BGI-Fortran.text
~/programming/bgi—fortran/

1/2
09/06/2015

BGl - FORTRAN

by Angelo Graziosi

INTRODUCTION

This document contains a few examples of fortran programs "using" the
Borland Graphics Interface (BGI) library.

BGl is a very simple graphics library with which one can write
interesting programs with minimum efforts. It allows also to learn the
basic principles of Graphics Programming.

We started using this library toward the end of the 1980s. Indeed it

was included with the early versions of the Borland Turbo Pascal
compiler. Then we continued to develop BGI programs until 2002—-2003,
mainly using the Borland C++ 2.0 compiler.

Since BGI was, in some way, linked to the DOS world, its usage was
progressively abandoned (as the DOS OS) in favor of other systems. But
a few years ago we discovered a C++ interface (WinBGIm, using Windows
API) to BGI, so we developed a full fortran interface module (f03bgi,

not listed here) exploiting the new Fortran 2003 standard.

Recently, we found on the WEB new C ports of BGI: libXbgi and
SDL_hgi. So we started to write a new fortran interface (not yet
completed) to these libraries, and this document shows what we can do
with a minimal coding.

Notice that, while these C/C++ interfaces aim to recompile old BGI
programs without or with minimal changes, our goal is to have tools to
write new fortran graphics programs: indeed old BGI fortran programs
do not exist at all!

Now, a short description of the following examples. Usually they are
self-explanatory.

MANDELBROT

"mandelbrot.f90" is a fortran rewriting of the C version one can find
in the source distribution of libXbgi and SDL_bgi libraries. Really,
itis NOT a simple rewriting, but we have restructured the code. In
its initial comment there is the description how it is built. Notice
that it uses what we can call "array of function pointers".

An historical note: the first time we wrote a program to generate a
Mandelbrot set (in Turbo Pascal, or C? we don’'t remember...), using
BGI, it took about an hour on our old 286 without math

co—processor. After we bought the 80287 co—processor, it took about 10
minutes! That was on VGA 640x480, 16 colors and max. iter = 25. The
current mandelbrot.f90 runs with max. iter > 2000 and 256 colors, in a
1600x900 window, taking only few seconds! (On AMD Athlon X2 64)

BIOMORPH

The first time we learned about biomorphs, it was reading an article
((Ri)Creazioni al calcolatore, Le Scienze, italian edition of

Scientific American) in the August 1989. We wrote a programs which we
present anew here, only that now we have used the same approach we
adopted for mandelbrot.f90. Biomprh doesn’t use array of function
pointers but only function pointers.

BGI-Fortran.text
~/programming/bgi—fortran/

2/2
09/06/2015

SOLAR_SYSTEM

This programs was written, firstly, using GTK-FORTRAN, now we have
"translated" it using BGI. It uses SOFAIib, found on the WEB.

DYNAMICS2D

This programs compute and display the trajectory of a point on which
is acting a two dimensional field of forces. The particularity is that

the force components are read from keyboard. It uses a "functions
parser". We have found on the WEB a functions parser written in C++
(http://warp.povusers.org/FunctionParser), and have interfaced it in
fortran using the Fortran >= 2003 standard. For a short documentation
see the other link on this WEB site.

DOUBLE_PENDULUM-DB

This programs compute and display the motion of a double pendulum. It
uses the double buffering technique.

THOMAS_FERMI, LOGISTICS, etc..

BGI, BGIAPP

These are the modules which underlie the above examples.
0 bgi.f90 contains the modules interfacing libXbgi.

0 bgiapp.f90 implements a few routines that allow to develop
fortran BGI programs in World Coordinate System.

To develop the above examples, we have used xbgi-364
(http://libxbgi.sourceforge.net), but this library still contains

bugs. We have tried to work around a few of them. We have also added
the extension to give an our title to the BGI window.

This document has been created using EMACS (and some "friends"
tools like ps2pdf, pdftk etc..).

mandelbrot.f90 1/5
~/programming/bgi—fortran/demo/ 09/06/2015

I Fortran Interface to the Xbgi—-364p Library

! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi

|

i It is distributed in the hope that it will be useful,

I but WITHOUT ANY WARRANTY; without even the implied warranty of
I MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

1

I'HOW TO BUILD (GNU/Linux Mint)

|

cd ~/work

wget http://libxbgi.sourceforge.net/xbgi—364.tar.gz
tar —xf xbgi—364.tar.gz

cd xbgi—364/src

make

make demo

./demo
make clean
cd test
make
./mandelbrot

cd ..
mv libXbgi.a ~/programming/lib
cd ~/programming/bgi—fortran/demo

rm —rf {*.mod,~/programming/modules/*} && \

gfortran —O3 —Wall —=J ~/programming/modules \
~/programming/basic—-modules/basic_mods.f90 \
..[{bgi.f90,bgiapp.fo0} mandelbrot.f90 \
-L ~/programming/lib =IXbgi -IX11 —Im —o mandelbrot.out

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
I ./mandelbrot.out
!

module mandelbrot_lib
use kind_consts , only : DP
use bgi, only : CENTER_TEXT, DEFAULT_FONT, GOTHIC_FONT, HORIZ_DIR, &
KEY_ESC, LEFT_TEXT, TOP_TEXT, WHITE, WM_LBUTTONDOWN, WM_MBUTTONDOWN, &
WM_MOUSEMOVE, WM_RBUTTONDOWN, WM_WHEELDOWN, WM_WHEELRP,

cleardevice, rgb_color, CString, fast_putpixel, getevent, &
kbhit, mousex, mousey, outtextxy, refresh, setbkcolor, &
setcolor, setrgbcolor, setrgbpalette, settextjustify, &
settextstyle, textheight, usleep

implicit none

private

abstract interface
subroutine colors_palette 0
end subroutine colors_palette
end interface

type palette_ptr
procedure (colors_palette), pointer , nopass : p=>null()
end type palette_ptr

integer 1 max_iter = 100, max_x, max_y
type(palette_ptr) o palette(3)
public ::input_data, run_app

contains

subroutine purple_palette 0
integer 1 c

do ¢ =0, max_iter-1
call setrgbpalette (c,50+2*c,c,max_iter—c)
end do

! The Mandelbrot set is black
call setrgbpalette (max_iter,0,0,0)
end subroutine purple_palette

subroutine blue_palette ()
integer I ¢

mandelbrot.f90
~/programming/bgi—fortran/demo/

215
09/06/2015

do ¢ =0, max_iter-1
call setrgbpalette (c,0,c,50+2*c)
end do

I The Mandelbrot set is black
call setrgbpalette (max_iter,0,0,0)
end subroutine blue_palette

subroutine amber_palette ()
integer 1 c
do ¢ =0, max_iter-1
call setrgbpalette (c,max_iter—c,50+2*c,c)
end do

! The Mandelbrot set is purple

call setrgbpalette (max_iter, int (2’30’),0, int (Z'30"))

end subroutine amber_palette

subroutine input_data ()
use get data , only :get

call get ('MAX_ITER =" ,max_iter)
write (*,%)

palette(1)%p => purple_palette
palette(2)%p => blue_palette

palette(3)%p => amber_palette
end subroutine input_data

subroutine explain ()
integer , parameter : MILLI_SECONDS = 1000
integer 1 i,inc, c, k

I Don't use a palette

call setbkcolor (rgb_color(0,0,32))
call cleardevice

call setcolor (rgb_color(255,255,0))

call settextstyle (GOTHIC_FONT,HORIZ_DIR,1)

call settextjustify (CENTER_TEXT,CENTER_TEXT)
¢ = textheight ('H)
call outtextxy (max_x/2,max_y/2-3*c, &
CString("Press '1’, 2", or '3’ to change the palette;"
call outtextxy (max_x/2,max_y/2-2*c, &
CString('left click to zoom in on a point;’
call outtextxy (max_x/2, max_y/2-c, &
Cstring(right click to zoom out;’)
call outtextxy (max_x/2, max_y/2, &
CString('middle click to restore the initial boundary;’
call outtextxy (max_x/2, max_y/2+c, &
CString("I and 'd’ to increase/decrease max iterations;"
call outtextxy (max_x/2,max_y/2+2*c, &
CString('ESC to quit the program.’)
i=0
inc=1

do while (kbhit() == 0)

call setcolor (rgb_color(i,0,0))
call outtextxy (max_x/2,max_y/2+4*c, CString(
i =i+inc

select case (i)
case (255)

inc=-1
case (0)

inc=1
end select

k = usleep(1*MILLI_SECONDS)
end do

call cleardevice ()

call settextstyle (DEFAULT_FONT,HORIZ_DIR,1)
call settextjustify (LEFT_TEXT,TOP_TEXT)

)
)

)
)

'PRESS AKEY TO BEGIN’

)

mandelbrot.f90
~/programming/bgi—fortran/demo/

3/5
09/06/2015

end subroutine explain

subroutine mandelbrot_set (x1,y1,x2,y2)
real (DP), intent (in):: x1,y1, x2,y2
I

| We assume that the point (X,y) is repesented by the center of the
! pixel box. For example, in the X direction we have that

!

I the center of pixel-box 0 is the point (x1,y)

! the center of pixel-box 1 is the point (x1+dx,y)

! the center of pixel-box 2 is the point (x1+2*dx,y)
!
|

the center of pixel-box max_x is the point (x1+max_x*dx == x2,y)

| This means that dx = (x2—x1)/max_x. The same happens in Y direction, and

Idy = (y2-yl)/max_y
|

integer i, j, counter
real (DP):: dx,dy,x,y,a b, tx, d
logical :: confined

dx = (x2-x1)/max_x
dy = (y2-yl)/max_y

X =x1
do i=0, max_x
y=yl
do j=0, max_y

counter =0

a=0.0_DP

b=0.0_DP

I lteration: z(n+1) = z(n)**2 + c; z = a+i*b; ¢ = x+i*y

confined = true.

do while (confined)
tx = a*a—-b*b+x
b =2.0_DP*a*b+y
a=1x
d = a*a+b*b
counter = counter+1

confined = ((d <= 4.0_DP) .and.

end do

call setrgbcolor (counter)

call fast_putpixel (i)
y = y+dy
end do
X = X+dx
end do
end subroutine mandelbrot_set

subroutine run_app

use bgiapp , only : bgiapp_xmin, bgiapp_xmax, bgiapp_ymin, bgiapp_ymax,

bgiapp_width, bgiapp_height

integer :: current_palette, key = -1000

real (DP): xm, ym, xstep, ystep, x1, y1, x2, y2,
xmO0, ymO, xstepO, ystepO

logical :: init, flag, redraw

character (len =20) :: buf

| Getting the viewing region...
x1 = bgiapp_xmin()
X2 = bgiapp_xmax()
y1 = bgiapp_ymin()
y2 = bgiapp_ymax()
max_x = bgiapp_width()
max_y = bgiapp_height()

! Getting DEFAULT for initial boundary
xmO0 = 0.5_DP*(x1+x2)
ymO = 0.5_DP*(yl+y2)
xstep0 = (x2-x1)/2
ystep0 = (xstepO*max_y)/max_x

max_x = max_x—-1
max_y = max_y-1

(counter < max_iter))

mandelbrot.f90
~/programming/bgi—fortran/demo/

4/5
09/06/2015

! Initial boundary
xm = xmO0
ym =ymO
xstep = xstep0
ystep = ystep0

init = true.
flag = .true.
redraw = true.

call explain ()

current_palette =1
call palette (current_palette)%p()

do while (key /= KEY_ESC)

x1 = xm-xstep
y1l =ym-ystep
X2 = xm+xstep
y2 = ym+ystep

if (redraw) then
call mandelbrot_set (x1,y1,x2
call refresh ()

if (flag) then
call setcolor (WHITE)
write (buf,*) max_iter

call outtextxy (0,max_y-20,CString(

flag = false.
end if
redraw = false.
end if

! Wait for a key or mouse click
key = getevent ()

select case (key)

case (WM_LBUTTONDOWN, WM_WHEELUP)

xm = x1+(x2—-x1)*mousex()/max_x
ym = yl+(y2-yl)*mousey()/max_y
xstep = xstep/2

ystep = ystep/2

init = false.

redraw = true.

case (WM_RBUTTONDOWN, WM_WHEELDOWN)

xstep = xstep*2
ystep = ystep*2
init = false.
redraw = true.
case (WM_MBUTTONDOWN)
if (.not. init) then
xm = xmO
ym =ymoO
xstep = xstep0
ystep = ystep0O
redraw = .true.
end if
case (ichar (1"))
if (current_palette /= 1)
current_palette = 1

call palette (current_palette)%p()

redraw = .true.
end if
case (ichar ('2' "))
if (current_palette /= 2)
current_palette = 2

call palette (current_palette)%p()

redraw = .true.
end if
case (ichar ('3))
if (current_palette /= 3)
current_palette = 3

call palette (current_palette)%p()

redraw = true.
end if

y2)

then

then

then

trim (adjustl

(buf))))

mandelbrot.f90
~/programming/bgi—fortran/demo/

5/5
09/06/2015

case (ichar (1"))
max_iter = max_iter+50
flag = true.
redraw = .true.

I Since the current palette depend on MAX_ITER,
I'you HAVE TO reset it...
call palette (current_palette)%p()
case (ichar ('d"))
max_iter = max_iter-50
flag = true.
redraw = true.

I Since the current palette depend on MAX_ITER,
I'you HAVE TO reset it...
call palette (current_palette)%p()

case default

redraw = false.
end select
end do
end subroutine run_app

end module mandelbrot_lib

program mandelbrot
use kind_consts , only : DP
use general_routines , only :system_time
use bgiapp , only : bgiapp_setup, bgiapp_init, bgiapp_close
use mandelbrot_lib
implicit none

real (DP):: 10,1
call input_data ()
! We assume the center at (-0.75,0) and size (4.4,2.475)
call bgiapp_setup (-2.95_DP,1.45_DP,-1.2375_DP,1.2375_DP,1600,900)
call bgiapp_init (A tribute to Benoit Mandelbrot (1924-2010)’)
write (¥, '(A) ,advance= 'NO’) ’'Please wait, we are working...’
t0 = system_time()
call run_app ()
t1 = system_time()

write (*,%)
write (¥, '(A,F8.3,A)) ’'Mandelbrot completed in’ t1-t0, ' seconds!

call bgiapp_close ()
end program mandelbrot

biomorph.f90

~/programming/bgi—fortran/demo/

1/6
09/06/2015

I Fortran Interface to the Xbgi—-364p Library

! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi

|

i It is distributed in the hope that it will be useful,

I but WITHOUT ANY WARRANTY; without even the implied warranty of
I MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

1

I'HOW TO BUILD (GNU/Linux Mint)
|
cd ~/work
wget http://libxbgi.sourceforge.net/xbgi—364.tar.gz
tar —xf xbgi—364.tar.gz
cd xbgi—364/src
make
make demo

./demo
make clean
cd test
make
./mandelbrot

mv libXbgi.a ~/programming/lib
cd ~/programming/bgi—fortran/demo

rm —rf {*.mod,~/programming/modules/*} && \

gfortran —O3 —Wall —=J ~/programming/modules \
~/programming/basic—-modules/basic_mods.f90 \
~/programming/fparser—fortran/fparser_cd.f90 \
..{bgi.f90,bgiapp.f90} biomorph.fo0 \
—-L ~/programming/lib —IFParser —Istdc++ —IXbgi =IX11 -Im\
-0 biomorph.out

!

!

!

!

!

!

!

!

!

!

!

!

!

I cd..
!

!

!

!

!

!

!

!

!

!

!

I ./biomorph.out
!
|

EXAMPLES

I
|

! fen(z,c) = z73+c, ¢ =(0.5,0), (0.44,0), (0.6,-0.2), (-0.6,-0.1)
I fen(z,c) = z8z+z"\5+c, ¢ =(0.5,0)

I fen(z,c) = sin(z)+z"z+c, ¢ =(0.5,0)

I fen(z,c) = sin(z)+exp(z)+c, ¢ =(0.5,0)

I fen(z,c) = z75+c, ¢ =(0.65,0)

I fen(z,c) = M 7+z275+c, ¢ =(0.8,0)

1

1

|

I

|

Notice that we could define the biomorph as fcn(z,c) = f(z) + ¢, with

f(z) = /3, z"z+z"5, sin(z)+z"z... etc.

module biomorph_lib
use kind_consts , only : DP
use fparser_cd , only : FunctionParser_cd_type, NewParser, Parse, &
ErrorMsg, GetParseErrorType, DeleteParser, Eval
use bhgi, only : CENTER_TEXT, DEFAULT_FONT, GOTHIC_FONT, HORIZ_DIR, &

KEY_ESC, LEFT_TEXT, TOP_TEXT, WHITE, WM_LBUTTONDOWN, WM_MBUTTONDOWN,

WM_MOUSEMOVE, WM_RBUTTONDOWN, WM_WHEELDOWN, WM_WHEELEIP,

cleardevice, rgb_color, CString, fast_putpixel, &
getevent, kbhit, mousex, mousey, &
outtextxy, refresh, setbkcolor, setcolor, &
setrgbcolor, setrgbpalette, settextjustify, settextstyle, &
textheight, usleep

implicit none

private

type(FunctionParser_cd_type) ;o fp_biomorph

integer :: max_iter = 100, num_colors = 0, max_xX, max_y

complex (DP):: ¢ =(0.5_DP,0.0_DP)

public ::input_data, run_app

contains
subroutine input_data ()

use get_data , only :get, MAXLEN

&

biomorph.f90

~/programming/bgi—fortran/demo/

216
09/06/2015

character (len = MAXLEN) :: biomorph_buf = 'z*3+c’
integer 1 res

call get ('FCN(z,c)=" ,biomorph_buf)

write (*,*)

call get('C=" ,0)

write (*,*)

I Create the fparser for FCN(z,c)
call NewParser (fp_biomorph)

res = Parse(fp_biomorph,biomorph_buf, 'z,c")
if (res>=0) then
write (*,%) 'Failure creating fp_biomorph parser...’
write (*,*
write (¥, '(A)’) 'FCN(z,c) =" /I trim (biomorph_buf)

write (*, '(A)’) repeat ('’

Jres+10)// ™

I Remember : ErrorMsg() is an array of characters...

