_putpixel (x,y) bind (c, name= ’_putpixel’)
 import :: C_INT
 integer (C_INT), value :: x, y
 end subroutine fast_putpixel

 subroutine putpixel (x,y,color) bind (c)
 import :: C_INT
 integer (C_INT), value :: x, y, color
 end subroutine putpixel

 subroutine rectangle (left,top,right,bottom) bind (c)
 import :: C_INT
 integer (C_INT), value :: left, top, right, bottom
 end subroutine rectangle

 subroutine sector (x,y,stangle,endangle,xradius,yradius) bind (c)
 import :: C_INT
 integer (C_INT), value :: x, y, stangle, endangle, xradius, yradius
 end subroutine sector

 ! Miscellaneous routines..
 function converttorgb (v) bind (c)
 import :: C_INT
 integer (C_INT) :: converttorgb
 integer (C_INT), value :: v
 end function converttorgb

 subroutine delay (millisec) bind (c)
 import :: C_INT
 integer (C_INT), value :: millisec
 end subroutine delay

 function event () bind (c)
 import :: C_INT
 integer (C_INT) :: event
 end function event

 subroutine getarccoords (arccoords) bind (c)
 import :: arccoordstype

bgi.f90
~/programming/bgi−fortran/

7/15
09/06/2015

 type(arccoordstype) , intent (out) :: arccoords
 end subroutine getarccoords

 function getbkcolor () bind (c)
 import :: C_INT
 integer (C_INT) :: getbkcolor
 end function getbkcolor

 function getcolor () bind (c)
 import :: C_INT
 integer (C_INT) :: getcolor
 end function getcolor

 function getevent () bind (c)
 import :: C_INT
 integer (C_INT) :: getevent
 end function getevent

 subroutine c_getfillpattern (cstr) bind (c, name= ’getfillpattern’)
 import :: C_PTR
 type(C_PTR) , value :: cstr
 end subroutine c_getfillpattern

 subroutine getfillsettings (fillinfo) bind (c)
 import :: fillsettingstype
 type(fillsettingstype) , intent (out) :: fillinfo
 end subroutine getfillsettings

 subroutine getlinesettings (lineinfo) bind (c)
 import :: linesettingstype
 type(linesettingstype) , intent (out) :: lineinfo
 end subroutine getlinesettings

 function getmaxcolor () bind (c)
 import :: C_INT
 integer (C_INT) :: getmaxcolor
 end function getmaxcolor

 function getmaxheight () bind (c)
 import :: C_INT
 integer (C_INT) :: getmaxheight
 end function getmaxheight

 function getmaxwidth () bind (c)
 import :: C_INT
 integer (C_INT) :: getmaxwidth
 end function getmaxwidth

 function getmaxx () bind (c)
 import :: C_INT
 integer (C_INT) :: getmaxx
 end function getmaxx

 function getmaxy () bind (c)
 import :: C_INT
 integer (C_INT) :: getmaxy
 end function getmaxy

 function getpixel (x,y) bind (c)
 import :: C_INT
 integer (C_INT), value :: x, y
 integer (C_INT) :: getpixel
 end function getpixel

 subroutine getviewsettings (viewport) bind (c)
 import :: viewporttype
 type(viewporttype) , intent (out) :: viewport
 end subroutine getviewsettings

 function getwindowheight () bind (c)
 import :: C_INT
 integer (C_INT) :: getwindowheight
 end function getwindowheight

 function getwindowwidth () bind (c)
 import :: C_INT
 integer (C_INT) :: getwindowwidth
 end function getwindowwidth

bgi.f90
~/programming/bgi−fortran/

8/15
09/06/2015

 function getx () bind (c)
 import :: C_INT
 integer (C_INT) :: getx
 end function getx

 function gety () bind (c)
 import :: C_INT
 integer (C_INT) :: gety
 end function gety

 subroutine moverel (dx,dy) bind (c)
 import :: C_INT
 integer (C_INT), value :: dx, dy
 end subroutine moverel

 subroutine moveto (x,y) bind (c)
 import :: C_INT
 integer (C_INT), value :: x, y
 end subroutine moveto

 subroutine refresh () bind (c)
 end subroutine refresh

 subroutine setbkcolor (color) bind (c)
 import :: C_INT
 integer (C_INT), value :: color
 end subroutine setbkcolor