I Don'’t use a palette

call setbkcolor

(rgb_color(0,0,32))

call cleardevice

call setcolor

call settextstyle
call settextjustify

¢ = textheight (

(rgb_color(255,255,0))

(GOTHIC_FONT,HORIZ_DIR,1)
(CENTER_TEXT,CENTER_TEXT)
Y

call outtextxy (max_x/2,max_y/2-3*c, &
CString("Press "1’ or '2’ to change the palette;"
call outtextxy (max_x/2,max_y/2-2*c, &
CString('left click to zoom in on a point;’
call outtextxy (max_x/2, max_y/2-c, &
CString(right click to zoom out;’)
call outtextxy (max_x/2, max_y/2, &
CString('middle click to restore the initial boundary;’
call outtextxy (max_x/2, max_y/2+c, &
CString("I and 'd’ to increase/decrease max iterations;"
call outtextxy (max_x/2,max_y/2+2*c, &
Cstring('ESC to quit the program.’)
i=0
inc=1
do while (kbhit() == 0)

call setcolor
call outtextxy
i =i+inc

(rgb_color(i,0,0))
(max_x/2,max_y/2+4*c, CString(

select case (i)
case (255)

inc=-1
case (0)

inc=1
end select

k = usleep(1*MILLI_SECONDS)
end do

call cleardevice ()
call settextstyle

call settextjustify
end subroutine explain

(DEFAULT_FONT,HORIZ_DIR,1)
(LEFT_TEXT,TOP_TEXT)

subroutine bgi_palette ()
num_colors = 16

write (*,*) ErrorMsg(fp_biomorph)
write (*,%) 'Error type:’ ,GetParseErrorType(fp_biomorph)
write (*,%)
stop
end if
end subroutine input_data
subroutine explain ()
integer , parameter MILLI_SECONDS = 1000
integer i,inc, c, k

)
)

)
)

'PRESS AKEY TO BEGIN’))

biomorph.f90

~/programming/bgi—fortran/demo/

3/6
09/06/2015

call setrgbpalette (0,0,0,128) ! Blue
call setrgbpalette (2,0,128,0) I Green
call setrgbpalette (2,0,128,128) I Cyan
call setrgbpalette (3,128,0,0) ! Red
call setrgbpalette (4,128,0,128) I Magenta
call setrgbpalette (5,128,128,0) ! Brown
call setrgbpalette (6,192,192,192) ! Light Gray
call setrgbpalette (7,128,128,128) ! Dark Gray
call setrgbpalette (8,0,0,255) I Light Blue
call setrgbpalette (9,0,255,0) ! Light Green
call setrgbpalette (10,0,255,255) ! Light Cyan
call setrgbpalette (11,255,0,0) ! Light Red
call setrgbpalette (12,255,0,255) I Light Magenta
call setrgbpalette (13,255,255,0) ! Yellow
call setrgbpalette (14,255,255,255) I White
! Black is on the top
call setrgbpalette (15,0,0,0) ! Black
end subroutine bgi_palette
subroutine bw_palette ()
num_colors = 2
call setrgbpalette (0,255,255,255) I White
call setrgbpalette (1,0,0,0) ! Black
end subroutine bw_palette

function fen (z,€)

result (ret)
complex (DP):: ret
complex (DP), intent

(in) z,c

ret = Eval(fp_biomorph,[z,c])

end function fcn

subroutine biomorph_set (x1,y1,x2,y2)
real (DP), intent (in):: x1,y1, x2, y2
|

| We assume that the point (x,y) is repesented by the center of the
! pixel box. For example, in the X direction we have that

!

! the center of pixel-box 0 is the point (x1,y)

! the center of pixel-box 1 is the point (x1+dx,y)

! the center of pixel-box 2 is the point (x1+2*dx,y)
!
!

the center of pixel-box max_x is the point (x1+max_x*dx == x2,y)
|

| This means that dx = (x2—x1)/max_x. The same happens in Y direction, and
Idy = (y2-yl)/max_y
I

real (DP), parameter RADIUS = 10.0_DP, QRADIUS = RADIUS*RADIUS

complex (DP), parameter : JJ=(0,1)
integer i, j, counter

real (DP): dx,dy,x,y,a=0,b=0
complex (DP):: z

dx = (x2-x1)/max_x
dy = (y2-yl)/max_y

X =x1
do i=0, max_x
y=yl
do j=0, max_y
z = x+JJ*y
|

| The difference between this loop:

counter =0
do while (counter < max_iter)

i
!

!

I if (condition) exit
I enddo
!

!

!

!

!

and this loop:

do counter = 1, max_iter

biomorph.f90

~/programming/bgi—fortran/demo/

4/6
09/06/2015

I if (condition) exit

I enddo

!

l'is that in the first case, the loop is executed at most MAX_ITER

I times with COUNTER <= MAX_ITER after exiting the loop

I In the second case, the loop is execute at most MAX_ITER times too,

! but counter is max_iter+1 if CONDITION is not satisfied...
|

counter=0

do while (counter < max_iter)
z =fen(z,c)

a=
b=
counter =

end

it (

else
end

call

y = y+dy
end do
X = X+dx
end do
end subroutine

subroutine
use bgiapp

abs (real (2))
abs (aimag (z))
counter+1
!
I Notice that ('==>" means 'implies’)
!
I (a>RADIUS) ==> ((a*a+b*b) > QRADIUS)
! (b >RADIUS) ==> ((a*a+b*b) > QRADIUS)
!
I'so
!
I (a> RADIUS) .or. (b > RADIUS) .or. ((a*a+b*b) > QRADIUS)
!
l'is equivalent to
!
I ((@*atb*b) > QRADIUS)
|

! but if (a > RADIUS), we don't need to evaluate (b > RADIUS) and

I ((@*a+b*b) > QRADIUS); if (b > RADIUS), we don'’t need to evaluate
I ((@*atb*b) > QRADIUS). In short, the long condition

I

L if ((a> RADIUS) .or. (b > RADIUS) .or. ((a*a+b*b) > QRADIUS))
|

i is a little faster than the short
[

I if ((@*a+b*b) > QRADIUS))

|

i ((a > RADIUS) .or. (b >RADIUS) .or. ((@*at+b*b) > QRADIUS))

exit
do
(a < RADIUS) .or. (b <RADIUS)) then
I On the top there is BLACK... see setup_rgb_palette()
call setrgbcolor (num_colors-1)

call setrgbcolor (mod(counter—1,num_colors—1))
if

fast_putpixel (i)

biomorph_set

run_app
, only : bgiapp_xmin, bgiapp_xmax, bgiapp_ymin, bgiapp_ymax,

bgiapp_width, bgiapp_height

integer
real (DP) :

current_palette, key = -1000
xm, ym, xstep, ystep, x1, y1, x2, y2, &

xmO0, ymO, xstep0, ystepO

logical
character

| Getting the

init, flag, redraw
(len = 20) = buf

viewing region...

x1 = bgiapp_xmin()

X2 = bgiapp_xmax()

y1 = bgiapp_ymin()

y2 = bgiapp_ymax()
max_x = bgiapp_width()
max_y = bgiapp_height()

! Getting DE

FAULT for initial boundary

xmO0 = 0.5_DP*(x1+x2)
ymO = 0.5_DP*(y1+y2)

&

biomorph.f90

~/programming/bgi—fortran/demo/

5/6
09/06/2015

xstep0 = (x2-x1)/2
ystep0 = (xstepO*max_y)/max_x

max_X = max_x-1
max_y = max_y-1

! Initial boundary
xm = xmO0
ym =ymO
xstep = xstep0
ystep = ystep0

init = true.
flag = true.
redraw = true.

call explain ()

current_palette =1
call bgi_palette ()

do while (key /= KEY_ESC)

x1 = xm-xstep
y1l = ym-ystep
X2 = xm+xstep
y2 = ym+ystep

if (redraw) then
call biomorph_set (x1,y1,x2,y2)
call refresh ()

if (flag) then
call setcolor (WHITE)
write (buf,*) max_iter

call outtextxy (0,max_y-20,CString(
flag = false.
end if
redraw = false.
end if

! Wait for a key or mouse click
key = getevent()

select case (key)
case (WM_LBUTTONDOWN, WM_WHEELUP)
xm = x1+(x2-x1)*mousex()/max_x
ym = yl+(y2-yl)*mousey()/max_y
xstep = xstep/2
ystep = ystep/2
init = false.
redraw = true.
case (WM_RBUTTONDOWN, WM_WHEELDOWN)
xstep = xstep*2
ystep = ystep*2
init = false.
redraw = .true.
case (WM_MBUTTONDOWN)
it (.not. init) then
xm = xmO0
ym =ymO
xstep = xstep0
ystep = ystepO
redraw = true.
end if
case (ichar (1")
if (current_palette /= 1) then
current_palette = 1
call bgi_palette ()
redraw = .true.
end if
case (ichar (2"))
if (current_palette /= 2) then
current_palette = 2
call bw_palette ()
redraw = .true.
end if
case (ichar (1"))

trim (adjustl

(buf))))

biomorph.f90

~/programming/bgi—fortran/demo/

6/6
09/06/2015

max_iter = max_iter+50
flag = true.
redraw = true.
case (ichar ('d"))
max_iter = max_iter-50
flag = true.
redraw = true.

case default

redraw = false.
end select
end do
call DeleteParser (fp_biomorph)
end subroutine run_app

end module biomorph_lib

program biomorph
use kind_consts , only : DP

use general_routines , only :system_time
use bgiapp , only : bgiapp_setup, bgiapp_init, bgiapp_close

use biomorph_lib
implicit none
real (DP): 10,1

call input_data ()

call bgiapp_setup (-4.0_DP,4.0_DP,-2.25 DP,2.25 DP,1600,900)
call bgiapp_init ("A tribute to Clifford Pickover’s Biomorphs"

write (¥, '(A) ,advance= 'NO’) ’'Please wait, we are working...’

t0 = system_time()
call run_app ()
t1 = system_time()

write (*,)

write (¥, '(A,F8.3,A)) ’'Biomorph completed in”’

call bgiapp_close ()
end program biomorph

solar_system.f90
~/programming/bgi—fortran/apps/

1/3
09/06/2015

I Fortran Interface to the Xbgi—-364p Library

! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi

|

i It is distributed in the hope that it will be useful,

I but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

| HOW TO BUILD (GNUI/Linux Mint)

cd ~/work

wget http://www.iausofa.org/2013_1202_F/sofa_f-20131202_b.tar.gz

bsdtar —xvof sofa_f-20131202_b.tar.gz
mv sofa/20131202_b/f77 SOFAlib
apack SOFAIib—20131202_b-src.tar.xz SOFAlib

touch -r sofa_f-20131202_b.tar.gz SOFAlib-20131202_b-src.tar.xz

rm —rf sofa*
cd SOFAlib/src

make FC=gfortran[-mp—4.9] INSTALL_DIR=$HOME/work/SOFAIlib
make FC=gfortran[-mp—4.9] INSTALL_DIR=$HOME/work/SOFAIib test

mv ~/work/SOFAlib/lib/libsofa.a ~/programming/lib/libSOFA.a
make clean
rm libsofa.a

cd ~/work

wget http://libxbgi.sourceforge.net/xbgi—364.tar.gz
tar —xf xbgi-364.tar.gz

cd xbgi—-364/src

make

make demo

./demo
make clean
cd test
make
./mandelbrot

cd ..
mv libXbgi.a ~/programming/lib
cd ~/programming/bgi-fortran/apps

rm —rf {*. mod,~/programming/modules/*} && \
gfortran —O3 —Wall —J ~/programming/modules \
~/programming/basic—-modules/basic_mods.f90 \
..{bgi.f90,bgiapp.fo0} solar_system.fo0 \
-L ~/programming/lib =ISOFA —IXbgi —=IX11 —Im\
-0 solar_system.out

Jsolar_system.out

module solar_system_lib

use kind_consts , only : DP
use get data , only :get
implicit none

private

real (DP):: jdo, jd_tot = 36500.0_DP, jd_stp = 1.0_DP

public ::input_data, run_app

contains

function get_gregorian_date () result (ul)
real (DP): jul

integer :: year =2000, month =1, day =1, ho =12, mi =0, se =0, ierr

real (DP):: djmO, djm, day_frac

write (*,*) 'IAU PLAN94 Planet Coordinates (See IAU SOFA Documentation)’

write (*,%) ‘Input Gregorian Date’
call get(’ YEAR ,year)
call get (' MONTH ,month)
call get (" DAY ,day)
write (*,%) ‘Input Time of Day’
call get (" HOURS 7 ,ho)

call get ('’ Minutes ,mi)

solar_system.f90
~/programming/bgi—fortran/apps/

213
09/06/2015

call get (' SECONDS

se)
day_frac = (ho+(mi/60.0 DP)+(se/36OO 0_DP))/24.0_DP

call iau_CAL2JD (year,month,day,djmO0,djm,ierr)
if (ierr==0) then
jul = djm0+djm+day_frac

else
write (*,%) 'An error occurred! Exiting...’
stop

end if

end function get_gregorian_date

subroutine input_data ()
| Starting Gregorian date in JD
write (*,*) 'STARTING TIME?’

write (*,¥)
jd0 = get_gregorian_date()
write (*,¥)
call get ('Time intervall (JD) ' ,jd_tot)
write (*,%)
call get ('Time step (JD) ,jd_stp)
write (*,%)
end subroutine input_data

subroutine run_app
use bgi, only : YELLOW
use bgiapp , only : bgiapp_dot

integer , parameter @ MAXP =9

integer :: body_color(MAXP) =0

integer 1 err, k ! error flag, planet id

real (DP): Xy ! coordinates in the plane

! Julian time at which positions are computed; end intervall,

| positions and velocities
real (DP): jd,jd1, pos(3,2)
logical i first

! Setup of the colors...

do k=1, MAXP
body_color(k) = k

end do

first = true.
jd1 = jdO+jd_tot
jd =jdo
do while (jd <=jd1)

lwrite(*,*) 'Current JD: ’, jd
it (first) then
first = false.
x=0
y=0

I The SUN!!!
call bgiapp_dot (x,y,YELLOW)
end if

do k=1, MAXP
call iau_PLAN94 (0.0_DP,jdk,pos,ierr)
if (ierr==0) then
x = pos(1,1)
y = pos(2,1)

I Planet k...
call bgiapp_dot (x,y,body_color(k))
end if
end do
jd = jd+jd_stp
end do
end subroutine run_app
end module solar_system_lib

program solar_system
use kind_consts , only : DP
use general_routines , only :system_time

use bgiapp , only : bgiapp_setup, bgiapp_init, bgiapp_close

solar_system.f90
~/programming/bgi—fortran/apps/

3/3
09/06/2015

use solar_system_lib
implicit none
real (DP):: t0t1

call input_data ()
call bgiapp_setup (-40.0_DP,40.0_DP,-40.0_DP,40.0_DP)
call bgiapp_init (’An example of SOFA anf BGl-Fortran usage’
write (*, '(A)’ ,advance= 'NO’) ’Please wait, we are working...’
t0 = system_time()
call run_app ()
t1 = system_time()

write (*,*)

write (¥, '(A,F8.3,A)) ’'Solar system completed in’ ,11-t0,

call bgiapp_close ()
end program solar_system

" seconds!’

dynamics2d.f90
~/programming/bgi—fortran/apps/

1/4
09/06/2015

!

! Fortran Interface to the Xbgi—-364p/WinBGIm—-6.0p Libraries
! by Angelo Graziosi (firstname.lastnameATalice.it)

! Copyright Angelo Graziosi

|

! It is distributed in the hope that it will be useful,
I but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
I HOW TO BUILD XBGI (GNU/Linux Mint)
1

cd ~/work

wget http://libxbgi.sourceforge.net/xbgi—364.tar.gz

tar —xf xbgi—364.tar.gz

cd xbgi—364/src

make

make demo

make clean
cd test
make
/mandelbrot

!

!

!

!

!

!

!

I ./demo
!