 subroutine setbkrgbcolor (index) bind (c)
 import :: C_INT
 integer (C_INT), value :: index
 end subroutine setbkrgbcolor

 subroutine setcolor (color) bind (c)
 import :: C_INT
 integer (C_INT), value :: color
 end subroutine setcolor

 subroutine setrgbcolor (index) bind (c)
 import :: C_INT
 integer (C_INT), value :: index
 end subroutine setrgbcolor

 subroutine setfillpattern (upattern,color) bind (c)
 import :: C_INT, C_CHAR
 character (C_CHAR), intent (in) :: upattern(*)
 integer (C_INT), value :: color
 end subroutine setfillpattern

 subroutine setfillstyle (pattern,color) bind (c)
 import :: C_INT
 integer (C_INT), value :: pattern, color
 end subroutine setfillstyle

 !void setlinestyle(int linestyle, unsigned upattern, int thickness);
 subroutine setlinestyle (linestyle,upattern,thickness) bind (c)
 import :: C_INT
 integer (C_INT), value :: linestyle, upattern, thickness
 end subroutine setlinestyle

 subroutine setviewport (left,top,right,bottom,clip) bind (c)
 import :: C_INT
 integer (C_INT), value :: left, top, right, bottom, clip
 end subroutine setviewport

 subroutine setwritemode (mode) bind (c)
 import :: C_INT
 integer (C_INT), value :: mode
 end subroutine setwritemode

 function usleep (useconds) bind (c)
 import :: C_INT
 integer (C_INT), value :: useconds
 integer (C_INT) :: usleep
 end function usleep

 ! Window Creation / Graphics Manipulation routines...

bgi.f90
~/programming/bgi−fortran/

9/15
09/06/2015

 subroutine closebgi () bind (c)
 end subroutine closebgi

 subroutine closegraph () bind (c)
 end subroutine closegraph

 subroutine detectgraph (graphdriver,graphmode) bind (c)
 import :: C_INT
 integer (C_INT), intent (out) :: graphdriver, graphmode
 end subroutine detectgraph

 subroutine getaspectratio (xasp,yasp) bind (c)
 import :: C_INT
 integer (C_INT), intent (out) :: xasp, yasp
 end subroutine getaspectratio

 function c_getdrivername () bind (c, name= ’getdrivername’)
 import :: C_PTR
 type(C_PTR) :: c_getdrivername
 end function c_getdrivername

 function getgraphmode () bind (c)
 import :: C_INT
 integer (C_INT) :: getgraphmode
 end function getgraphmode

 function getmaxmode () bind (c)
 import :: C_INT
 integer (C_INT) :: getmaxmode
 end function getmaxmode

 function c_getmodename (mode_number) bind (c, name= ’getmodename’)
 import :: C_INT, C_PTR
 type(C_PTR) :: c_getmodename
 integer (C_INT), value :: mode_number
 end function c_getmodename

 subroutine getmoderange (graphdriver,lomode,himode) bind (c)
 import :: C_INT
 integer (C_INT), value :: graphdriver
 integer (C_INT), intent (out) :: lomode, himode
 end subroutine getmoderange

 subroutine graphdefaults () bind (c)
 end subroutine graphdefaults

 function c_grapherrormsg (error_code) bind (c, name= ’grapherrormsg’)
 import :: C_INT, C_PTR
 type(C_PTR) :: c_grapherrormsg
 integer (C_INT), value :: error_code
 end function c_grapherrormsg

 function graphresult () bind (c)
 import :: C_INT
 integer (C_INT) :: graphresult
 end function graphresult

 ! Being libXbgi written in ANSI C, we cannot have default (optional)
 ! parameters
 subroutine initgraph (graphdriver,graphmode,pathtodriver) bind (c)
 import :: C_INT, C_CHAR
 integer (C_INT), intent (inout) :: graphdriver, graphmode
 character (C_CHAR), intent (in) :: pathtodriver(*)
 end subroutine initgraph

 subroutine initwindow (width,height) bind (c)
 import :: C_INT
 integer (C_INT), value :: width, height
 end subroutine initwindow

 subroutine openbgi (width,height,title) bind (c)
 import :: C_INT, C_CHAR
 integer (C_INT), value :: width, height
 character (C_CHAR), intent (in) :: title(*)
 end subroutine openbgi

 ! Not available in Xbgi
 function installuserdriver (name,detect) bind (c)

bgi.f90
~/programming/bgi−fortran/

10/15
09/06/2015

 import :: C_INT, C_CHAR, C_FUNPTR
 character (C_CHAR), intent (in) :: name(*)
 type(C_FUNPTR) , value :: detect
 integer (C_INT) :: installuserdriver
 end function installuserdriver

 ! Not implemented in Xbgi
 function installuserfont (name) bind (c)
 import :: C_INT, C_CHAR
 character (C_CHAR), intent (in) :: name(*)
 integer (C_INT) :: installuserfont
 end function installuserfont

 ! Not implemented in Xbgi
 function registerbgidriver (driver) bind (c)
 import :: C_PTR, C_INT
 type(C_PTR) , value :: driver
 integer (C_INT) :: registerbgidriver
 end function registerbgidriver

 ! Not implemented in Xbgi
 function registerbgifont (font) bind (c)
 import :: C_PTR, C_INT
 type(C_PTR) , value :: font
 integer (C_INT) :: registerbgifont
 end function registerbgifont

 ! This routine only clears the device in Xbgi, so you should not use it
 subroutine restorecrtmode () bind (c)
 end subroutine restorecrtmode

 subroutine setaspectratio (xasp,yasp) bind (c)
 import :: C_INT
 integer (C_INT), value :: xasp, yasp
 end subroutine setaspectratio

 ! It uses "unsigned"
 function setgraphbufsize (bufsize) bind (c)
 import :: C_INT
 integer (C_INT), value :: bufsize
 integer (C_INT) :: setgraphbufsize
 end function setgraphbufsize

 subroutine setgraphmode (mode) bind (c)
 import :: C_INT
 integer (C_INT), value :: mode
 end subroutine setgraphmode

 ! User interation routines...
 function getch () bind (c)
 import :: C_INT
 integer (C_INT) :: getch
 end function getch

 function kbhit () bind (c)
 import :: C_INT
 integer (C_INT) :: kbhit
 end function kbhit

 function xkbhit () bind (c)
 import :: C_INT
 integer (C_INT) :: xkbhit
 end function xkbhit

 ! Double buffering support routines...
 function getactivepage () bind (c)
 import :: C_INT
 integer (C_INT) :: getactivepage
 end function getactivepage

 function getvisualpage () bind (c)
 import :: C_INT
 integer (C_INT) :: getvisualpage
 end function getvisualpage

 subroutine setactivepage (page) bind (c)
 import :: C_INT
 integer (C_INT), value :: page

bgi.f90
~/programming/bgi−fortran/

11/15
09/06/2015

 end subroutine setactivepage

 subroutine setvisualpage (page) bind (c)
 import :: C_INT
 integer (C_INT), value :: page
 end subroutine setvisualpage

 ! Image routines...
 function imagesize (left,top,right,bottom) bind (c)
 import :: C_INT
 integer (C_INT) :: imagesize
 integer (C_INT), value :: left, top, right, bottom
 end function imagesize

 subroutine getimage (left,top,right,bottom,bitmap) bind (c)
 import :: C_INT, C_PTR
 integer (C_INT), value :: left, top, right, bottom
 type(C_PTR) , value :: bitmap
 end subroutine getimage

 subroutine putimage (left,top,ptr,op) bind (c)
 import :: C_INT, C_PTR
 integer (C_INT), value :: left, top
 type(C_PTR) , value :: ptr
 integer (C_INT), value :: op
 end subroutine putimage

 ! Text routines...
 subroutine gettextsettings (texttypeinfo) bind (c)
 import :: textsettingstype
 type(textsettingstype) , intent (out) :: texttypeinfo
 end subroutine gettextsettings

 subroutine outtext (textstring) bind (c)
 import :: C_CHAR
 character (C_CHAR), intent (in) :: textstring(*)
 end subroutine outtext

 subroutine outtextxy (x,y,textstring) bind (c)
 import :: C_INT, C_CHAR
 integer (C_INT), value :: x, y
 character (C_CHAR), intent (in) :: textstring(*)
 end subroutine outtextxy

 subroutine settextjustify (horiz,vert) bind (c)
 import :: C_INT
 integer (C_INT), value :: horiz, vert
 end subroutine settextjustify

 subroutine settextstyle (font,direction,charsize) bind (c)
 import :: C_INT
 integer (C_INT), value :: font, direction, charsize
 end subroutine settextstyle

 subroutine setusercharsize (multx,divx,multy,divy) bind (c)
 import :: C_INT
 integer (C_INT), value :: multx, divx, multy, divy
 end subroutine setusercharsize

 function textheight (textstring) bind (c)
 import :: C_INT, C_CHAR
 character (C_CHAR), intent (in) :: textstring(*)
 integer (C_INT) :: textheight
 end function textheight

 function textwidth (textstring) bind (c)
 import :: C_INT, C_CHAR
 character (C_CHAR), intent (in) :: textstring(*)
 integer (C_INT) :: textwidth
 end function textwidth