!

!

!

!

I cd..

I mv libXbgi.a ~/programming/lib
!

HOW TO BUILD WIinBGIm-6.0 (MSYS2/MINGW64 shell)

cd ~/work/WinBGIm-6.0
make
mv libbgi.a ~/programming/lib/mingw64/libWinBGIm6.0.a

make clean

cd all-tests
g++ -03 -Wall -mwindows -I .. test-bgidemo0.cxx \
-L ~/programming/lib/mingw64 —-IWinBGIm6.0 \
-lgdi32 -lcomdlg32 —luuid —loleaut32 —lole32 —o test-bgidemo0

HOW TO BUILD THE APP
cd ~/programming/bgi-fortran/apps

rm —rf {*.mod,~/programming/modules/*} && \

gfortran ~O3 —Wall $BLD_OPTS -J ~/programming/modules \
~/programming/basic—-modules/basic_mods.f90 \
~/programming/fparser—fortran/fparser_dp.f90 \
..{bgi.f90,bgiapp.f90} dynamics2d.fo0 \
-L ~/programming/lib/$PLATFORM $LIBS —o dynamics2d$EXE

Jdynamics2d$EXE
where:

BLD_OPTS =
PLATFORM =

LIBS = —-IFParser —Istdc++ —IXbgi —IX11 -Im
EXE = .out

for the build on GNU/Linux

$BLD_OPTS = —static [-mwindows]
$PLATFORM = mingw64
$LIBS = -IFParser —IWinBGIm6.0 \
-lgdi32 —lcomdlg32 -luuid —loleaut32 —lole32 —Istdc++
EXE =

for the build on MSYS2/MINGW64

EXAMPLES
ax =’-2*x’, ay = '-3%’, tin [0,100], h = 0.0005, PO(2,4), VO(-2,0)

ax = "=((x+2)/hypot(x+2,y)"3 + (x=2)/hypot(x—2,y)*3)’,
ay = ~(y/hypot(x+2,y)3 + ylhypot(x-2,y)"3),

!
!
!
!
!
!
!
|
!
!
|
1
|
|
|
!
!
!
!
1
!
!
!
!
!
!
!
!
!
!
!
!
!
|
!
!
|
!
!
!
!
!
!
|
!
!
!
!
!
!
! tin [0,100], h = 0.005, PO(1,4), VO(-0.25,0)

dynamics2d.f90
~/programming/bgi—fortran/apps/

2/4
09/06/2015

module dynamics2d_lib

use kind_consts , only : DP

use fparser_dp , only : FunctionParser_type, NewParser, Parse,
ErrorMsg, GetParseErrorType, DeleteParser, Eval

implicit none

private

type(FunctionParser_type) w fp_ax, fp_ay

integer , parameter : NEQ=4

real (DP): t0=0.0_DP,t1=25.0_DP, h=0.05_DP, h2, h6

I The first implementation was with these meaning
|

y(1) =X, ¥(2) = vx, y(3) =y, y(4) = vy
i.e. the system to be integrated was

|

|

!

!
Fy(L)=y(2)
I y'(2) = ax(y(1:3:2))
P y(3)=y(4)

5 y'(4) = ay(y(1:3:2))

Now we use

y(1) =X, ¥(2) =y, y(3) = v, y(4) = vy
i.e. the system to be integrated IS

y'(1) =y(3)
Y'(2) = y(4)
Y'(3) = ax(y(1:2))

|
|
!
|
!
|
i
!
5 y'(4) = ay(y(1:2))

I'w(:,:) work space to compute K1, K2, K3, K4. Notice that the method uses
I'w(:,3) and NOT w(:,4)!
I

real (DP):: yO(NEQ)=[1.0_DP, 4.0 DP, -2.0_DP, 0.0 DP], w(NEQ,3)

public ::input_data, run_app
contains

subroutine input_data ()
use get_data , only :get, MAXLEN
character (len = MAXLEN) :: ax_buf ="-x’, ay_buf ="-y’
integer I res
call get ("AX(xy) =’ ,ax_buf)
call get (CAY(x\y) =’ ,ay_buf)
write (*,*)
call get ('TO= ,10)
call get ('T1=" 1)
call get ('H=" ,h)

h2 = 0.5_DP*h

h6 = h/6.0_DP
write (*,*)
call get ('X0=" ,y0(1))
call get ('YO= ,y0(2))
write (*,*)
call get ('VX0= ,yO(3))
call get ('VYO=" ,by0(4))

write (*,%)

! Create the fparser for AX(x,y)
call NewParser (fp_ax)

res = Parse(fp_ax,ax_buf, XYy)
if (res>=0) then
write (*,%) 'Failure creating fp_ax parser...’
write (*,%)

write (¥, '(A)) 'AX(x\y) =’ /I trim (ax_buf)

dynamics2d.f90
~/programming/bgi—fortran/apps/

3/4
09/06/2015

write (*, '(A)) repeat (' ,res+10)/ N

I Remember : ErrorMsg() is an array of characters...
write (*,*) ErrorMsg(fp_ax)
write (*,%) ‘Error type:’ ,GetParseErrorType(fp_ax)
write (*,%)
stop
end if

| Create the fparser for AY(x,y)
call NewParser (fp_ay)

res = Parse(fp_ay,ay_buf, XYy)
if (res>=0) then
write (*,%) 'Failure creating fp_ay parser...’
write (*,*
write (¥, '(A)) 'AY(xy) =’ /I trim (ay_buf)

write (*, '(A)) repeat ('’ ,res+10)/ N

I Remember : ErrorMsg() is an array of characters...
write (*,*) ErrorMsg(fp_ay)

write (*,%) 'Error type:’ ,GetParseErrorType(fp_ay)
write (*,%)
stop
end if
end subroutine input_data
subroutine sub (x,y,f)
real (DP), intent (in):: X, Y(2)
real (DP), intent (out):: ()
f(1) =y(3)
f(2) = y(4)

f(3) = Eval(fp_ax,y(1:2))
f(4) = Eval(fp_ay,y(1:2))
end subroutine sub

subroutine rkdstep (X,y)
real (DP), intent (inout) : X, Y()
real (DP): xh, xh2
!

THIS SUBROUTINE REPLACES X BY X+H AND ADVANCES THE SOLUTION OF THE
SYSTEM OF DIFFERENTIAL EQUATIONS DY/DX=F(X,Y) FROM Y(X) TO Y(X+H)

USING A FIFTH-ORDER RUNGE-KUTTA METHOD.

SUB IS THE NAME OF A SUBROUTINE SUB(X,Y,F) WHICH SETS THE VECTOR F

TO THE DERIVATIVE AT X OF THE VECTOR Y.

UTIVE WORKING VECTORS OF LENGTH NEQ.
Adapted from CERNLIB drkstp.F:

http://cernlib.sourcearchive.com/documentation/2005.05.09.dfsg/

drkstp_8F_source.html

xh = Xx+h
xh2 = x+h2

I Computing w(:,1) = K1
call sub(x,y,w(;,1))

I Computing w(:,2) = y+H*K1/2
w(:,2) = y(:)+h2*w(;,1)

I Computing w(:,3) = K2
call sub (xh2,w(:,2),w(:,3))

I Computing w(:,1) = K1+2*K2
w(;,1) = w(;,1)+2.0_DP*w(:,3)

I Computing w(;,2) = y+H*K2/2
w(:,2) = y(:)+h2*w(:,3)

I Computing w(:;,3) = K3
call sub(xh2,w(:,2),w(:,3))

I Computing w(:;,1) = (K1+2*K2)+2*K3
w(:,1) = w(;,1)+2.0_DP*w(:,3)

!
!
|
!
!
!
!
I WIS A WORKING-SPACE ARRAY, TREATED AS CONSISTING OF THREE CONSEC-
!
!
|
|
1
|
|

dynamics2d.f90
~/programming/bgi—fortran/apps/

4/4
09/06/2015

I Computing w(:,2) = y+H*K3
w(:,2) = y()+h*w(:,3)

I Computing w(:;,3) = K4
call sub (xh,w(:;,2),w(:,3))

! Advance the solution Y(t+h) = Y(t) + H*[(K1+2*K2+2*K3)+K4]/6

y()=y()+he*(w(:, 1)+w(:,3))

x =xh
end subroutine rkdstep

subroutine run_app ()
use bgi, only : YELLOW
use bgiapp , only : bgiapp_dot
real (DP): t, y(NEQ)

t=t0
y=yo
do while (t<tl)

call bgiapp_dot (y(1),y(2),YELLOW)

I We take a RK step
call rkdstep (ty)
end do

call DeleteParser (fp_ax)

call DeleteParser (fp_ay)
end subroutine run_app
end module dynamics2d_lib

program dynamics2d
use kind_consts , only : DP
use general_routines , only :system_time
use bgiapp , only : bgiapp_setup, bgiapp_init, bgiapp_close
use dynamics2d_lib
implicit none

real (DP):: 10,1
call input_data ()

call bgiapp_setup (-5.0_DP,5.0 DP,-5.0 DP,5.0_DP)
call bgiapp_init (’'Dynamics in 2D’)

write (¥, '(A) ,advance= 'NO’) ’'Please wait, we are working...’

t0 = system_time()
call run_app ()
t1 = system_time()

write (*%)

write (*: '(A,F8.3,A)) 'Completedin’ t1-t0, ' seconds!

call bgiapp_close ()
end program dynamics2d

double_pendulum-DB.f90
~/programming/bgi—fortran/apps/

1/4
09/06/2015

I Fortran Interface to the Xbgi—-364p Library

! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi

|

i It is distributed in the hope that it will be useful,

I but WITHOUT ANY WARRANTY; without even the implied warranty of

I MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
!

I'HOW TO BUILD (GNU/Linux Mint)

1

cd ~/work

wget http://libxbgi.sourceforge.net/xbgi—364.tar.gz
tar —xf xbgi—364.tar.gz

cd xbgi—364/src

make

make demo

./demo
make clean
cd test
make
./mandelbrot

cd ..
mv libXbgi.a ~/programming/lib
cd ~/programming/bgi-fortran/apps

rm —rf {*. mod,~/programming/modules/*} && \

gfortran —O3 —Wall —=J ~/programming/modules \
~/programming/basic-modules/basic_mods.f90 \
..{bgi.f90,bgiapp.f90} double_pendulum-DB.f90 \

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
I ./double_pendulum-DB.out
!

1

EXAMPLES

!
!
! tin[0,25], h=0.0005,m1 =15 m2=1,11=1,12=0.5,
I thl=th2=90,omgl=0mg2=0

!

module double_pendulum_lib

use kind_consts , only :DP
implicit none
private

I Units for input data:

|

' length in meters

I time in second

I mass inkg

I angle indeg

I omg indeg/sec

I

integer , parameter :: NEQ=4

real (DP), parameter :: KGRAV=9.81 DP, &
Z3 =1.0_DP/3, 243 = 4*Z3

real (DP):: t0=0.0_DP,tl1=25.0 DP, h=0.0005_DP,
m1=0.8 DP,m2=1.2 DP, & I'Kg

-L ~/programming/lib =IXbgi -IX11 —Im —o double_pendulum-DB.out

&

rhol = 10.49_DP, rho2 =19.3 DP, & ' Ag, Au: in g/lcm**3

I1=0.5 DP,12=1.1_DP, &
h2, he, &
msum, msuml, rl, r2

!

' We adopt the equation found in

!

I http://www.myphysicslab.com/dbl_pendulum.html
!

li.e.

!

' y(1) =thl, y(2) = th2, y(3) = omg1, y(4) = omg2

|

lie. the system to be integrated IS
|

Ly () =y(©)

double_pendulum-DB.f90 2/4
~/programming/bgi—fortran/apps/ 09/06/2015

P y(2)=y(4)
P y'(3) =al(y(1:2))
5 y'(4) = a2(y(1:2))

I'w(:,:) work space to compute K1, K2, K3, K4. Notice that the method uses
I'w(:,3) and NOT w(:,4)!
!real (DP) : yO(NEQ) =[60.0_DP, 100.0_DP, 0.0_DP, 0.0_DP], w(NEQ,3)
public ::input_data, run_app

contains
subroutine input_data ()

use math_consts , only : DEG2RAD, PI
use get data , only :get

call get ('TO(s) =" 10)
call get('Tl(s)=" 1)
call get ('H(s)=" ,h)

h2 = 0.5_DP*h

h6 = h/6.0_DP
write (*,*¥)
call get (‘M1 (kg) =" ,m1)
call get ('M2 (kg) =" ,m2)

msum = m1+m2
msuml = msum+m1l

write (*,%)
call get ('RHO1 (g/cm**3) ="’ ,rhol)
call get ('RHO2 (g/lcm**3) ="’ ,rho2)

' mass in Kg, mass*1000 in g, rho in g/cm**3, radius in cm,
!'radius/100 in m
rl = (((m1*1000/rhol)/(Z43*PI))**Z3)/100
r2 = (((m2*1000/rho2)/(Z43*P1))**Z3)/100
Iprint*, rl, r2
write (*,*)

call get ('L1(m)=" 1)
call get ('L2(m)=" 12)
write (*,*)

call get ('TH1 (deg) ="’ ,yO(1))
call get ('TH2 (deg) =" ,y0(2))
write (*,%)

call get ('OMG1 (deg/s) ="’ ,y0(3))
call get ('OMG2 (deg/s) =" ,y0(4))
write (*,*)

! Converting ALL angles in radians
y0 = yO*DEG2RAD

end subroutine input_data

subroutine sub (x,y,f)
real (DP), intent (in):: X, Y()
real (DP), intent (out):: ()
1y(1) =thl, y(2) = th2, y(3) = omg1l, y(4) = omg2
real (DP), save :: a,b,c,d e g
la=thl-th2

a=y(1)-y(

I'b = (omgl1**2) * |1
b = 11*y(3)**2

I c = (omg2**2) * 12
C = 12*y(4)**2

1d = 2*sin(th1-th2)
d=2.0_DP* sin (a)

e = cos(th1-th2)
e= cos (a)

I g = msuml-m2*cos(2*th1-2*th2)

double_pendulum-DB.f90
~/programming/bgi—fortran/apps/

3/4
09/06/2015

g =msuml-m2* cos (2.0_DP*a)

I We do not need th1-th2 any more. So a = sin(th1-2*th2))
a= sin (a—y(2))

I Now computing the field
f(1) = y(3)
f(2) = y(4) _
f(3) = (-KGRAV*(msum1* sin (y(1))+m2*a)-m2*d*(c+b*e))/(11*g)
f(4) = (d*(msum*(b+KGRAV* cos (y(1)))+c*m2*e))/(12*g)
end subroutine sub

subroutine rkdstep (X,y)
real (DP), intent (inout): X, Y()
real (DP): xh, xh2
!

THIS SUBROUTINE REPLACES X BY X+H AND ADVANCES THE SOLUTION OF THE
SYSTEM OF DIFFERENTIAL EQUATIONS DY/DX=F(X,Y) FROM Y(X) TO Y(X+H)
USING A FIFTH-ORDER RUNGE-KUTTA METHOD.

SUB IS THE NAME OF A SUBROUTINE SUB(X,Y,F) WHICH SETS THE VECTOR F
TO THE DERIVATIVE AT X OF THE VECTOR Y.