 ! Mouse routines...
 subroutine clearmouseclick (kind) bind (c)
 import :: C_INT
 integer (C_INT), value :: kind
 end subroutine clearmouseclick

 subroutine getmouseclick (kind,x,y) bind (c)

bgi.f90
~/programming/bgi−fortran/

12/15
09/06/2015

 import :: C_INT
 integer (C_INT), value :: kind
 integer (C_INT), intent (out) :: x, y
 end subroutine getmouseclick

 function ismouseclick (kind) bind (c)
 import :: C_INT, C_BOOL
 integer (C_INT), value :: kind
 logical (C_BOOL) :: ismouseclick
 end function ismouseclick

 function mousex() bind (c)
 import :: C_INT
 integer (C_INT) :: mousex
 end function mousex

 function mousey() bind (c)
 import :: C_INT
 integer (C_INT) :: mousey
 end function mousey

 ! Palette routines...
 function c_getdefaultpalette () bind (c, name= ’getdefaultpalette’)
 import :: C_PTR
 type(C_PTR) :: c_getdefaultpalette
 end function c_getdefaultpalette

 subroutine getpalette (palette) bind (c)
 import :: palettetype
 type(palettetype) , intent (out) :: palette
 end subroutine getpalette

 function getpalettesize () bind (c)
 import :: C_INT
 integer (C_INT) :: getpalettesize
 end function getpalettesize

 subroutine setallpalette (palette) bind (c)
 import :: palettetype
 type(palettetype) , intent (in) :: palette
 end subroutine setallpalette

 subroutine setpalette (colornum,color) bind (c)
 import :: C_INT
 integer (C_INT), value :: colornum, color
 end subroutine setpalette

 subroutine setrgbpalette (colornum,red,green,blue) bind (c)
 import :: C_INT
 integer (C_INT), value :: colornum, red, green, blue
 end subroutine setrgbpalette

 ! RGB COLOR routines...
 function rgb_color (r,g,b) bind (c, name= ’COLOR’)
 import :: C_INT
 integer (C_INT) :: rgb_color
 integer (C_INT), value :: r, g, b
 end function rgb_color

 ! C routines...
 ! ’strlen’ from Tobias Burnus,
 ! http://gcc.gnu.org/ml/fortran/2010−02/msg00029.html
 function c_strlen (str) bind (c, name= ’strlen’)
 import :: C_PTR, C_SIZE_T
 type (C_PTR) , value :: str
 integer (C_SIZE_T) :: c_strlen
 end function c_strlen

 function c_malloc (memsize) bind (c, name= ’malloc’)
 import :: C_PTR, C_INT
 integer (C_INT), value :: memsize
 type(C_PTR) :: c_malloc
 end function c_malloc

 subroutine c_free (p) bind (c, name= ’free’)
 import :: C_PTR
 type(C_PTR) , value :: p
 end subroutine c_free

bgi.f90
~/programming/bgi−fortran/

13/15
09/06/2015

 end interface

 ! BGI types...
 public :: arccoordstype, fillsettingstype, linesettingstype, &
 textsettingstype, viewporttype, palettetype, imagetype

 ! Drawing routines...
 public :: arc, bar, bar3d, circle, cleardevice, clearviewport, drawpoly, &
 ellipse, fillellipse, fillpoly, floodfill, line, linerel, lineto, &
 pieslice, fast_putpixel, putpixel, rectangle, sector

 ! Miscellaneous routines..
 public :: converttorgb, delay, event, getarccoords, getbkcolor, getcolor, &
 getevent, getfillpattern, getfillsettings, getlinesettings, &
 getmaxcolor, getmaxheight, getmaxwidth, getmaxx, getmaxy, getpixel, &
 getviewsettings, getwindowheight, getwindowwidth, getx, gety, moverel, &
 moveto, refresh, setbkcolor, setbkrgbcolor, setcolor, setrgbcolor, &
 setfillpattern, setfillstyle, setlinestyle, setviewport, setwritemode, &
 usleep

 ! Window Creation / Graphics Manipulation routines...
 public :: closebgi, closegraph, detectgraph, getaspectratio, getdrivername, &
 getgraphmode, getmaxmode, getmodename, getmoderange, graphdefaults, &
 grapherrormsg, graphresult, initgraph, initwindow, openbgi, &
 installuserdriver, installuserfont, registerbgidriver, registerbgifont, &
 restorecrtmode, setaspectratio, setgraphbufsize, setgraphmode

 ! User interation routines...
 public :: getch, kbhit, xkbhit

 ! Double buffering support routines...
 public :: getactivepage, getvisualpage, setactivepage, setvisualpage, &
 swapbuffers

 ! Image routines...
 public :: imagesize, getimage, putimage, allocateimage, freeimage, &
 copyimage, pasteimage

 ! Text routines...
 public :: gettextsettings, outtext, outtextxy, settextjustify, settextstyle, &
 setusercharsize, textheight, textwidth

 ! Mouse routines...
 public :: clearmouseclick, getmouseclick, ismouseclick, mousex, mousey

 ! Palette routines...
 public :: getdefaultpalette, getpalette, getpalettesize, setallpalette, &
 setpalette, setrgbpalette

 ! RGB COLOR routines...
 public :: rgb_color, red_value, green_value, blue_value

 ! Utility routines...
 public :: CString, quit

contains

 subroutine c_f_stringconvert (cstring,str)
 type(c_ptr) , intent (in) :: cstring
 character (len=*), intent (out) :: str
 character (C_CHAR), dimension (:), pointer :: farray
 integer :: i

 call c_f_pointer (cstring,farray,[c_strlen(cstring)])

 str = repeat (’ ’ , len (str))
 do i = 1, min (len (str), int (c_strlen(cstring)))
 str(i:i) = farray(i)
 end do
 end subroutine c_f_stringconvert

 function getdefaultpalette () result (fptr)
 type(palettetype) , pointer :: fptr
 type(C_PTR) :: cptr

 fptr => null ()

bgi.f90
~/programming/bgi−fortran/

14/15
09/06/2015

 cptr = c_getdefaultpalette()
 call c_f_pointer (cptr,fptr)
 end function getdefaultpalette

 subroutine getdrivername (str)
 character (*), intent (out) :: str

 call c_f_stringconvert (c_getdrivername(),str)
 end subroutine getdrivername

 subroutine getmodename (mode_number,str)
 integer , intent (in) :: mode_number
 character (*), intent (out) :: str

 call c_f_stringconvert (c_getmodename(mode_number),str)
 end subroutine getmodename

 subroutine grapherrormsg (error_code,str)
 integer , intent (in) :: error_code
 character (*), intent (out) :: str

 call c_f_stringconvert (c_grapherrormsg(error_code),str)
 end subroutine grapherrormsg

 subroutine getfillpattern (pattern)
 character , intent (out), target :: pattern(8)

 call c_getfillpattern (c_loc (pattern))
 end subroutine getfillpattern

 subroutine drawpoly (numpoints,points)
 integer (C_INT), intent (in) :: numpoints
 integer , intent (in), dimension (numpoints,2) :: points
 integer (C_INT), dimension (numpoints*2), target :: oned

 oned = reshape (transpose (points), (/ 2*numpoints /))
 call c_drawpoly (numpoints,oned)
 end subroutine drawpoly

 subroutine fillpoly (numpoints,points)
 integer (C_INT), intent (in) :: numpoints
 integer , intent (in), dimension (numpoints,2) :: points
 integer (C_INT), dimension (numpoints*2), target :: oned

 oned = reshape (transpose (points), (/ 2*numpoints /))
 call c_fillpoly (numpoints,oned)
 end subroutine fillpoly

 subroutine allocateimage (img,width,height)
 type(imagetype) , intent (out) :: img
 integer , intent (in) :: width, height
 integer :: memsize

 memsize = imagesize(0,0,width,height)

 img%width = width
 img%height = height
 img%image_ptr = c_malloc(memsize)

 if (.not. c_associated (img%image_ptr)) then
 if (graphresult() == grOk) call closegraph ()
 write (*,*) ’ALLOCATEIMAGE: Allocation request denied’
 write (*,*) ’Error: not enough heap space.’
 stop
 end if
 end subroutine allocateimage