UTIVE WORKING VECTORS OF LENGTH NEQ.
Adapted from CERNLIB drkstp.F:

!
!
!
!
!
!
!
I WIS A WORKING-SPACE ARRAY, TREATED AS CONSISTING OF THREE CONSEC-
!
!
!
!
I http://cernlib.sourcearchive.com/documentation/2005.05.09.dfsg/

I drkstp_8F_source.html

!

xh = x+h

xh2 = x+h2

I Computing w(:,1) = K1
call sub(x,y,w(;,1))

! Computing w(:;,2) = y+H*K1/2
w(:,2) = y(:)+h2*w(:,1)

I Computing w(:;,3) = K2
call sub(xh2,w(:,2),w(:,3))

I Computing w(:;,1) = K1+2*K2
w(;,1) = w(;,1)+2.0_DP*w(:,3)

I Computing w(:;,2) = y+H*K2/2
w(:,2) = y(:)+h2*w(:,3)

I Computing w(:,3) = K3
call sub (xh2,w(:,2),w(:,3))

I Computing w(:,1) = (K1+2*K2)+2*K3
w(:,1) = w(;,1)+2.0_DP*w(:,3)

I Computing w(:,2) = y+H*K3
w(:,2) = y(:)+h*w(:,3)

I Computing w(:,3) = K4
call sub (xh,w(:;,2),w(:,3))

I Advance the solution Y(t+h) = Y(t) + H*[(K1+2*K2+2*K3)+K4]/6
y(:)=y(:)+h6*(w(:,1)+w(:,3))

x =xh
end subroutine rkdstep

subroutine run_app ()
use bgi , only : BROWN, clearviewport, getvisualpage, RED, &
setactivepage, setcolor, setfillstyle, SOLID_FILL, swapbuffers,
YELLOW, WHITE
use bgiapp , only : bgiapp_fillellipse, bgiapp_line
real (DP): t, y(NEQ), x1,y1, x2,y2

! By default, the current visual and active page is 0 (zero),
! so we select the off screen page for drawing
call setactivepage (1)

double_pendulum-DB.f90
~/programming/bgi—fortran/apps/

4/4
09/06/2015

t=t0
y=y0
do while (t<tl)

! The current active (off screen) page becomes the visual page
'and the current visual page becomes the off screen page, i.e.
I what is drawn on the off screen is outputted on the screen visible
call swapbuffers ()
I We clear the off screen for the next drawing
call clearviewport 0
! First pendulum: conversion from generalized to cartesian coordinates

x1=11* sin (y(1))

yl=-1* cos (y(1))
! Second pendulum: conversion from generalized to cartesian coordinates

X2 = x1+I2* sin (y(2))

y2 = yl-I2* cos (y(2))
I Draw arms positions on the off screen
call setcolor (BROWN)
call bgiapp_line (0.0_DP,0.0_DP,x1,y1)
call bgiapp_line (x1,y1,x2,y2)
! Draw the origin on the off screen
call setcolor (RED)
call setfillstyle (SOLID_FILL,RED)
call bgiapp_fillellipse (0.0_DP,0.0_DP,0.02_DP,0.02_DP)
! Draw the position of first pendulum on the off screen
call setcolor (WHITE)
call setfillstyle (SOLID_FILL,WHITE)
call bgiapp_fillellipse (x1,y1,r1,rl)
! Draw the position of second pendulum on the off screen
call setcolor (YELLOW)
call setfillstyle (SOLID_FILL,YELLOW)
call bgiapp_fillellipse (x2,y2,r2,r2)
I We take a RK step
call rkdstep (ty)

end do

I Making active page the same as visual page

call setactivepage (getvisualpage())
end subroutine run_app

end module

double_pendulum_lib

program double_pendulum

use kind_consts , only : DP

use general_routines , only :system_time

use bgiapp , only : bgiapp_setup, bgiapp_init, bgiapp_close
use double_pendulum_lib

implicit none

real (DP): 1O, t1

call input_data ()

call bgiapp_setup

call bgiapp_init (’'Double Pendulum’

write (¥,

)

(-2.0_DP,2.0_DP,-2.0_DP,2.0_DP)

'(A) ,advance= 'NO’) ’Please wait, we are working...’

t0 = system_time()
call run_app ()
tl = system_time()

write (*,%)
write (¥,

'(A,F8.3,A)) 'Completed in’

call bgiapp_close ()

end program

double_pendulum

,11-t0,

' seconds!’

thomas_fermi.fo90
~/programming/bgi—fortran/apps/

1/5
09/06/2015

I Fortran Interface to the Xbgi—-364p Library

! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi

|

! It is distributed in the hope that it will be useful,
I but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
I'HOW TO BUILD (GNU/Linux Mint)
1

cd ~/work

wget http://libxbgi.sourceforge.net/xbgi—364.tar.gz

tar —xf xbgi—364.tar.gz

cd xbgi—364/src

make

make demo

./demo
make clean
cd test
make
./mandelbrot

mv libXbgi.a ~/programming/lib
cd ~/programming/bgi-fortran/apps

rm —rf {*. mod,~/programming/modules/*} && \

gfortran —O3 —Wall —=J ~/programming/modules \
~/programming/basic-modules/basic_mods.f90 \
~/programming/ode—modules/ode_integrators.f90 \
..{bgi.f90,bgiapp.f90} thomas_fermi.fo0 \

!

!

!

1

1

|

1

1

|

1

|

1

1

I cd..
1

1

|

!

!

!

!

! _
I =L ~/programming/lib —=IXbgi -IX11 —Im —o thomas_fermi.out
!

I ./thomas_fermi.out

1

1

DESCRIPTION
BEST SLOPE for decreasing function u(x) (>= 0) satisying the
Thomas-Fermi equation and u(0) = 1 condition.
With GBS method and MU_ERR = 5.0E-9, we find

u’(0) = -MU = -1.5880710214376457 +- 2.9802322387695339E-009

u’(0) = -1.588071022611375312718684508

as reported in

P.Amore et al., Accurate calculation of the solutions to the Thomas—Fermi,

!
!
!
!
|
!
!
I (in X[0,69.491249999966996]) to be compared with
!
!
!
!
!
!
!
!

http://arxiv.org/pdf/1205.1704v2.pdf (http://arxiv.org/abs/1205.1704)

module thomas_fermi_lib

use kind_consts , only : DP

implicit none

private

integer : id_method =2

integer , parameter : NEQ =2, NC_MAX =500

real (DP), parameter : Z0=0,Z1=1,24=4, &
Q2 =71/2, Q43 = Z4/3

integer :: nc_majo =100

real (DP):: h=0.00005 DP, eps =1.0E-12_DP, mu_err =5.0E-9_DP

! To avoid the singularity at the origin, we use this transformation
!

I ou(x) = (1+(4/3) * x**(3/2))*y(x)
|

I and the Thomas—Fermi eq. for u(x),
!

I u”(x) = u(x) ** (3/2) / sqrt(x)
|

! becomes, for y(x),
!

thomas_fermi.fo90 2/5
~/programming/bgi—fortran/apps/ 09/06/2015

(1+(4/3) * x**(3/2))*y"(X) + 4*sqrt(x)*y’(x)

!
|
b+ (y(X)/sqrt(x))*(L-sqrt(y(x))*(1+(4/3) * x**(3/2))**(3/2)) = 0
|

! Notice, the boundary conditions for neutral atoms satisfied by u(x),
!

I u(0) =1, u(+inf)j=0

!

I are the same for y(x), y(0) = 1, y(+inf)=0

I

! Notice also, that u’(0) = y'(0).
!

public ::input_data, run_app
contains

subroutine input_data ()
use get data , only :get

real (DP), parameter :: MACHEPS = epsilon(1.0_DP)
write (*,%) 'Choose the method:’

write (%) ' 1:RK4

write (*,*¥) ' 2:GBS

write (*,%) " 3: RKM’

call get ('ID_METHOD = ,id_method)

I For GBS or RKM step, the default initial H step can be greather..
if (id_method == 2 .or. id_method == 3) h = 0.005_DP
write (*,*)

call get ('MU_ERR =" ,mu_err)

call get ('H=" ,h)

if (id_method == 2 .or. id_method == 3) then
write (*,*)
call get ('EPS=" ,eps)

if (eps < 1000*MACHEPS) then
write (*,*) 'EPS TOO SMALL! Exiting...’
stop
end if
end if
write (*,)

call get ('NC_MAJO =" ,nc_majo)
if (nc_majo < 3) nc_majo = 10
if (nc_majo > NC_MAX) nc_majo = NC_MAX

write (*,*¥)
end subroutine input_data
subroutine sub (x,y,f)
real (DP), intent (in):: X, Y(2)
real (DP), intent (out):: ()
real (DP), save @ a,b
I Now computing the field
f(1) =y(2)
if (x==20) then
f(2) = z0
else
a= sqrt (X)

b =Z1+Q43*x*a

I We use abs(y(1)) as argument of sqrt() to avoid troubles when y(1) <0
f2) = (1) (o* sart (abs (y(1))*b)-Z1)-Z4*x*y(2))/(a*b)
endi
end subroutine sub

subroutine majo_result ()

real (DP), parameter : 2Z3=3,Z73=73, &
R73 = sgrt (Z73), &
Al = 9-R73, A2 = (6497-755*R73)/152, &

Q3_16 =Z73/16, Q3 =Z71/Z3, R3_16 = Q3_16 ** Q3
!

A simple implementation of the Majorana method as described in
!

I S. Esposito, Majorana solution of the Thomas—Fermi equation,
I Am. J. Phys. 70, 852 (2002).
!

thomas_fermi.fo90
~/programming/bgi—fortran/apps/

3/5
09/06/2015

integer , save @ m,n, &

mm2, mm1l, nm1, &

ml, m3_2, m6, m7, m8 2, &
nl, n4_2,n7

real (DP), save : sum_val, a(0:NC_MAX), tt((NC_MAX-2)

write (*%)

write (*, '(A)’ ,advance= 'NO’) ’'Computing MU with Majorana method...’

a(0:2) =21, A1, A2]
! print *
! print *, a(0)
' print *, a(1)
I print *, a(2)

do m =3, nc_majo

mml=m-1

mm2 = m-2
ml=m+1

m3_2 = 2*(m+3)
m6é = m+6

m7 = m+7

m8_2 = 2*(m+8)

n=mma2

nml=n-1

nl=n+1

n4_2 = 2*(n+4)

n7 =n+7

tt(n) = n1*a(n1)-n4_2*a(n)+n7*a(nml)

sum_val = Z0
don=1, mm2
sum_val = sum_val+a(m-n)*tt(n)
end do

! Partial value
a(m) = sum_val+a(mm1)*(m7-m3_2*Al)+a(mm2)*m6*Al

! Final value
a(m) = a(m)/(m8_2-m1*Al)
Iprint *, a(m)
end do

! The MU value as computed with Majorana method

sum_val = R3_16* sum(a(:nc_majo))
write (*,*)
write (*,¥) 'MU(MAJO) =", sum_val, &
‘with N =" , hc_majo+1, ‘coefficients...’
end subroutine majo_result

subroutine run_app ()
use bgi, only : YELLOW
use bgiapp , only : bgiapp_dot
use ode_integrators , only :rkdstep, deqgbs, deqrkm

! For RK4 w(NEQ,3) would be sufficient...
I For RKM w(NEQ,6) would be sufficient...
! For GBS we need w(NEQ,36)...

|

| We assume mu in (1.5,1.6) and an initial guess mu = 1.6
!

real (DP): x, xz,yl old, y(NEQ), w(NEQ,36), hO,

mu =1.6_DP, delta_mu =1.6_DP-1.5 DP

do

h0O=h

x =20
y=[21,-mu]

I Just a little greater, so that the follwing loop is executed
| at least one time

yl old =y(1)+0.1_DP
do while (y(1) >=Z0 .and. y(1) <yl old)

call bgiapp_dot (x,y(1),YELLOW)

thomas_fermi.fo90
~/programming/bgi—fortran/apps/

4/5
09/06/2015

I We take an ode integrator step
yl old =y(1)
if (id_method == 1) then
call rk4step (NEQ,h,x,y,w,sub)
else
h=ho
XZ = Xx+h
if (id_method == 2) then
call deqgbs (NEQ,x,xz,y,h,eps,w,sub)
else
call degrkm (NEQ,x,xz,y,h,eps,w,sub)
end if
X =Xz
end if
Iprint *, x,y(1)
end do

write (*,%) 'MU=" ,mu, X=X
if (abs(delta_mu) < mu_err) exit
delta_mu = sign (abs (Q2*delta_mu),y(1))
mu = mu+delta_mu
end do
write (*,¥)
write (*,*) ‘MU =", mu, ’'DELTA_MU=" |, delta_mu
write (*,%) X=1 0% yX) =" L, y(@A)

call majo_result ()

end subroutine run_app

I subroutine majo_result()

real(DP), parameter :: Z3 =3, 273 =73, &
R73 = sqrt(273), &
Al = 9-R73, A2 = (6497-755*R73)/152, &
Q3_16 =73/16, Q3 =Z71/Z3, R3_16 =Q3_16 ** Q3
!
I A simple implementation of the Majorana method as described in
|

I S. Esposito, Majorana solution of the Thomas—Fermi equation,
I Am. J. Phys. 70, 852 (2002).
|
integer, save :: m, n, &
mm2, mm1, nml, &
ml, m3 2, m6, m7, m8 2, &
nl,n4 2, n7
real(DP), save :: sum_val, a(0:NC_MAX)

write(*,*)

write(*,'(A)’,advance="NQ’) 'Computing MU with Majorana method...’

a(0:2) =[Z1, A1, A2]
! print *

! print *, a(0)

I print *, a(1)

I print *, a(2)

do m =3, nc_majo
mml=m-1
mm2 = m-2
ml=m+l
m3_2 = 2*(m+3)
m6 = m+6
m7 =m+7
m8_2 = 2*(m+8)

sum_val = Z0
don=1, mm2
nml=n-1
nl=n+1
n4_2 = 2*(n+4)
n7 =n+7

sum_val = sum_val+(a(m-n)*(n1*a(n1)-n4_2*a(n)+n7*a(nm1l)))
end do

thomas_fermi.fo90 5/5
~/programming/bgi—fortran/apps/ 09/06/2015

I I Partial value
I a(m) = sum_val+a(mm1)*(m7-m3_2*Al)+a(mm2)*m6*Al

I IFinal value

I a(m) = a(m)/(m8_2-m1*Al)
I lprint *, a(m)

! end do

I ' The MU value as computed with Majorana method
I sum_val = R3_16*sum(a(:nc_majo))

I write(*,*)
I write(*,*) 'MU(MAJO) ="', sum_val, &
! ‘'with N =, nc_majo+1, 'coefficients...’
I'end subroutine majo_result
end module thomas_fermi_lib

program thomas_fermi
use kind_consts , only : DP
use general_routines , only :system_time
use bgiapp , only : bgiapp_setup, bgiapp_init, bgiapp_close
use thomas_fermi_lib
implicit none
real (DP): 10,1

call input_data ()
call bgiapp_setup (0.0_DP,100.0_DP,-0.1_DP,1.1_DP,1000,500)
call bgiapp_init ('Thomas—Fermi Functions’)

write (*,%) 'Please wait, we are working...’
t0 = system_time()

call run_app ()
t1 = system_time()

write (*,)
write (¥, '(A,F8.3,A)) 'Completed in’ t1-t0, ' seconds!

call bgiapp_close ()
end program thomas_fermi

logistics.f90
~/programming/bgi—fortran/apps/

1/2
09/06/2015

Fortran Interface to the Xbgi—364p Library
by Angelo Graziosi (firstname.lastnameATalice.it)
Copyright Angelo Graziosi

It is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY:; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

HOW TO BUILD (GNU/Linux Mint)

cd ~/work

wget http://libxbgi.sourceforge.net/xbgi—364.tar.gz
tar —xf xbgi—364.tar.gz

cd xbgi—364/src

make

make demo

./demo
make clean
cd test
make
./mandelbrot

cd ..
mv libXbgi.a ~/programming/lib
cd ~/programming/bgi-fortran/apps

rm —rf {*. mod,~/programming/modules/*} && \

gfortran —O3 —Wall —=J ~/programming/modules \
~/programming/basic-modules/basic_mods.f90 \
..{bgi.f90,bgiapp.fo0} logistics.fo0 \
-L ~/programming/lib —=IXbgi =IX11 —Im —o logistics.out

Jlogistics.out

DESCRIPTION
We iterate the logistic equation,

p(t+1) =r* p(t) * (1-p(t))

max_iter times to say we have reached the convergence, then we plot the

next npoint iterations. All this with r parameter varying in the interval
[r_min,r_max], at steps of r_stp

A SAMPLE OF INPUT PARAMETERS
p0 =0.7,rin [2.9,3.9], r_stp = 0.001, max_iter = 1000, npoints = 100
p0 =0.7,rin [0.0,4.0], r_stp = 0.001, max_iter = 1000, npoints = 100
in a window 1000 x 268 pixels

module logistics_lib

use kind_consts , only : DP

implicit none

private

integer :: max_iter = 1000, npoints = 100

real (DP):: p0=0.7_DP,r_min=2.9 DP,r_max=3.9 DP,
r_stp =0.001_DP

public ::input_data, run_app
contains
subroutine input_data ()

use get data , only :get
|

| YOU CANNOT CALL BGI ROUTINES HERE!
1

call get ('MAX_ITER =" ,max_iter)
call get ('NPOINTS =" ,npoints)
write (*,*)

call get ('PO=" ,p0)

write (*,*)

call get ('R_MIN="",r_min)

logistics.f90
~/programming/bgi—fortran/apps/

2/2
09/06/2015

call get ('R_MAX =" ,r_max)
call get ('R_.STP=" ,r_stp)
write (*,*)

end subroutine input_data

subroutine run_app
use bgi, only : YELLOW
use bgiapp , only : bgiapp_dot
integer &k, I, n_rstp
real (DP):: r,p

I Number of r steps, rounding up
n_rstp = 1+ int ((r_max-r_min)/r_stp)

r=r_min
do =1, n_rstp
p=p0)
do k =1, max_iter
p = r*p*(1.0_DP-p)
end do

I Now we assume having reached the "convergence", i.e. a fix,
I oscillating or chaotic limit. So we can plot at most npoints points
do k =1, npoints

p = r*p*(1.0_DP-p)

! Drawing point k...
call bgiapp_dot (r,p,YELLOW)
end do

r=r+r_stp
end do
end subroutine run_app
end module logistics_lib

program logistics
use kind_consts , only : DP
use general_routines , only :system_time
use bgiapp , only : bgiapp_setup, bgiapp_init, bgiapp_close
use logistics_lib
implicit none
real (DP): tO;t1

call input_data ()
call bgiapp_setup (2.85_DP,3.95_DP,-0.05_DP,1.05_DP)
call bgiapp_init (’Logistics Equation Iterations, P(t) vs R’

write (¥, '(A) ,advance= 'NO’) ’'Please wait, we are working...’
t0 = system_time()

call run_app ()
t1 = system_time()

write (*,%)
write (¥, '(A,F8.3,A)) 'Completed in’ t1-t0, ' seconds!

call bgiapp_close ()
end program logistics

radio_decay.f90
~/programming/bgi—fortran/apps/

1/3
09/06/2015

I Fortran Interface to the Xbgi—-364p/WinBGIm-6.0 Library
! by Angelo Graziosi (firstname.lastnameATalice.it)

! Copyright Angelo Graziosi

|

! It is distributed in the hope that it will be useful,
I but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
I HOW TO BUILD XBGI (GNU/Linux Mint)
1

cd ~/work

wget http://libxbgi.sourceforge.net/xbgi—364.tar.gz

tar —xf xbgi—364.tar.gz

cd xbgi—364/src

make

make demo

|

|

|

|

|

|

|

I ./demo

I make clean
I cd test

I make

I ./mandelbrot
|
|
|
|

cd ..
mv libXbgi.a ~/programming/lib

HOW TO BUILD WIinBGIm-6.0 (MSYS2/MINGW64 shell)

cd ~/work/WinBGIm-6.0
make
mv libbgi.a ~/programming/lib/mingw64/libWinBGIm6.0.a

make clean

cd all-tests
g++ -03 -Wall -mwindows -I .. test-bgidemo0.cxx \
-L ~/programming/lib/mingw64 —-IWinBGIm6.0 \
-lgdi32 -lcomdlg32 —luuid —loleaut32 —lole32 —o test-bgidemo0

HOW TO BUILD THE APP
cd ~/programming/bgi-fortran/apps

rm —rf {*.mod,~/programming/modules/*} && \

gfortran ~O3 —Wall $BLD_OPTS -J ~/programming/modules \
~/programming/basic—-modules/basic_mods.f90 \
../{bgi.f90,bgiapp.f90} radio_decay.fo0 \
-L ~/programming/lib/$PLATFORM $LIBS -o radio_decay$EXE

Jradio_decay$EXE

BLD_OPTS =
PLATFORM =

LIBS = -IXbgi -IX11 -Im
EXE = .out

for the build on GNU/Linux

$BLD_OPTS = —static [-mwindows]
$PLATFORM = mingw64

$LIBS = —-IWinBGIm6.0 -Igdi32 -Icomdlg32 —luuid -loleaut32 —lole32 \

—Istdc++
EXE =

for the build on MSYS2/MINGW64

NOTES
An idea from

Dean Karlen ""Physics 75.502/487 — Computational Physics —

!
|
!
!
!
!
1
!
!
!
!
1
1
|
|
1
|
1
|
|
1
!
!
!
!
I where:
!
!
!
|
!
|
!
!
!
!
1
!
!
!
!
!
1
1
!
!
!
!
I Fall/Winter 1998/99""
!

radio_decay.f90
~/programming/bgi—fortran/apps/

213
09/06/2015

module radio_decay_lib
use kind_consts , only : DP
implicit none
private
integer :: num_nuclei = 100

real (DP):: alpha=0.01_DP,t step = 1, total_time = 300

real (DP): t_min, t_max, n_min, n_max

public ::input_data, run_app, t_min, t_max, n_min, n_max

contains

subroutine input_data ()
use get data , only :get
call get ('NUM_NUCLEI=",num_nuclei)
write (*,¥)
call get ('ALPHA =" ,alpha)
write (*,*)
call get ('T_STEP=" .t step)
write (*,*)
call get ('TOTAL_TIME =" ,total_time)
write (*,%)

I We take a margin of about 5% over the interval
t_min = 0.05_DP*total_time
t_max = 0 + (total_time+t_min)
t_ min=0-t_min

n_min = 0.05_DP*num_nuclei
n_max = 0 + (num_nuclei+n_min)
n_min =0 - n_min

end subroutine input_data

subroutine run_app ()
use bgi, only : LIGHTRED, setcolor, YELLOW
use bgiapp , only : bgiapp_line
integer . i, n_parents, n

real (DP): r,p,tl, t, nl_exp, n_exp, nl_the, n_the

! Initialization...
p = alpha*t_step
n_parents = num_nuclei
n = n_parents

t=0

! Initializing "prev" variables, i.e. variables at "previous" time

1=t
nl_exp = n_parents
nl_the = n_parents

1 LOOP over time..
do while (t < total_time)
I LOOP over each remaining parent nucleus
doi=1,n
call random_number (r)

! Decide if the nucleus decays..

I'If it decays, reduce the number of parents by 1

if (r<p)n_parents =n_parents—1
end do

! Update time to current
t = t+t_step

! The "experimental” result at current time
n_exp = n_parents

! The "expected" result at current time
n_the = num_nuclei* exp (-alpha*t)

I'PLOT N vs. t: "experimental"...
call setcolor (YELLOW)
call bgiapp_line (t1,n1_exp,t,n_exp)

I..."expected" or "theoretical"
call setcolor (LIGHTRED)
call bgiapp_line (t1,n1_the,t,n_the)

radio_decay.f90
~/programming/bgi—fortran/apps/

3/3
09/06/2015

! Update current number of nuclei and the plotting "positions"..

n=n_parents

t1=t

nl_exp = n_exp
nl_the =n_the

end do
end subroutine run_app
end module radio_decay_lib

program radio_decay
use kind_consts , only : DP
use general_routines , only :system_time
use randoms, only :init_random_seed
use bgiapp , only : bgiapp_setup, bgiapp_init, bgiapp_close
use radio_decay_lib

implicit
real (DP)

call init_|

none

oo t0,t1

random_seed ()

call input_data ()
call bgiapp_setup (t_min,t_max,n_min,n_max,900,900)
call bgiapp_init (’Simulating Radioactive Decay’)

write (%)

'Please wait, we are working...’

t0 = system_time()
call run_app ()
t1 = system_time()

write (*,%)

write (¥,

'(A,F8.3,A)) 'Completed in’ t1-t0, ' seconds!

call bgiapp_close ()

end program

radio_decay

joule_expansion.fo0
~/programming/bgi—fortran/apps/

1/3
09/06/2015

!

! Fortran Interface to the Xbgi—-364p/WinBGIm—-6.0p Libraries
! by Angelo Graziosi (firstname.lastnameATalice.it)

! Copyright Angelo Graziosi

|

! It is distributed in the hope that it will be useful,
I but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
I HOW TO BUILD XBGI (GNU/Linux Mint)
1

cd ~/work

wget http://libxbgi.sourceforge.net/xbgi—364.tar.gz

tar —xf xbgi—364.tar.gz

cd xbgi—364/src

make

make demo

make clean
cd test
make
/mandelbrot

!

!

!

!

!

!

!

I ./demo
!

!

!

!

!

I cd..

I mv libXbgi.a ~/programming/lib
!

HOW TO BUILD WIinBGIm-6.0 (MSYS2/MINGW64 shell)

cd ~/work/WinBGIm-6.0
make
mv libbgi.a ~/programming/lib/mingw64/libWinBGIm6.0.a

make clean

cd all-tests
g++ -03 -Wall -mwindows -I .. test-bgidemo0.cxx \
-L ~/programming/lib/mingw64 —-IWinBGIm6.0 \
-lgdi32 -lcomdlg32 —luuid —loleaut32 —lole32 —o test-bgidemo0

HOW TO BUILD THE APP
cd ~/programming/bgi-fortran/apps

|

I

1

|

|

|

1

1

|

1

1

|

I

1

|

|

!

I rm —rf {*\mod,~/programming/modules/*} && \
! gfortran —O3 -Wall $BLD_OPTS -J ~/programming/modules \
I ~/programming/basic—-modules/basic_mods.fo0 \
I ../{bgi.f90,bgiapp.f0} joule_expansion.fo0 \
I —L ~/programming/lib/$SPLATFORM $LIBS -o joule_expansion$EXE
|

I

1

|

1

|

1

1

|

I

|

|

1

1

|

1

|

1

1

|

Jjoule_expansion$SEXE
where:
BLD_OPTS =
PLATFORM =
LIBS = -IXbgi —IX11 —Im
EXE = .out
for the build on GNU/Linux

$BLD_OPTS = —static [-mwindows]
$PLATFORM = mingw64

$LIBS = —-IWinBGIm6.0 -Igdi32 -Icomdlg32 —luuid -loleaut32 —lole32 \

—Istdc++
EXE =

for the build on MSYS2/MINGW64

module joule_expansion_lib

use kind_consts , only : DP

implicit none

private

integer :: natoms = 1000 I Number of atoms

real (DP):: x0=0.25 DP,1=3,h I boxes offset, size, half size

joule_expansion.fo0
~/programming/bgi—fortran/apps/

213
09/06/2015

public ::input_data, run_app
contains
subroutine input_data ()

use get data , only :get

call get ('NATOMS =" ,natoms)

call get ('X0=",x0)
call get(L=")
write (*,%)

h =1*0.5_DP

end subroutine input_data

subroutine draw_gasbox (n,a,b)
use bgi, only : CENTER_TEXT, RED, setcolor, settextjustify, TOP_TEXT,
YELLOW, WHITE
use bgiapp , only : bgiapp_box, bgiapp_dot, bgiapp_text
integer , intent (in): n

real (DP), intent (in):: a(:), b(}) ! The top-left and bottom-right corners

integer i
real (DP): x1,x2,yl,y2,X,Y, u(2)
character (len = 20) : buf

x1 =a(1)
x2 =b(1)
yl=0(2)
y2=a(2)

write (buf,*) n

call setcolor (RED)
call bgiapp_box (x1,x2,yl,y2)

call settextjustify (CENTER_TEXT, TOP_TEXT)

call setcolor (WHITE)

call bgiapp_text ((x1+x2)/2,y1-h/4, trim (adjustl (buf)))
doi=1,n

call random_number (u)

x = x1+u(1)*(x2-x1)
y = y1+u(2)*(y2-y1)

call bgiapp_dot (x,y,YELLOW)
end do
end subroutine draw_gasbox

subroutine run_app ()
use bgi, only : clearviewport, delay, getvisualpage, quit, setactivepage,
swapbuffers
real (DP), dimension (2):: al, bl, cl, d1, a2, b2, c2, d2, dx, dy
real (DP): u,p
integer 1 nl,n2

! Steps to "build" the boxes
dx=[1,0.0_DP]
dy =[0.0_DP, 1]

| Boxes initialization
! first...
al=[-x0,-h]
bl = al-dx
cl = bl+dy
dl = cl+dx

I second...
a2 =[x0, -h]
b2 = a2+dx
c2 = b2+dy
d2 = c2-dx

I'Initialization of the number of atoms in boxes
nl = natoms
n2=0

| By default, the current visual and active page is 0 (zero),
! so we select the off screen page for drawing

joule_expansion.fo0
~/programming/bgi—fortran/apps/

3/3
09/06/2015

call setactivepage (1)

! Draw gas boxes on the off screen
call draw_gasbox (nl,cl,al)
call draw_gasbox (n2,d2,b2)

! Main loop
do while (.not. quit())

p:

I The current active (off screen) page becomes the visual page
I'and the current visual page becomes the off screen page, i.e.

I what is drawn on the off screen is outputted on the screen visible
call swapbuffers ()

I We clear the off screen forqg the next drawing
call clearviewport 0

I Computing the expansion...
(n1+0.0_DP)/natoms
call random_number (u)

if (u<p) then

if (n1>0)nl=n1-1
else

if (nl<natoms)nl=nl+l
end if

n2 = natoms—-nl

end

! Draw gas expansion boxes on the off screen
call draw_gasbox (nl,cl,al)
call draw_gasbox (n2,d2,b2)

call delay (1)
do

| Making active page the same as visual page
call setactivepage (getvisualpage())
end subroutine run_app
end module joule_expansion_lib

program joule_expansion

use kind_consts , only : DP

use general_routines , only :system_time

use randoms, only :init_random_seed

use bgiapp , only : bgiapp_setup, bgiapp_init, bgiapp_close
use joule_expansion_lib

implicit none

real (DP): 1O, t1

call init_random_seed ()

call input_data ()

call bgiapp_setup (-4.0_DP,4.0_DP,-3.0_DP,3.0_DP,800,600)
call bgiapp_init (’Joule Expansion’)

write (¥, '(A)’ ,advance= 'NO’) ’'Please wait, we are working...’

t0 = system_time()

call

run_app ()

t1 = system_time()

write
write

call

* X
’

*, '(A,F9.3,A)) 'Completedin’ t1-t0, ' seconds!

bgiapp_close ()

end program joule_expansion

balls_sim.f90 1/4
~/programming/bgi—fortran/apps/ 09/06/2015

I Fortran Interface to the Xbgi—-364p Library

! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi

|

! It is distributed in the hope that it will be useful,

I but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|

I'HOW TO BUILD (GNU/Linux Mint)

1

cd ~/work

wget http://libxbgi.sourceforge.net/xbgi—364.tar.gz

tar —xf xbgi—364.tar.gz

cd xbgi—364/src

make

make demo

./demo
make clean
cd test
make
./mandelbrot

cd ..
mv libXbgi.a ~/programming/lib
cd ~/programming/bgi-fortran/apps

rm —rf {*. mod,~/programming/modules/*} && \

gfortran —O3 —Wall —=J ~/programming/modules \
~/programming/basic-modules/basic_mods.f90 \
..{bgi.f90,bgiapp.f90} balls_sim.f90 \
-L ~/programming/lib =IXbgi -IX11 —Im —o balls_sim.out

|
1
|
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
I ./balls_sim.out
|

module balls_sim_lib

use kind_consts , only : DP
implicit none
private

type ball_type
real (DP):: mass=0.0_DP, &
density = 0.0_DP, &
radius = 0.0_DP
real (DP), dimension (2):: frc =0.0_DP, &
acc =0.0_DP, &
vel =0.0_DP, &
pos = 0.0_DP
end type ball_type

integer 1 nballs=12
real (DP): density =0.01_DP, stiffnes = 5.0E5_DP
real (DP):: mO0=400.0_DP, m1=28000.0_DP, &

tstep = 1.0_DP/512 11.953125E-03 = 0.000000001_2
real (DP): box_xmin, box_xmax, box_ymin, box_ymax
type(ball_type) , allocatable o ball(y)

public :: balls_on, balls_off, input_data, run_app, setup_balls
contains

subroutine balls_on ()
integer i ierr

allocate (ball(nballs),stat=ierr)
if (ierr/=0) then
write (*,%) " EATAL ERROR ***
write (*,*) 'BALL: Allocation request denied’
stop
end if
end subroutine balls_on

subroutine balls_off ()
integer i ierr

if (allocated (ball)) deallocate (ball,stat=ierr)

balls_sim.f90
~/programming/bgi—fortran/apps/

2/4
09/06/2015

if (ierr/=0) then
write (*,*) "% FEATAL ERROR ***
write (*,%) 'BALL: Deallocation request denied’

stop
end if
end subroutine balls_off
subroutine input_data ()
use get data , only :get
call get ('NBALLS =" ,nballs)
call get ('DENSITY =" ,density)
call get ('STIFFNES =" ,stiffnes)
call get ('TSTEP =", tstep)
write (*,*)
call get ('MO=" ,mO)
call get ('M1=" ,ml)
end subroutine input_data

subroutine setup_balls ()
use math_consts , only : Pl
use randoms, only :init_random_seed
use bgi, only :setrgbpalette

use bgiapp , only : bgiapp_xmin, bgiapp_xmax, bgiapp_ymin, bgiapp_ymax

real (DP), parameter : Z3=1.0_DP/3, Z43PI = 4*Z3*PI
real (DP):: u(9)
integer & i

! Getting the box boundaries...
box_xmin = bgiapp_xmin()
box_xmax = bgiapp_xmax()
box_ymin = bgiapp_ymin()
box_ymax = bgiapp_ymax()

! Use timer to generate random numbers
call init_random_seed ()

| Set startup conditions of elastic balls
do i =1, nballs
call random_number (u)

I The RGB color for i-ball
call setrgbpalette @i, int (64+u(1)*192), int (64+u(2)*192),

ball(i)%mass = m0+(i—1)*(m1-mO0)/(nballs-1)
ball(i)%density = density

ball(i)%radius = ((ball(i)%mass/ball(i)%density)/Z43P1)**Z3

ball(i)%pos = [(1.0_DP-u(4))*(box_ xm|n+ball(|)%rad|us)
+u(4)*(box_xmax-ball(i)%radius),
(1.0_DP-u(5))*(box_ymin+ball(i)%radius) &
+u(5)*(box_ymax-ball(i)%radius)]

ball(i)%vel = 200*[u(6)-u(7), u(8)-u(9)]
end do
end subroutine setup_balls

subroutine draw_ball (p,r,col)
use bgi, only :setrgbcolor
use bgiapp , only : bgiapp_circle
real (DP), intent (in):: pC), r
integer , intent (in) : col

call setrgbcolor (col)

call bgiapp_circle (p(1),p(2).r)

call bgiapp_circle (p(1),p(2),r-0.5_DP)

call bgiapp_circle (p(1),p(2),r-1.0_DP)
end subroutine draw_ball

subroutine run_app ()

use bgi, only :clearviewport, delay, getvisualpage, quit, setactivepage,

swapbuffers
real (DP): force(2), ball_distance, dist_min, dst(2)
integer i,]

! By default, the current visual and active page is 0 (zero),

int (64+u(3)*192))

balls_sim.f90
~/programming/bgi—fortran/apps/

3/4
09/06/2015

! so we select the off screen page for drawing
call setactivepage (1)

! Draw elastic balls on the off screen page
do i =1, nballs

call draw_ball (ball(i)%pos,ball(i)%radius,i)
end do

I Main loop

do while (.not. quit())
! The current active (off screen) page becomes the visual page
'and the current visual page becomes the off screen page, i.e.
I what is drawn on the off screen is outputted on the screen visible
call swapbuffers ()

I We clear the off screen for the next drawing
call clearviewport ()

| Test all elastic balls against each other.