 subroutine freeimage (img)
 type(imagetype) , intent (inout) :: img

 img%width = 0
 img%height = 0

 if (c_associated (img%image_ptr)) then
 call c_free (img%image_ptr)
 else
 if (graphresult() == grOk) call closegraph ()
 write (*,*) ’FREEIMAGE: Deallocation request denied’

bgi.f90
~/programming/bgi−fortran/

15/15
09/06/2015

 write (*,*) ’Error: not associated pointer.’
 stop
 end if
 end subroutine freeimage

 subroutine copyimage (left,top,img)
 integer , intent (in) :: left, top
 type(imagetype) , intent (inout) :: img

 call getimage (left,top,left+img%width,top+img%height,img%image_ptr)
 end subroutine copyimage

 subroutine pasteimage (left,top,img,op)
 integer , intent (in) :: left, top
 type(imagetype) , intent (in) :: img
 integer , intent (in) :: op

 call putimage (left,top,img%image_ptr,op)
 end subroutine pasteimage

 function CString (string) result (array)
 character (len=*), intent (in) :: string
 character (kind= C_CHAR), dimension (len (string)+1) :: array
 integer :: i

 do i = 1, len (string)
 array(i) = string(i:i)
 end do
 array(len (string)+1) = C_NULL_CHAR
 end function CString

 function quit ()
 logical :: quit
 character :: qchar

 quit = .false.
 if (kbhit() /= 0) then
 qchar = char (getch())
 quit = (qchar == ’Q’ .or. qchar == ’q’)
 end if
 end function quit

 function red_value (v)
 integer :: red_value
 integer , intent (in) :: v

 ! we need shift right
 red_value = (iand (ishft ((v),−16), int (Z ’FF’)))
 end function red_value

 function green_value (v)
 integer :: green_value
 integer , intent (in) :: v

 ! we need to shift right
 green_value = (iand (ishft ((v),−8), int (Z ’FF’)))
 end function green_value

 function blue_value (v)
 integer :: blue_value
 integer , intent (in) :: v

 blue_value = (iand ((v), int (Z ’FF’)))
 end function blue_value

 subroutine swapbuffers ()
 integer :: oldv, olda

 oldv = getvisualpage()
 olda = getactivepage()

 call setvisualpage (olda)
 call setactivepage (oldv)
 end subroutine swapbuffers
end module bgi

bgiapp.f90
~/programming/bgi−fortran/

1/3
09/06/2015

!
! Fortran Interface to the Xbgi−364p Library
! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi
!
! It is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
!
! This is the ’bgiapp’ module.
!

module bgiapp
 use kind_consts , only : DP
 use bgi , only : cleardevice, closebgi, CString, ellipse, getch, LIGHTGREEN, &
 line, fast_putpixel, putpixel, fillellipse, LEFT_TEXT, openbgi, &
 outtext, outtextxy, rectangle, rgb_color, setactivepage, setbkcolor, &
 setcolor, settextjustify, setvisualpage, TOP_TEXT, usleep, YELLOW
 implicit none
 private

 integer :: width = 600, height = 600
 real (DP) :: x_min = −1.0_DP, x_max = 1.0_DP, &
 y_min = −1.0_DP, y_max = 1.0_DP, &
 scx = 0.0_DP, scy = 0.0_DP

 interface bgiapp_text
 module procedure outtext1,outtext3
 end interface bgiapp_text

 public :: bgiapp_close, bgiapp_init, bgiapp_setup, &
 bgiapp_xmin, bgiapp_xmax, bgiapp_ymin, bgiapp_ymax, &
 bgiapp_width, bgiapp_height, bgiapp_box, bgiapp_circle, bgiapp_dot, &
 bgiapp_fast_dot, bgiapp_fillellipse, bgiapp_line, bgiapp_text

contains

 subroutine bgiapp_init (title)
 character (len = *), intent (in) :: title

 call openbgi (width,height,CString(title))

 call setbkcolor (rgb_color(0,0,40))
 call cleardevice ()
 end subroutine bgiapp_init

 subroutine bgiapp_close ()
 integer , parameter :: SECONDS = 1000000
 integer :: k

 call settextjustify (LEFT_TEXT,TOP_TEXT)
 call setcolor (YELLOW)
 call outtextxy (0,0,CString(’Press a key to exit...’))
 k = getch()

 call setcolor (LIGHTGREEN);
 call outtextxy (0,20,CString(’Ok, leaving in 5 seconds...’))