I Calculate forces if they touch.

do i =1, nballs-1

do j=i+1, nballs
I Distance between elastic balls (Pythagoras’ theorem)

dst = ball(j)%pos—ball(i)%pos
ball_distance = norm?2 (dst)
dist_min = ball(i)%radius+ball(j)%radius

if (ball_distance < dist_min) then
! Cosine and sine to the angle between ball i and j
! (trigonometry): here 'force’ is a unit vector!
force = dst/ball_distance

! Spring force (Hooke’s law of elasticity)
! Here ’force’ is the total force of i’ on ’j’
I (All capital letters are vectors)

|

I F(i—>j)=-k*S = —k*Bd-Dm) = —-k*(|Bd|~|Dm[)*U
! U =Bd/|Bd|
force = —stiffnes*(ball_distance—-dist_min)*force

L) = F()+FG.D) = FO)-F(i), FG) = FG)+F (i)
! being F(i,j) the force of '’ on ’}’
ball(i)%frc = ball(i)%frc-force
ball(j)%frc = ball(j)%frc+force
end if
end do
end do

I Update acceleration, velocity, and position of elastic balls
! (using the Euler-Cromer 1st order integration algorithm)
do i =1, nballs
! Accelerate balls (acceleration = force / mass)
ball(i)%acc = ball(i)%frc/ball(i)%mass

| Reset force vector
ball(i)%frc = 0.0_DP

! Update velocity

I delta velocity = acceleration * delta time

I new velocity = old velocity + delta velocity
ball(i)%vel = ball(i)%vel+ball(i)%acc*tstep

! Update position
I delta position = velocity * delta time
I new position = old position + delta position
ball(i)%pos = ball(i)%pos+ball(i)%vel*tstep
end do

! Keep elastic balls within screen boundaries
do i =1, nballs
! Right
if (ball(i)%pos(1) > box_xmax-ball(i)%radius)
ball(i)%vel(1) = —ball(i)%vel(1)
ball(i)%pos(1) = box_xmax-ball(i)%radius
end if

I Left
if (ball(i)%pos(1) < box_xmin+ball(i)%radius)

then

then

balls_sim.f90 4/4
~/programming/bgi—fortran/apps/ 09/06/2015

ball(i)%vel(1) = —ball(i)%vel(1)
ball(i)%pos(1) = box_xmin+ball(i)%radius
end if

I Top

if (ball(i)%pos(2) > box_ymax-ball(i)%radius) then
ball(i)%vel(2) = —ball(i)%vel(2)
ball(i)%pos(2) = box_ymax-ball(i)%radius

end if

! Bottom
if (ball(i)%pos(2) < box_ymin+ball(i)%radius) then
ball(i)%vel(2) = —ball(i)%vel(2)
ball(i)%pos(2) = box_ymin+ball(i)%radius
end if
end do

! Draw elastic balls update positions on the off screen
do i =1, nballs
call draw_ball (ball(i)%pos,ball(i)%radius,i)
end do
call delay (1)
end do

I Making active page the same as visual page
call setactivepage (getvisualpage())
end subroutine run_app
end module balls_sim_lib

program balls_sim
use kind_consts , only : DP
use general_routines , only :system_time
use bgiapp , only : bgiapp_setup, bgiapp_init, bgiapp_close
use balls_sim_lib
implicit none

real (DP): 1O, t1

call input_data ()
call balls_on ()

call bgiapp_setup (-400.0_DP,400.0_DP,-300.0_DP,300.0_DP,800,600)
call bgiapp_init (’Bouncing Balls Simulation’)
call setup_balls ()

write (¥, '(A) ,advance= 'NO’) ’'Please wait, we are working...’

t0 = system_time()
call run_app ()
t1 = system_time()

write (*,*)
write (*, '(A,F9.3,A)) 'Completedin’ ,11-t0, ' seconds!

call bgiapp_close ()
call balls_off ()
end program balls_sim

hopalong.fo90

~/programming/bgi—fortran/demo/

1/2
09/06/2015

I Fortran Interface to the Xbgi—-364p Library

! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi

|

i It is distributed in the hope that it will be useful,

I but WITHOUT ANY WARRANTY; without even the implied warranty of
I MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

1

I'HOW TO BUILD (GNU/Linux Mint)
|
cd ~/work
wget http://libxbgi.sourceforge.net/xbgi—364.tar.gz
tar —xf xbgi—364.tar.gz
cd xbgi—364/src
make
make demo

|

|

|

|

|

|

|

I ./demo

I make clean
I cd test

I make

I ./mandelbrot
|
|
|
|

cd ..
mv libXbgi.a ~/programming/lib
cd ~/programming/bgi—fortran/demo

I rm —rf {*mod,~/programming/modules/*} && \

I gfortran —~O3 —Wall —=J ~/programming/modules \

I ../bgi.f90 hopalong.fo0 \

I =L ~/programming/lib =IXbgi -IX11 —Im -0 hopalong.out
|

|

1

./hopalong.out

program hopalong
use bgi, only : BLACK, X11, X11_1280x1024, YELLOW, &
cleardevice, closegraph, rgb_color, CString, detectgraph,
getmaxx, getmaxy, initgraph, kbhit, outtextxy, fast_putpixel,
refresh, setbkcolor, setcolor

implicit none

integer 1 gd=X11, gm=X11 1280x1024, counter
real], Kk, Xy, XX, xp, yp, xoffs, yoffs, u(3)

logical :: stop_app

call init_random_seed ()

Icall detect_graph(gd,gm)
call initgraph (gd,gm,CString(")

call setbkcolor (BLACK)

call cleardevice ()

call setcolor (YELLOW)

call outtextxy (0,0,CString('Press a key to exit...’)

xoffs = getmaxx() / 2.
yoffs = getmaxy() / 3.

call random_number (u(1:2))

j = u(1)*100.
k = u(2)*100.

x=0.
y=0.
xx = 0.
xp = 0.
yp = 0.

I Random RGB
call random_number (u(1:3))
call setcolor (rgb_color(int (u(1)*256.), int (u(2)*256.),

counter =0
stop_app = false.
dowhile (' .not. stop_app)

int (u(3)*256.)))

hopalong.fo0 2/2

~/programming/bgi—fortran/demo/ 09/06/2015
XX = sgrt (abs (k*x-1.))
XX = y— sign (xx,X)
y=j-x
X = XX

Xp = 2*x+xoffs
yp = 2*y+yoffs

call fast_putpixel (int (xp), Int (yp))
counter = counter+1

if (counter == 50000) then
counter = 0
I Random RGB

call random_number (u(1:3))
call setcolor (rgb_color(int (u(1)*256.), int (u(2)*256.), int (u(3)*256.)))

call refresh
if (kbhit() /= 0) stop_app = true.
end if
end do

call closegraph ()

contains
subroutine init_random_seed ()
integer : i=0,n,clock
integer , dimension (), allocatable : seed

call random_seed (size =n)
allocate (seed(n))
clock = time()
Icall system_clock(count = clock)
seed = clock+37*(/ (i-1,i=1,n) /)
call random_seed (put = seed)
deallocate (seed)
end subroutine init_random_seed
end program hopalong

bgi.f90

~/programming/bgi—fortran/

1/15
09/06/2015

I Fortran Interface to the Xbgi—-364p Library

! by Angelo Graziosi (firstname.lastnameATalice.it)

! Copyright Angelo Graziosi
!

i It is distributed in the hope that it will be useful,

I but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

I This is the "bgi’ module.
!

module bgi
use, intrinsic
C_FUNPTRc_f_pointer,
C_SIGNED_CHAR C_SIZE_T

implicit
private

none

iso_c_binding

I BGI CONSTANTS

integer , parameter , public
! BGI colors

integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter

only : c_associated,

C_BOOL C_CHAR &

C_INT, c_loc, C_NULL_CHAR C_PTR &

MAXBUF = 256
public BLACK =0
public BLUE =1
public GREEN =2
public CYAN =3
public RED =4
public MAGENTA =5
public BROWN =6
public LIGHTGRAY =7
public DARKGRAY =8
public LIGHTBLUE =9
public LIGHTGREEN =10
public LIGHTCYAN =11
public LIGHTRED = 12
public LIGHTMAGENTA =13
public YELLOW =14
public WHITE =15
public CGA_LIGHTGREEN = 1
public CGA_LIGHTRED =2
public CGA_YELLOW =3
public CGA_LIGHTCYAN =1
public CGA_LIGHTMAGENTA =2
public CGA_WHITE =3
public CGA_GREEN =1
public CGA_RED =2
public CGA_BROWN =3
public CGA CYAN =1
public CGA_MAGENTA =2
public CGA_LIGHTGRAY =3
public EGA_BLACK =0
public EGA BLUE=1
public EGA_GREEN =2
public EGA CYAN=3
public EGA_RED =4
public EGA_MAGENTA =5
public EGA_LIGHTGRAY =7
public EGA_BROWN = 20
public EGA_DARKGRAY =56
public EGA_LIGHTBLUE = 57
public EGA_LIGHTGREEN =58
public EGA_LIGHTCYAN =59
public EGA_LIGHTRED = 60
public EGA_LIGHTMAGENTA = 61
public EGA_YELLOW =62
public EGA_WHITE = 63
public MAXCOLORS =15
public MAXRGBCOLORS = 4096

bgi.f90

~/programming/bgi—fortran/

2/15
09/06/2015

integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),

integer (C_INT),

I Line styles

integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),

integer (C_INT),
integer (C_INT),

integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),

! Fonts

integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),

integer (C_INT),

I Direction constants
integer (C_INT),
integer (C_INT),

I Justifications

integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),

! Writing modes

integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),

I Pages
integer (C_INT),

! Graphics errors

integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),
integer (C_INT),

parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter

parameter
parameter
parameter
parameter
parameter

parameter
parameter

parameter
parameter
parameter
parameter

parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter

parameter
parameter

parameter
parameter
parameter
parameter
parameter

parameter
parameter
parameter
parameter
parameter

parameter

parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter
parameter

public
public
public
public
public
public
public
public
public
public
public
public
public

public
public
public
public
public

public
public

public
public
public
public

public
public
public
public
public
public
public
public
public
public
public
public

public
public

public
public
public
public
public

public
public
public
public
public

public

public
public
public
public
public
public
public
public
public
public
public
public

EMPTY_FILL =0
SOLID_FILL =1
LINE_FILL =2
LTSLASH_FILL =3
SLASH_FILL=4
BKSLASH_FILL =5
LTBKSLASH_FILL =6
HATCH_FILL =7
XHATCH_FILL =8
INTERLEAVE_FILL =9
WIDE_DOT_FILL =10
CLOSE_DOT_FILL=11
USER_FILL =12

SOLID_LINE =0

DOTTED_LINE =1
CENTER_LINE =2
DASHED_LINE =3
USERBIT_LINE =4

NORM_WIDTH =1
THICK_WIDTH =3

DOTTEDLINE_LENGTH =2
CENTRELINE_LENGTH =4
DASHEDLINE_LENGTH = 2
USERBITLINE_LENGTH = 16

DEFAULT_FONT =0
TRIPLEX_FONT = 1
SMALL_FONT =2
SANSSERIF_FONT = 3
GOTHIC_FONT = 4
BIG_FONT =5
SCRIPT_FONT =6
SIMPLEX_FONT =7
TRIPLEX_SCR_FONT =8
COMPLEX_FONT =9
EUROPEAN_FONT = 10
BOLD_FONT = 11

HORIZ_DIR =0
VERT_DIR=1

LEFT_TEXT =0
CENTER_TEXT =1
RIGHT_TEXT =2
BOTTOM_TEXT =0
TOP_TEXT =2

COPY_PUT =0
XOR_PUT =1
OR _PUT =2
AND_PUT =3
NOT_PUT =4

MAX_PAGES =4

grok =0
grNolnitGraph = -1
grNotDetected = -2
grFileNotFound = -3
grinvalidDriver = -4
grNoLoadMem = -
grNoScanMem = -6
grNoFloodMem = -7
grFontNotFound = -8
grNoFontMem = -9
grinvalidMode = -10
grError = -11

GG

bgi.f90
~/programming/bgi—fortran/

3/15
09/06/2015

integer (C_INT), parameter |,
integer (C_INT), parameter ,
integer (C_INT), parameter |,
integer (C_INT), parameter ,
integer (C_INT), parameter ,

public
public
public
public
public

griOerror = -12
grinvalidFont = -13
grinvalidFontNum = -14
grinvalidDeviceNum = -15
grinvalidVersion = -18

I Graphics drivers constants, includes X11 wh|ch is particular to XBGl.

integer (C_INT), parameter ,
integer (C_INT), parameter |,
integer (C_INT), parameter ,
integer (C_INT), parameter ,
integer (C_INT), parameter |,
integer (C_INT), parameter ,
integer (C_INT), parameter |,
integer (C_INT), parameter ,
integer (C_INT), parameter ,
integer (C_INT), parameter |,
integer (C_INT), parameter ,
integer (C_INT), parameter ,

I Graphics modes constants.

integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter

integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter

integer (C_INT), parameter ,
integer (C_INT), parameter |,

integer (C_INT), parameter ,
integer (C_INT), parameter |,

integer (C_INT), parameter ,
integer (C_INT), parameter ,

integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter

integer (C_INT), parameter ,
integer (C_INT), parameter |,
integer (C_INT), parameter ,

integer (C_INT), parameter |,

integer (C_INT), parameter |,
integer (C_INT), parameter ,

integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter
integer (C_INT), parameter

integer (C_INT), parameter

integer (C_INT), parameter
integer (C_INT), parameter

public
public
public
public
public
public
public
public
public
public
public
public

public
public
public
public
public

public
public
public
public
public
public

public
public

public
public

public
public

public
public
public
public
public
public

public
public
public

public

public
public

public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public

DETECT =0
CGA=1
MCGA =2
EGA=3
EGA64 =4
EGAMONO =5
IBM8514 = 6
HERCMONO =7
ATT400 =8
VGA=9
PC3270 =10
X1l1=11

CGACO=0
CGAC1=1
CGAC2=2
CGAC3=3
CGAHI =

MCGACO0 =0
MCGAC1=1
MCGAC2 =2
MCGAC3 =3
MCGAMED = 4
MCGAHI =

EGALO =0
EGAHI =1

EGAG64LO =0
EGAG4HI =

EGAMONOHI= 3
HERCMONOHI =0

ATT400C0 =0
ATT400C1 =1
ATT400C2 =2
ATT400C3 =3
ATT400MED =4
ATT400HI =

VGALO =0
VGAMED =1
VGAHI =2

PC3270HI =0

IBM8514LO =0
IBM8514HI =1

X11 CGALO =0
X11_CGAHI =1
X11_EGA =2
X11_VGA =3
X11_640x480 = 3
X11_HERC = 4
X11_PC3270=5
X11_SVGALO =6
X11_800x600 = 6
X11_SVGAMED1 = 7
X11_1024x768 = 7
X11_SVGAMED2 = 8
X11_1152x900 = 8
X11_SVGAHI =9
X11_1280x1024 = 9
X11_WXGA = 10
X11_1366x768 = 10
X11_USER =11

bgi.f90

~/programming/bgi—fortran/

4/15
09/06/2015

integer (C_INT), parameter , public : X11 FULLSCREEN =12

! Key codes

integer (C_INT), parameter , public : KEY_HOME =80

integer (C_INT), parameter , public : KEY_LEFT =81

integer (C_INT), parameter , public : KEY_UP =82

integer (C_INT), parameter , public : KEY_RIGHT =83

integer (C_INT), parameter , public : KEY_DOWN =84

integer (C_INT), parameter , public : KEY_PGUP =85

integer (C_INT), parameter , public : KEY_PGDN =86

integer (C_INT), parameter , public : KEY_END =87

integer (C_INT), parameter , public : KEY_INSERT =99

integer (C_INT), parameter , public : KEY_DELETE=-1

integer (C_INT), parameter , public : KEY_F1=-66

integer (C_INT), parameter , public : KEY_F2=-65

integer (C_INT), parameter , public : KEY_F3=-64

integer (C_INT), parameter , public : KEY_F4=-63

integer (C_INT), parameter , public : KEY_F5=-62

integer (C_INT), parameter , public : KEY_F6=-61

integer (C_INT), parameter , public : KEY_F7=-60

integer (C_INT), parameter , public : KEY_F8=-59

integer (C_INT), parameter , public : KEY_F9=-58

integer (C_INT), parameter , public : KEY_F10=-57

integer (C_INT), parameter , public : KEY_F11=-56

integer (C_INT), parameter , public : KEY_F12=-55

integer (C_INT), parameter , public : KEY_LEFT_CTRL =-29

integer (C_INT), parameter , public : KEY_RIGHT_CTRL =-28

integer (C_INT), parameter , public : KEY_LEFT_SHIFT =-31

integer (C_INT), parameter , public : KEY_RIGHT_SHIFT =-30

integer (C_INT), parameter , public : KEY_LEFT_ALT=-23

integer (C_INT), parameter , public : KEY_LEFT_WIN=-21

integer (C_INT), parameter , public : KEY_RIGHT_WIN =-20

integer (C_INT), parameter , public : KEY_ALT GR=3

integer (C_INT), parameter , public :: KEY_TAB=38

integer (C_INT), parameter , public : KEY_BS=9

integer (C_INT), parameter , public : KEY_RET=13

integer (C_INT), parameter , public : KEY_PAUSE =19

integer (C_INT), parameter , public : KEY_SCR_LOCK =20

integer (C_INT), parameter , public : KEY_ESC=27

! Mouse constants

integer (C_INT), parameter , public : WM_LBUTTONDOWN = 1! left button
integer (C_INT), parameter , public : WM_MBUTTONDOWN = 2 middle button
integer (C_INT), parameter , public : WM_RBUTTONDOWN = 3 right button
integer (C_INT), parameter , public : WM_WHEELUP =4 ' wheel up
integer (C_INT), parameter , public : WM_WHEELDOWN =5 !wheel down
integer (C_INT), parameter , public : WM_MOUSEMOVE =6 ! motion

I This type records information about the last call to arc. It is used
I by getarccoords to get the location of the endpoints of the arc

type , bind (c) : arccoordstype
integer (C_INT): X,y ! Center point of the arc
integer (C_INT):: xstart, ystart | The starting position of the arc
integer (C_INT): xend, yend ! The ending position of the arc

end type arccoordstype

I This type defines the fill style for the current window. Pattern is
I one of the system patterns such as SOLID_FILL. Color is the color to
il with

type , bind (c) : fillsettingstype
integer (C_INT):: pattern ! Current fill pattern
integer (C_INT):: color ! Current fill color

end type fillsettingstype

! This type records information about the current line style.
I'linestyle is one of the line styles such as SOLID_LINE, upattern is a
I 16-hit pattern for user defined lines, and thickness is the width of the

I'line in pixels

type , bind (c) : linesettingstype
integer (C_INT):: linestyle ! Current line style
integer (C_INT):: upattern I 16—bit user line pattern (unsigned!)
integer (C_INT):: thickness I Width of the line in pixels

end type linesettingstype

bgi.f90 5/15
~/programming/bgi—fortran/ 09/06/2015

! This type records information about the text settings

type , bind (c) : textsettingstype
integer (C_INT): font ! The font in use
integer (C_INT):: direction I Text direction
integer (C_INT):: charsize I Character size
integer (C_INT): horiz ! Horizontal text justification
integer (C_INT): vert I Vertical text justification

end type textsettingstype

I This type records information about the viewport
type , bind (c) : viewporttype

I Viewport bounding box

integer (C_INT):: left, top, right, bottom

! Whether to clip image to viewport
integer (C_INT):: clip
end type viewporttype

I This type records information about the palette
type , bind (c) : palettetype

integer (C_SIGNED_CHAR:: size

integer (C_SIGNED_CHAR:: colors(0:MAXCOLORS)
end type palettetype

! This type records information about the (bitmap)image
type : imagetype

I Pointer to the data

type(C_PTR) : image_ptr

integer :: width
integer : height
end type imagetype

I BGI INTERFACE
!

interface

I Drawing routines...
subroutine arc (x,y,stangle,endangle,radius) bind (c)
import :: C_INT
integer (C_INT), value : x,y, stangle, endangle, radius
end subroutine arc

subroutine bar (left,top,right,bottom) bind (c)
import :: C_INT
integer (C_INT), value : left, top, right, bottom
end subroutine bar

subroutine bar3d (left,top,right,bottom,depth,topflag) bind (c)
import 1 C_INT
integer (C_INT), value : left, top, right, bottom, depth, topflag

end subroutine bar3d

subroutine circle (x,y,radius) bind (c)
import 1 C_INT
integer (C_INT), value : XY, radius
end subroutine circle

subroutine cleardevice () bind (c)
end subroutine cleardevice

subroutine clearviewport () bind (c)

end subroutine clearviewport

subroutine c_drawpoly (numpoints,polypoints) bind (c, name= ‘drawpoly’)
import 1 C_INT
integer (C_INT), value : numpoints
! polypoints should be an array of 2*numpoints elements
integer (C_INT), intent (in):: polypoints(*)

end subroutine c_drawpoly

subroutine ellipse (x,y,stangle,endangle,xradius,yradius) bind (c)
import 1 C_INT
integer (C_INT), value : XY, stangle, endangle, xradius, yradius

end subroutine ellipse

bgi.fo0 6/15

~/programming/bgi—fortran/ 09/06/2015
subroutine fillellipse (x,y,xradius,yradius) bind (c)
import 1 C_INT
integer (C_INT), value : XY, xradius, yradius
end subroutine fillellipse
subroutine c_fillpoly (numpoints,polypoints) bind (c, name="fillpoly’)
import 1 C_INT
integer (C_INT), value : numpoints
! polypoints should be an array of 2*numpoints elements
integer (C_INT), intent (in):: polypoints(*)
end subroutine c_fillpoly
subroutine floodfill (x,y,border) bind (c)
import 1 C_INT
integer (C_INT), value : XY, border
end subroutine floodfill

subroutine line (x1,y1,x2,y2) bind (c)
INT

import @ C_
integer (C_INT), value : x1,vy1,x2,y2
end subroutine line

subroutine linerel (dx,dy) bind (c)

import :: C_INT
integer (C_INT), value : dx,dy
end subroutine linerel

subroutine lineto (x,y) bind (c)
import :: C_INT
integer (C_INT), value : Xx,y
end subroutine lineto

subroutine pieslice (x,y,stangle,endangle,radius) bind (c)
import :: C_INT
integer (C_INT), value : x,Y, stangle, endangle, radius

end subroutine pieslice

subroutine fast_putpixel (x,y) bind (c, name= '_putpixel’)
import 1 C_INT
integer (C_INT), value : X,y

end subroutine fast_putpixel

subroutine putpixel (x,y,color) bind (c)
import 1 C_INT
integer (C_INT), value : XY, color
end subroutine putpixel

subroutine rectangle (left,top,right,bottom) bind (c)
import :: C_INT
integer (C_INT), value : left, top, right, bottom

end subroutine rectangle

subroutine sector (x,y,stangle,endangle,xradius,yradius) bind (c)
import :: C_INT
integer (C_INT), value : x,Y, stangle, endangle, xradius, yradius

end subroutine sector

I Miscellaneous routines..
function converttorgb (v) bind (c)

import :: C_INT
integer (C_INT): converttorgb
integer (C_INT), value : v
end function converttorgb
subroutine delay (millisec) bind (c)
import 1 C_INT
integer (C_INT), value : millisec
end subroutine delay
function event () bind (c)
import :: C_INT
integer (C_INT): event
end function event
subroutine getarccoords (arccoords) bind (c)

import :: arccoordstype

bgi.f90

~/programming/bgi—fortran/

7/15
09/06/2015

type(arccoordstype) , Intent (out) : arccoords
end subroutine getarccoords
function getbkcolor () bind (c)
import 1 C_INT
integer (C_INT): getbkcolor
end function getbkcolor
function getcolor () hind (c)
import :: C_INT
integer (C_INT): getcolor
end function getcolor
function getevent () bind (c)
import :: C_INT
integer (C_INT): getevent
end function getevent
subroutine c_getfillpattern (cstr) bind (c, name= ‘’getffillpattern’
import @ C_PTR
type(C_PTR) , value : cstr
end subroutine c_getfillpattern
subroutine getfillsettings (fillinfo) bind (c)
import :: fillsettingstype
type(fillsettingstype) , intent (out) : fillinfo
end subroutine geffillsettings
subroutine getlinesettings (lineinfo) bind (c)
import :: linesettingstype
type(linesettingstype) , intent (out) : lineinfo
end subroutine getlinesettings
function getmaxcolor () bind (c)
import 1 C_INT
integer (C_INT): getmaxcolor
end function getmaxcolor
function getmaxheight () bind (c)
import :: C_INT
integer (C_INT): getmaxheight
end function getmaxheight
function getmaxwidth () bind (c)
import :: C_INT
integer (C_INT): getmaxwidth
end function getmaxwidth

function getmaxx () bind (c)

import :: C_INT
integer (C_INT): getmaxx
end function getmaxx
function getmaxy () bind (c)
import 1 C_INT
integer (C_INT): getmaxy
end function getmaxy
function getpixel (x,y) bind (c)
import 1 C_INT
integer (C_INT), value : x,y
integer (C_INT): getpixel
end function getpixel
subroutine getviewsettings (viewport) bind (c)
import :: viewporttype
type(viewporttype) , intent (out) :: viewport
end subroutine getviewsettings
function getwindowheight () bind (c)
import :: C_INT
integer (C_INT):: getwindowheight
end function getwindowheight

function getwindowwidth () bind (c)
import 1 C_INT

integer (C_INT): getwindowwidth
end function getwindowwidth

bgi.f90

~/programming/bgi—fortran/

8/15
09/06/2015

function getx () bind (c)

import 1 C_INT
integer (C_INT): getx
end function getx
function gety () bind (c)
import 1 C_INT
integer (C_INT): gety
end function gety
subroutine moverel (dx,dy) bind (c)
import @ C_INT
integer (C_INT), value : dx,dy
end subroutine moverel

subroutine moveto (x,y) bind (c)

import :: C_INT
integer (C_INT), value : X,y
end subroutine moveto

subroutine refresh () bind (c)
end subroutine refresh

subroutine setbkcolor (color) bind (c)

import :: C_INT
integer (C_INT), value : color
end subroutine setbkcolor

subroutine setbkrgbcolor (index) bind (c)

import :: C_INT

integer (C_INT), value : index
end subroutine setbkrgbcolor
subroutine setcolor (color) bind (c)

import :: C_INT

integer (C_INT), value : color
end subroutine setcolor

subroutine setrgbcolor (index) bind (c)

import 1 C_INT
integer (C_INT), value : index
end subroutine setrgbcolor
subroutine setfillpattern (upattern,color) bind (c)
import :: C_INT, C_CHAR
character (C_CHAR, intent (in):: upattern(*)
integer (C_INT), value : color
end subroutine setfillpattern
subroutine setfillstyle (pattern,color) bind (c)
import 1 C_INT
integer (C_INT), value : pattern, color
end subroutine setfillstyle
Ivoid setlinestyle(int linestyle, unsigned upattern, int thickness);
subroutine setlinestyle (linestyle,upattern,thickness)
import :: C_INT
integer (C_INT), value : linestyle, upattern, thickness
end subroutine setlinestyle
subroutine setviewport (left,top,right,bottom,clip)
import :: C_INT
integer (C_INT), value : left, top, right, bottom, clip
end subroutine setviewport
subroutine setwritemode (mode) bind (c)
import 1 C_INT
integer (C_INT), value : mode
end subroutine setwritemode

function usleep (useconds) bind (c)

import :: C_INT
integer (C_INT), value : useconds
integer (C_INT) :: usleep

end function usleep

! Window Creation / Graphics Manipulation routines...

bind (c)

bind (c)

bgi.fo0 9/15
~/programming/bgi—fortran/ 09/06/2015

subroutine closebgi () bind (c)
end subroutine closebgi

subroutine closegraph () bind (c)
end subroutine closegraph

subroutine detectgraph (graphdriver,graphmode) bind (c)
import 1 C_INT
integer (C_INT), intent (out):: graphdriver, graphmode
end subroutine detectgraph

subroutine getaspectratio (xasp,yasp) bind (c)
import @ C_INT
integer (C_INT), intent (out): xasp, yasp
end subroutine getaspectratio

function c_getdrivername () bind (c, name= ’getdrivername’)
import @ C_PTR

type(C_PTR) : c_getdrivername

end function c_getdrivername

function getgraphmode () bind (c)
import :: C_INT
integer (C_INT): getgraphmode
end function getgraphmode

function getmaxmode () bind (c)
import :: C_INT
integer (C_INT): getmaxmode
end function getmaxmode

function ¢_getmodename (mode_number) bind (c, name= ’getmodename’)
import :: C_INT, C_PTR
type(C_PTR) : c_getmodename
integer (C_INT), value : mode_number

end function c_getmodename

subroutine getmoderange (graphdriver,lomode,himode) bind (c)
import :: C_INT
integer (C_INT), value : graphdriver
integer (C_INT), intent (out):: lomode, himode

end subroutine getmoderange

subroutine graphdefaults () bind (c)
end subroutine graphdefaults

function c_grapherrormsg (error_code) bind (c, name= ’grapherrormsg’)
import :: C_INT, C_PTR
type(C_PTR) : c_grapherrormsg
integer (C_INT), value : error_code

end function c_grapherrormsg

function graphresult () bind (c)
import :: C_INT

integer (C_INT): graphresult
end function graphresult

I Being libXbgi written in ANSI C, we cannot have default (optional)

| parameters

subroutine initgraph (graphdriver,graphmode,pathtodriver) bind (c)
import :: C_INT, C_CHAR
integer (C_INT), intent (inout): graphdriver, graphmode
character (C_CHAR, intent (in):: pathtodriver(*)

end subroutine initgraph

subroutine initwindow (width,height) bind (c)
import :: C_INT
integer (C_INT), value : width, height

end subroutine initwindow

subroutine openbgi (width,height,title) bind (c)
import :: C_INT, C_CHAR
integer (C_INT), value : width, height
character (C_CHAR, intent (in):: title(*)

end subroutine openbgi

! Not available in Xbgi
function installuserdriver (name,detect) bind (c)

bgi.f90

~/programming/bgi—fortran/

10/15
09/06/2015

import : C_INT, C_CHAR C_FUNPTR
character (C_CHAR, intent (in):: name(*)
type(C_FUNPTR) , value : detect
integer (C_INT): installuserdriver

end function installuserdriver

I Not implemented in Xbgi

function installuserfont (name) bind (c)
import :: C_INT, C_CHAR
character (C_CHAR, intent (in):: name(*)
integer (C_INT):: installuserfont

end function installuserfont

! Not implemented in Xbgi

function registerbgidriver (driver) bind (c)
import @ C_PTR C_INT
type(C_PTR) , value : driver
integer (C_INT):: registerbgidriver

end function registerbgidriver

I Not implemented in Xbgi

function registerbgifont (font) bind (c)
import @ C_PTR C_INT
type(C_PTR) , value : font
integer (C_INT): registerbgifont

end function registerbgifont

I This routine only clears the device in Xbgi, so you should not use it
subroutine restorecrtmode () bind (c)
end subroutine restorecrtmode

subroutine setaspectratio (xasp,yasp) bind (c)

import 1 C_INT
integer (C_INT), value : xasp,yasp
end subroutine setaspectratio
I'lt uses "unsigned"
function setgraphbufsize (bufsize) bind (c)
import :: C_INT
integer (C_INT), value : bufsize
integer (C_INT): setgraphbufsize
end function setgraphbufsize
subroutine setgraphmode (mode) bind (c)
import :: C_INT
integer (C_INT), value : mode
end subroutine setgraphmode

I User interation routines...
function getch () bind (c)

import :: C_INT
integer (C_INT): getch
end function getch

function kbhit () bind (c)
import :: C_INT
integer (C_INT): kbhit

end function kbhit

function xkbhit () bind (c)

import :: C_INT
integer (C_INT): xkbhit
end function xkbhit

I Double buffering support routines...
function getactivepage () hind (c)

import :: C_INT
integer (C_INT): getactivepage
end function getactivepage

function getvisualpage () hind (c)

import :: C_INT
integer (C_INT): getvisualpage
end function getvisualpage

subroutine setactivepage (page) bind (c)
import 1 C_INT
integer (C_INT), value : page

bgi.f90

~/programming/bgi—fortran/

11/15
09/06/2015

end subroutine setactivepage

subroutine setvisualpage (page) bind (c)
import :: C_INT

integer (C_INT), value : page

end subroutine setvisualpage

I Image routines...