 k = usleep (5*SECONDS)

 call closebgi ()
 print *, ’All done’
 end subroutine bgiapp_close

 subroutine bgiapp_setup (x1,x2,y1,y2,wh,ht)
 use get_data , only : get
 real (DP), intent (in), optional :: x1, x2, y1, y2
 integer , intent (in), optional :: wh, ht

 ! Initializing with defaults values...
 if (present (x1)) x_min = x1
 if (present (x2)) x_max = x2
 if (present (y1)) y_min = y1
 if (present (y2)) y_max = y2
 if (present (wh)) width = wh
 if (present (ht)) height = ht
 call get (’WIDTH (pixels) =’ ,width)
 call get (’HEIGHT (pixels) =’ ,height)

bgiapp.f90
~/programming/bgi−fortran/

2/3
09/06/2015

 write (*,*)
 call get (’XMIN =’ ,x_min)
 call get (’XMAX =’ ,x_max)
 write (*,*)
 call get (’YMIN =’ ,y_min)
 call get (’YMAX =’ ,y_max)
 write (*,*)
 scx = (width/(x_max−x_min)) ! x scale
 scy = (height/(y_max−y_min)) ! y scale
 end subroutine bgiapp_setup

 function xs (x) result (ret)
 integer :: ret
 real (DP), intent (in) :: x
 ret = 0+ nint ((x−x_min)*scx)
 end function xs

 function ys (y) result (ret)
 integer :: ret
 real (DP), intent (in) :: y
 ret = 0+ nint ((y_max−y)*scy)
 end function ys

 subroutine outtext1 (text)
 character (len=*), intent (in) :: text
 call outtext (CString(text))
 end subroutine outtext1

 subroutine outtext3 (x,y,text)
 real (DP), intent (in) :: x, y
 character (len=*), intent (in) :: text
 call outtextxy (xs(x),ys(y),CString(text))
 end subroutine outtext3

 function bgiapp_xmin () result (r)
 real (DP) :: r
 r = x_min
 end function bgiapp_xmin

 function bgiapp_xmax () result (r)
 real (DP) :: r
 r = x_max
 end function bgiapp_xmax

 function bgiapp_ymin () result (r)
 real (DP) :: r
 r = y_min
 end function bgiapp_ymin

 function bgiapp_ymax () result (r)
 real (DP) :: r
 r = y_max
 end function bgiapp_ymax

 function bgiapp_width () result (r)
 integer :: r
 r = width
 end function bgiapp_width

 function bgiapp_height () result (r)
 integer :: r
 r = height
 end function bgiapp_height

 subroutine bgiapp_box (x1,x2,y1,y2)
 real (DP), intent (in) :: x1, x2, y1, y2
 call rectangle (xs(x1),ys(y1),xs(x2),ys(y2))
 end subroutine bgiapp_box

 subroutine bgiapp_circle (x,y,r)
 real (DP), intent (in) :: x, y, r
 call ellipse (xs(x),ys(y),0,360, &
 abs (xs(r)−xs(0.0_DP)), abs (ys(r)−ys(0.0_DP)))
 end subroutine bgiapp_circle

 subroutine bgiapp_dot (x,y,color)
 real (DP), intent (in) :: x, y
 integer , intent (in) :: color

bgiapp.f90
~/programming/bgi−fortran/

3/3
09/06/2015

 call putpixel (xs(x),ys(y),color)
 end subroutine bgiapp_dot

 subroutine bgiapp_fast_dot (x,y)
 real (DP), intent (in) :: x, y
 call fast_putpixel (xs(x),ys(y))
 end subroutine bgiapp_fast_dot

 subroutine bgiapp_fillellipse (x,y,a,b)
 real (DP), intent (in) :: x, y, a, b
 call fillellipse (xs(x),ys(y), &
 abs (xs(a)−xs(0.0_DP)), abs (ys(b)−ys(0.0_DP)))
 end subroutine bgiapp_fillellipse

 subroutine bgiapp_line (x1,y1,x2,y2)
 real (DP), intent (in) :: x1, y1, x2, y2
 call line (xs(x1),ys(y1),xs(x2),ys(y2))
 end subroutine bgiapp_line
end module bgiapp