function imagesize (left,top,right,bottom) bind (c)
import :: C_INT
integer (C_INT): imagesize
integer (C_INT), value : left, top, right, bottom
end function imagesize
subroutine getimage (left,top,right,bottom,bitmap) bind (c)
import :: C_INT, C_PTR
integer (C_INT), value : left, top, right, bottom
type(C_PTR) , value : bitmap
end subroutine getimage
subroutine putimage (left,top,ptr,op) bind (c)
import :: C_INT, C_PTR
integer (C_INT), value : left, top
type(C_PTR) , value : ptr
integer (C_INT), value : op
end subroutine putimage
I Text routines...
subroutine gettextsettings (texttypeinfo) bind (c)
import :: textsettingstype
type(textsettingstype) , intent (out) : texttypeinfo
end subroutine gettextsettings
subroutine outtext (textstring) bind (c)
import :: C_CHAR
character (C_CHAR, intent (in):: textstring(*)
end subroutine outtext
subroutine outtextxy (X,y,textstring) bind (c)
import :: C_INT, C_CHAR
integer (C_INT), value : X,y
character (C_CHAR intent (in): textstring(*)
end subroutine outtextxy
subroutine settextjustify (horiz,vert) bind (c)
import 1 C_INT
integer (C_INT), value : horiz, vert
end subroutine settextjustify
subroutine settextstyle (font,direction,charsize) bind (c)
import :: C_INT
integer (C_INT), value : font, direction, charsize
end subroutine settextstyle
subroutine setusercharsize (multx,divx,multy,divy) bind (c)
import :: C_INT
integer (C_INT), value : multx, divx, multy, divy
end subroutine setusercharsize
function textheight (textstring) bind (c)
import :: C_INT, C_CHAR
character (C_CHAR intent (in):: textstring(*)
integer (C_INT): textheight
end function textheight
function textwidth (textstring) bind (c)
import :: C_INT, C_CHAR
character (C_CHAR, intent (in):: textstring(*)

integer (C_INT): textwidth
end function textwidth

I Mouse routines...
subroutine clearmouseclick (kind) bind (c)

import 1 C_INT
integer (C_INT), value : kind
end subroutine clearmouseclick

subroutine getmouseclick (kind,x,y) bind (c)

bgi.f90

~/programming/bgi—fortran/

12/15
09/06/2015

import :: C_INT
integer (C_INT), value : kind
integer (C_INT), intent (out): X, Y
end subroutine getmouseclick
function ismouseclick (kind) bind (c)
import :: C_INT, C_BOOL
integer (C_INT), value : kind
logical (C_BOOL:: ismouseclick
end function ismouseclick

function mousex() bind (c)

import @ C_INT
integer (C_INT): mousex
end function mousex

function mousey() bind (c)
import :: C_INT
integer (C_INT): mousey
end function mousey

I Palette routines...

function c_getdefaultpalette () bind (c, name= ’getdefaultpalette’
import @ C_PTR
type(C_PTR) : c_getdefaultpalette

end function c_getdefaultpalette

subroutine getpalette (palette) bind (c)
import :: palettetype

type(palettetype) , intent (out) : palette
end subroutine getpalette
function getpalettesize () bind (c)
import :: C_INT
integer (C_INT): getpalettesize
end function getpalettesize
subroutine setallpalette (palette) bind (c)
import :: palettetype
type(palettetype) , intent (in) :: palette
end subroutine setallpalette
subroutine setpalette (colornum,color) bind (c)
import @ C_INT
integer (C_INT), value : colornum, color
end subroutine setpalette
subroutine setrgbpalette (colornum,red,green,blue) bind (c)
import 1 C_INT
integer (C_INT), value : colornum, red, green, blue
end subroutine setrgbpalette

I RGB COLOR routines...

function rgb_color (r,g,b) bind (c, name= 'COLOR’)
import :: C_INT
integer (C_INT): rgb_color
integer (C_INT), value : r1,9,b

end function rgb_color

I C routines...

I 'strlen’ from Tobias Burnus,

I http://gcc.gnu.org/ml/fortran/2010—-02/msg00029.html
function c_strlen (str) bind (c, name= ’strlen’)

import ' C_PTR C_SIZE_ T

type (C_PTR) , value : str

integer (C_SIZE T) :: c_strlen
end function c_strlen

function c¢_malloc (memsize) bind (c, name= ’'malloc’)
import @ C_PTR C_INT
integer (C_INT), value : memsize
type(C_PTR) : c¢_malloc

end function ¢_malloc

subroutine c_free (p) bind (c, name= ‘free’)
import @ C_PTR
type(C_PTR) , value ' p

end subroutine c_free

)

bgi.f90

~/programming/bgi—fortran/

13/15
09/06/2015

end interface

I BGl types...
public :: arccoordstype, fillsettingstype, linesettingstype,
textsettingstype, viewporttype, palettetype, imagetype

I Drawing routines...

public ::arc, bar, bar3d, circle, cleardevice, clearviewport, drawpoly,
ellipse, fillellipse, fillpoly, floodfill, line, linerel, lineto,
pieslice, fast_putpixel, putpixel, rectangle, sector

I Miscellaneous routines..

public :: converttorgb, delay, event, getarccoords, getbkcolor, getcolor,
getevent, getfillpattern, getfillsettings, getlinesettings,
getmaxcolor, getmaxheight, getmaxwidth, getmaxx, getmaxy, getpixel,
getviewsettings, getwindowheight, getwindowwidth, getx, gety, moverel,
moveto, refresh, setbkcolor, setbkrgbcolor, setcolor, setrgbcolor,
setfillpattern, setfillstyle, setlinestyle, setviewport, setwritemode,
usleep

' Window Creation / Graphics Manipulation routines...

public :: closebgi, closegraph, detectgraph, getaspectratio, getdrivername,
getgraphmode, getmaxmode, getmodename, getmoderange, graphdefaults,
grapherrormsg, graphresult, initgraph, initwindow, openbgi,
installuserdriver, installuserfont, registerbgidriver, registerbgifont,
restorecrtmode, setaspectratio, setgraphbufsize, setgraphmode

I User interation routines...
public :: getch, kbhit, xkbhit

! Double buffering support routines...
public :: getactivepage, getvisualpage, setactivepage, setvisualpage,
swapbuffers

! Image routines...
public ::imagesize, getimage, putimage, allocateimage, freeimage,
copyimage, pasteimage

I Text routines...
public :: gettextsettings, outtext, outtextxy, settextjustify, settextstyle,
setusercharsize, textheight, textwidth

I Mouse routines...
public :: clearmouseclick, getmouseclick, ismouseclick, mousex, mousey

| Palette routines...
public :: getdefaultpalette, getpalette, getpalettesize, setallpalette,
setpalette, setrgbpalette

I RGB COLOR routines...
public ::rgb_color, red_value, green_value, blue_value

I Utility routines...
public :: CString, quit

contains
subroutine c_f_stringconvert (cstring,str)
type(c_ptr) , intent (in) = cstring
character (len=%), intent (out) :: str
character (C_CHAR, dimension (3), pointer : farray
integer i

call c_f pointer (cstring,farray,[c_strlen(cstring)])

str= repeat ('’ , len (str))
doi=1, min (len (str), int (c_strlen(cstring)))
str(i:i) = farray(i)
end do
end subroutine c_f _stringconvert
function getdefaultpalette () result (fptr)
type(palettetype) , pointer i fptr
type(C_PTR) : cptr

fptr => null ()

bgi.fo0 14/15
~/programming/bgi—fortran/ 09/06/2015

cptr = c_getdefaultpalette()
call c_f pointer (cptr,fptr)

end function getdefaultpalette
subroutine getdrivername (str)
character (¥), intent (out): str
call c_f _stringconvert (c_getdrivername(),str)
end subroutine getdrivername
subroutine getmodename (mode_number,str)
integer , intent (in) mode_number
character (*), intent (out):: str
call c_f_stringconvert (c_getmodename(mode_number),str)
end subroutine getmodename
subroutine grapherrormsg (error_code,str)
integer , intent (in) error_code
character (*), intent (out):: str
call c_f stringconvert (c_grapherrormsg(error_code),str)
end subroutine grapherrormsg
subroutine geffillpattern (pattern)
character , intent (out), target : pattern(8)
call c_getfillpattern (c_loc (pattern))
end subroutine getfillpattern
subroutine drawpoly (numpoints,points)
integer (C_INT), intent (in):: numpoints
integer , intent (in), dimension (numpoints,?2) :: points
integer (C_INT), dimension (numpoints*2), target : oned
oned = reshape (transpose (points), (/ 2*numpoints /))
call c_drawpoly (numpoints,oned)
end subroutine drawpoly
subroutine fillpoly (numpoints,points)
integer (C_INT), intent (in):: numpoints
integer , intent (in), dimension (numpoints,2) :: points
integer (C_INT), dimension (numpoints*2), target : oned
oned = reshape (transpose (points), (/ 2*numpoints /))
call c_fillpoly (numpoints,oned)
end subroutine fillpoly
subroutine allocateimage (img,width,height)
type(imagetype) , intent (out) : img
integer , intent (in) : width, height
integer :: memsize

memsize = imagesize(0,0,width,height)

img%width = width
img%height = height
img%image_ptr = ¢c_malloc(memsize)

if (.not. c_associated (img%image_ptr)) then
if (graphresult() == grOKk) call closegraph ()
write (*,*) 'ALLOCATEIMAGE: Allocation request denied’
write (*,%) ‘Error: not enough heap space.’
stop
end if
end subroutine allocateimage

subroutine freeimage (img)
type(imagetype) , intent (inout) :: img

img%width = 0
img%height = 0

if (c_associated (img%image_ptr)) then
call c_free (img%image_ptr)
else
if (graphresult() == grOKk) call closegraph ()

write (*,*) 'FREEIMAGE: Deallocation request denied’

bgi.f90 15/15
~/programming/bgi—fortran/ 09/06/2015

write (*,*) ‘Error: not associated pointer.’

stop
end if
end subroutine freeimage
subroutine copyimage (left,top,img)
integer , intent (in) : left, top
type(imagetype) , intent (inout) :: img
call getimage (left,top,left+img%width,top+img%height,img%image_ptr)
end subroutine copyimage
subroutine pasteimage (left,top,img,op)
integer , intent (in) left, top
type(imagetype) , intent (in) :: img
integer , intent (in) op
call putimage (left,top,img%image_ptr,op)
end subroutine pasteimage
function CString (string) result (array)
character (len=*), intent (in) string
character (kind= C_CHAR, dimension (len (string)+1) : array
integer i
doi=1, len (string)
array(i) = string(i:i)
end do
array(len (string)+1) = C_NULL_CHAR

end function CString

function quit ()

logical i quit
character : qchar
quit = false.
if (kbhit() /= 0) then
qchar = char (getch()
quit = (qchar == '‘Q" .or. qchar== 'q)
end if
end function quit
function red_value (v)
integer : red_value
integer , intent (in):: v
I we need shift right
red_value = (iand (ishft ((v),~-16), int (Z'FF)))
end function red_value

function green_value (v)

integer :: green_value
integer , intent (in):: Y
I we need to shift right
green_value = (iand (ishft ((v),=8), int (Z'FF)))
end function green_value
function blue_value (v)
integer :: blue_value
integer , intent (in):: %
blue_value = (iand ((v), int (Z'FF)))
end function blue_value

subroutine swapbuffers ()
integer 1 oldv, olda

oldv = getvisualpage()
olda = getactivepage()

call setvisualpage (olda)

call setactivepage (oldv)

end subroutine swapbuffers
end module bgi

bgiapp.f90

~/programming/bgi—fortran/

1/3
09/06/2015

I Fortran Interface to the Xbgi—-364p Library

! by Angelo Graziosi (firstname.lastnameATalice.it)
! Copyright Angelo Graziosi

I

i It is distributed in the hope that it will be useful,

I but WITHOUT ANY WARRANTY; without even the implied warranty of
I MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

1

| This is the "bgiapp’ module.
!

module bgiapp
use kind_consts , only : DP
use bgi, only :cleardevice, closebgi, CString, ellipse, getch, LIGHTGREEN,
line, fast_putpixel, putpixel, fillellipse, LEFT_TEXT, openbgi,
outtext, outtextxy, rectangle, rgb_color, setactivepage, setbkcolor,
setcolor, settextjustify, setvisualpage, TOP_TEXT, usleep, YELLOW

implicit none

private

integer :: width =600, height = 600

real (DP):: x_min=-1.0_DP, x_max =1.0_DP, &
y_min=-1.0_ DP,y max=1.0_DP, &

scx = 0.0_DP, scy =0.0_DP

interface bgiapp_text
module procedure outtextl,outtext3
end interface bgiapp_text

public :: bgiapp_close, bgiapp_init, bgiapp_setup, &
bgiapp_xmin, bgiapp_xmax, bgiapp_ymin, bgiapp_ymax, &
bgiapp_width, bgiapp_height, bgiapp_box, bgiapp_circle, bgiapp_dot,
bgiapp_fast_dot, bgiapp_fillellipse, bgiapp_line, bgiapp_text

contains

subroutine bgiapp_init (title)
character (len =%), intent (in) :: title

call openbgi (width,height,CString(title))

call setbkcolor (rgb_color(0,0,40))
call cleardevice
end subroutine bgiapp_init

subroutine bgiapp_close ()
integer , parameter : SECONDS = 1000000
integer 1k

call settextjustify (LEFT_TEXT, TOP_TEXT)

call setcolor (YELLOW)

call outtextxy (0,0,CString('Press a key to exit...’)
k = getch()

call setcolor (LIGHTGREEN);
call outtextxy (0,20,CString('Ok, leaving in 5 seconds...’)

k = usleep (5*SECONDS)

call closebgi ()
print *, ’All done’
end subroutine bgiapp_close

subroutine bgiapp_setup (x1,x2,y1,y2,wh,ht)
use get data , only :get
real (DP), intent (in), optional 1 x1,x2,yl,y2
integer , intent (in), optional 1 wh, ht

! Initializing with defaults values...
if (present (x1)) x_min=x1
if (present (x2))x_max =x2
(present (yl))y_min=yl
if (present (y2))y_max=y2
(present (wh)) width =wh
(present (ht)) height = ht
call get ("WIDTH (pixels) =’ ,width)
call get ('HEIGHT (pixels) =’ ,height)

bgiapp.f90

~/programming/bgi—fortran/

213
09/06/2015

write (*,*)
call get ('XMIN =" ,x_min)
call get ('XMAX =" x_max)
write (*,*)
call get ('YMIN =",y _min)
call get ('YMAX =" y_max)

write (*,*)
scx = (width/(x_max—x_min)) I x scale
scy = (height/(y_max-y_min)) l'y scale
end subroutine bgiapp_setup
function Xs(x) result (ret)

integer 1 ret

real (DP), intent (in):: X
ret =0+ nint ((X-X_min)*scx)
end function XS

function ys(y) result (ret)

integer 1 ret
real (DP), intent (in):: y
ret = 0+ nint ((y_max-y)*scy)
end function ys
subroutine outtextl (text)
character (len=*), intent (in) text
call outtext (CString(text))
end subroutine outtextl

subroutine outtext3 (x,y,text)

real (DP), intent (in):: X, Y

character (len=%), intent (in) :: text

call outtextxy (xs(x),ys(y),CString(text))
end subroutine outtext3

function bgiapp_xmin () result (r)
real (DP): r

r=x_min

end function bgiapp_xmin

function bgiapp_xmax () result (r)
real (DP): r

r = X_max

end function bgiapp_xmax

function bgiapp_ymin () result (r)
real (DP): r

r=y min

end function bgiapp_ymin

function bgiapp_ymax () result (r)
real (DP): r
r=y_max

end function bgiapp_ymax

function bgiapp_width () result (r)
integer & r

r = width

end function bgiapp_width

function bgiapp_height () result (r)
integer & r

r = height

end function bgiapp_height

subroutine bgiapp_box (x1,x2,y1,y2)

real (DP), intent (in):: x1, x2,y1,y2

call rectangle (xs(x1),ys(y1),xs(x2),ys(y2))
end subroutine bgiapp_box
subroutine bgiapp_circle (x,y.r)

real (DP), intent (in):: X, Y, T

call ellipse (xs(x),ys(y),0,360, &

abs (xs(r)—xs(0.0_DP)), abs (ys(r)-ys(0.0_DP)))

end subroutine bgiapp_circle

subroutine bgiapp_dot (x,y,color)
real (DP), intent (in):: X, Y
integer , intent (in) : color

bgiapp.f90 3/3
~/programming/bgi—fortran/ 09/06/2015

call putpixel (xs(x),ys(y),color)
end subroutine bgiapp_dot

subroutine bgiapp_fast_dot xy)
real (DP), intent (in):: X, Y
call fast_putpixel (xs(x),ys(y))

end subroutine bgiapp_fast_dot

subroutine bgiapp_fillellipse (x,y,a,b)
real (DP), intent (in):: X, Y, ab
call fillellipse (xs(x),ys(y), &
abs (xs(a)—xs(0.0_DP)), abs (ys(b)-ys(0.0_DP)))
end subroutine bgiapp_fillellipse

subroutine bgiapp_line (x1,y1,x2,y2)
real (DP), intent (in):: x1,y1, x2, y2
call line (xs(x1),ys(yl),xs(x2),ys(y2))
end subroutine bgiapp_line
end module bgiapp

